Singularity Theory for Non-twist Tori (I) - Methodology
Transcription
Singularity Theory for Non-twist Tori (I) - Methodology
Singularity Theory for Non-twist Tori (I) Methodology A. González A. Haro R. de la Llave Universitat de Barcelona & University of Texas at Austin Coherent Structures in DS Lorentz Center 2011 A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 1 / 38 Index 1 Setting of the problem 2 Motivating examples 3 Methodology 4 Bifurcation theory for non-twist tori 5 Numerical examples 6 Conclusions A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 2 / 38 Setting of the problem Setting of the problem A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 3 / 38 Setting of the problem KAM Theory for non-degenerate Hamiltonian systems Existence and persistence of quasi-periodic motions in Hamiltonian systems Twist conditions (' diffeomorphic frequency map): Persistence of quasi-periodic motions Kolmogorov, Arnold, Moser, ... KAM results based on reducibility Celletti-Chierchia, Salamon-Zehnder, González-de la Llave-Jorba-Villanueva, ... Rüssmann conditions (' weakly non-degenerate frequency map): Persistence of Cantor families of invariant tori Rüssmann, Sevryuk, Xu, You, Zhang, ... A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 4 / 38 Setting of the problem KAM Theory for degenerate Hamiltonian systems Existence and persistence of degenerate invariant tori with prescribed frequency Existence and persistence of non-twist curves in 2-parameter families of apm. Delshams-de la Llave (2002) Normal forms for the fold and cusp singularities for 4D maps. Dullin-Ivanov-Meiss (2006) Existence of meandering curves in area preserving non-twist maps (althought the curves are twist!). Simó (1998) Persistence of tori under non-zero Brouwer degree condition (no control on degeneracies!) Xu-You (2010) Computation of normal forms for non-twist tori. Haro (2002) A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 5 / 38 Setting of the problem Some problems for non-twist tori This talk Persistence of non-twist tori with prescribed Diophantine frequency. Bifurcations of non-twist tori with prescribed Diophantine frequency. Numerical algorithms to compute non-twist tori. The geometrical framework of the theory will be considered in Alejandra González’s talk. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 6 / 38 Setting of the problem Main contribution A methodology to study bifurcations of KAM tori with fixed Diophantine frequency for Hamiltonian systems. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 7 / 38 Motivating examples Motivating examples A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 8 / 38 Motivating examples Example I: A collision of invariant tori A family of non-twist apm Consider the quadratic standard family of apm in T × R: 2 x̄ = 0.375 + x + ȳ , ȳ = y− κ sin(2πx) . 2π Problem: Study the bifurcations of invariant tori with frequency ω = with respect to κ. A. Haro (UB) Singularity Theory for Non-twist Tori (I) √ 3− 5 , 2 Leiden 2011 9 / 38 Motivating examples Example I: A collision of invariant tori Numerical observations: a fold singularity K= 1.000000 0.2 0.15 0.15 0.1 0.1 0.05 0.05 y y K= 0.000000 0.2 0 -0.05 0 -0.05 -0.1 -0.1 -0.15 -0.15 -0.2 0 0.2 0.4 x 0.6 0.8 -0.2 1 0 0.2 0.4 0.2 0.15 0.1 0.1 0.05 0.05 0 -0.05 0.8 1 0 -0.05 -0.1 -0.1 -0.15 -0.15 -0.2 0.6 K= 1.500000 0.2 0.15 y y K= 1.361408 x 0 0.2 0.4 A. Haro (UB) x 0.6 0.8 1 -0.2 0 0.1 0.2 0.3 0.4 Singularity Theory for Non-twist Tori (I) 0.5 x 0.6 0.7 0.8 0.9 1 Leiden 2011 10 / 38 Motivating examples Example II: Integrable systems Frequency map of an integrable system in Tn × Rn Let x + ∇W (y ) f0 (x, y ) = y be an integrable system, where W : Rn → R. The frequency map is ω̂ = ∇W : Rn → Rn . θ n ∀p ∈ R , Kp (θ) = is f0 -invariant with frequency ω̂(p): p f0 (Kp (θ)) = Kp (θ + ω̂(p)) . Kp is twist iff the torsion T̄ (p) = D ω̂(p) = Hess W (p) is non-degenerate. Otherwise, Kp is non-twist. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 11 / 38 Motivating examples Example II: Integrable systems Potential for frequency ω of an integrable system in Tn × Rn Consider the modified family (Moser, Herman): x + ∇W (y ) λ f0,λ (x, y ) = + . y 0 ∀p ∈ Rn , Kp (θ) = θ is f0,λ(p) -invariant with frequency ω: p f0,λ(p) (Kp (θ)) = Kp (θ + ω) , where λ(p) = ω − ∇W (p). The potential A : Rn → R, defined by A(p) = W (p) − p> ω , satisfies λ(p) = −∇p A(p) , T̄ (p) = Hess A(p). A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 12 / 38 Motivating examples Example II: Integrable systems Invariant tori as critical points of the potential Conclusions: 1 2 Kp∗ is f0 -invariant with frequency ω if and only if p∗ is a critical point of the potential A(p). Kp∗ is a twist f0 -invariant torus with frequency ω if and only p∗ is a non-degenerate critical point of A(p). 3 Kp∗ is a non-twist f0 -invariant torus with frequency ω if and only p∗ is a degenerate critical point of A(p). A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 13 / 38 Motivating examples Example II: Integrable systems A degenerate case in T × R Let fµ be family of integrable symplectomorphisms in T × R with: frequency map ω̂(y ; µ) = ω + µ + y 2 . potential (for ω): A(p; µ) = µp + p3 . 3 Then (for fixed frequency ω): K0 is a non-twist torus for f0 . There are two invariant tori for µ < 0. There are no invariant tori for µ > 0. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 14 / 38 Motivating examples Example II: Integrable systems A degenerate case in T × R Observations: f0 is Rüssmann non-degenerate, but invariant tori with prescribed frequency ω can be destroyed. Since ω lies in the boundary of the image of the frequency map of f0 , Brouwer degree theory can not be applied. µ is the parameter of unfolding of the singularity 0 for A(p; 0), hence Singularity Theory can be applied. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 15 / 38 Motivating examples Natural questions (From the motivating examples) For a fixed Diophantine frequency ω: 1 Is the potential and its properties persistent under perturbations of an integrable system? 2 Given a non-integrable system, are there sufficient conditions that guarantee the existence of a suitable potential? 3 Can the potential be used to develop a bifurcation theory of invariant tori? A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 16 / 38 Methodology Methodology A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 17 / 38 Methodology Methodology Setting Let Ω = On −In In On be the standard symplectic matrix in Tn × Rn . Let P ⊂ Rm be an open subset of parameters κ. Let fκ : Tn × Rn → Tn × Rn a smooth family of real-analytic exact symplectomorphisms, with primitive functions Sκ : Tn × Rn → R: dSκ = fκ∗ (y dx) − y dx. Let ω ∈ Rn be fixed and Diophantine: > τ ∀` ∈ Zn \ {0}, m ∈ Z. ` ω − m ≥ γ |`|− 1 , Goal: Finding fκ -invariant tori, with frequency ω. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 18 / 38 Methodology Methodology Step 1: KAM theory for families of invariant tori Find a family (p; κ) ∈ U × P → K(p; κ) = (λ(p; κ), K(p;κ) ) such that λ(p; κ) fκ ◦ K(p;κ) (θ) + = K(p;κ) (θ + ω) , 0 hKp;κ (θ) − Kp (θ)i = 0 . For each (p, κ), the torsion of K(p,κ) is the n × n symmetric matrix D E T̄ (p; κ) = N(p;κ) (θ + ω)> Ω Dz fκ (K(p;κ) (θ)) N(p;κ) (θ) , −1 where N(p;κ) (θ) = J Dθ K(p;κ) (θ) Dθ K(p;κ) (θ)> Dθ K(p;κ) (θ) . A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 19 / 38 Methodology Methodology Step 2: Symplectic Geometry of families of invariant tori Define the potential of the family K D E A(p; κ) = −p> λ(p; κ) − Sκ ◦ K(p;κ) (θ) . Properties of the potential: λ(p; κ) = −∇p A(p; κ). T̄ (p; κ) W1 (p; κ) = W2 (p; κ) HessA(p; κ) (for suitable matrices W1 (p; κ), W2 (p; κ)). A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 20 / 38 Methodology Methodology Step 3: Singularity Theory for critical points of the potential For κ∗ fixed: K(p∗ ;κ∗ ) is fκ∗ -invariant with frequency ω iff p∗ is a critical point of the potential A(p; κ∗ ). If W1 (p∗ ; κ∗ ) and W2 (p∗ ; κ∗ ) are invertible: dim ker T̄ (p∗ , κ∗ ) = dim ker Hessp A(p∗ , κ∗ ). A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 21 / 38 Methodology Applications Close-to-integrable systems: 1 Persistence of invariant tori with fixed frequency under weak nondegeneracy conditions. 2 Persistence of invariant tori for perturbations of isochronous systems. 3 Robust bifurcation theory for non-twist tori. Numerical computations in far-to-integrable systems: 1 A fold singularity. 2 Birth of meandering. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 22 / 38 Bifurcation theory for non-twist tori Bifurcation theory for non-twist tori A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 23 / 38 Bifurcation theory for non-twist tori A persistence result of non-twist tori Hypotheses Theorem (Persistence theorem of non-twist tori) Given: ω ∈ Rn , a Diophantine frequency vector. f0 , a real-analytic integrable simplectic map with frequency map ω̂(y ) = ω + ∇A(y ), s.t. y ∗ = 0 is a finitely determined singularity of A(y ). fµ , a µ-family of real-analytic integrable simplectic map with frequency map ω̂µ (y ) = ω + ∇Aµ (y ), s.t. Aµ (y ) is a stable unfolding of the singularity at zero. fµ,ε , a perturbed family of exact symplectomorphims: x + ω + ∇Aµ (y ) fµ,ε (x, y ) = + εg(x, y , ε). y A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 24 / 38 Bifurcation theory for non-twist tori A persistence result of non-twist tori Theses Theorem (Theses) Then: (KAM) For (µ, ε) sufficiently small, there exists a potential Aµ,ε (p) defined around 0 ∈ Rn and an n-dimensional torus Kp,µ,ε : Tn → Tn × Rn , depending smoothly on (p, µ, ε), such that: ∇p Aµ,ε (p) fµ,ε ◦ Kp,µ,ε (θ) = Kp,µ,ε (θ + ω) + . 0 (ST) For ε sufficiently small, there exist µ(ε) and p(ε) such that Aµ(ε),ε has a singularity at p(ε) that is of the same type (in the sense of Singularity Theory) of the singularity of A0 at zero. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 25 / 38 Numerical examples Numerical examples A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 26 / 38 Numerical examples A fold singularity Applying the methodology Modified family: f(κ,λ) (x, y ) = ! 2 0.375 + x + y − sin(2πx) + λ . κ y − 2π sin(2πx) κ 2π The primitive function of fκ,λ is Sκ (x, y ) = 3 κ κ 2 y − cos(2πx) + sin(2πx) . 3 2π 4 π2 The co-rank of the torsion of a torus is either 0 (twist) or 1 (nontwist). A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 27 / 38 Numerical examples A fold singularity A collision of invariant tori K= 0.000000 0.2 0.15 0.1 y 0.05 T = 0.1669253 T = −0.1669253 0 -0.05 -0.1 -0.15 -0.2 0 0.2 0.4 0.6 x 0.8 1 0.01 0.0004 0.0002 A <h 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 A. Haro (UB) 0 p 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori (I) 0 p 0.05 0.1 Leiden 2011 28 / 38 Numerical examples A fold singularity A collision of invariant tori K= 1.000000 0.2 0.15 0.1 y 0.05 T = 0.1123464 T = −0.1123464 0 -0.05 -0.1 -0.15 -0.2 0 0.2 0.4 0.6 x 0.8 1 0.01 0.0004 0.0002 A <h 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 A. Haro (UB) 0 p 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori (I) 0 p 0.05 0.1 Leiden 2011 29 / 38 Numerical examples A fold singularity A collision of invariant tori K= 1.361408 0.2 0.15 0.1 T = 0.6558 · 10−8 T = −0.6558 · 10−8 y 0.05 0 -0.05 -0.1 -0.15 -0.2 0 0.2 0.4 0.6 x 0.8 1 0.01 0.0004 0.0002 A <h 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 A. Haro (UB) 0 p 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori (I) 0 p 0.05 0.1 Leiden 2011 30 / 38 Numerical examples A fold singularity A collision of invariant tori K= 1.500000 0.2 0.15 0.1 y 0.05 0 -0.05 -0.1 -0.15 -0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 0.01 0.0004 0.0002 A <h 0.005 0 0 -0.0002 -0.005 -0.0004 -0.1 -0.05 A. Haro (UB) 0 p 0.05 0.1 -0.1 -0.05 Singularity Theory for Non-twist Tori (I) 0 p 0.05 0.1 Leiden 2011 31 / 38 Numerical examples The birth of meandering tori A numerical example Consider a quadratic standard family of symplectomorphisms fκ : T × R → T × R, defined by: x̄ = x + (ȳ + 0.1)(ȳ − 0.2) , ȳ = y− κ sin(2πx) . 2π √ Problem: Look for invariant tori with frequency ω = to parameter κ. A. Haro (UB) Singularity Theory for Non-twist Tori (I) 5−1 32 , with respect Leiden 2011 32 / 38 Numerical examples A fold singularity The birth of meandering tori K= 0.420000 0.5 0.4 0.3 0.2 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 A <h 0.01 -0.01 -0.02 -0.0020 0 0.02 A. Haro (UB) 0.04 p 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori (I) 0.04 p 0.06 0.08 0.1 Leiden 2011 33 / 38 Numerical examples A fold singularity The birth of meandering tori K= 0.430396 0.5 0.4 0.3 0.2 T = −1.6261 · 10−7 T = 1.6261 · 10−7 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 A <h 0.01 -0.01 -0.02 -0.0020 0 0.02 A. Haro (UB) 0.04 p 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori (I) 0.04 p 0.06 0.08 0.1 Leiden 2011 34 / 38 Numerical examples A fold singularity The birth of meandering tori K= 0.440000 0.5 0.4 0.3 0.2 T = −0.0211805 T = 0.0211805 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 A <h 0.01 -0.01 -0.02 -0.0020 0 0.02 A. Haro (UB) 0.04 p 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori (I) 0.04 p 0.06 0.08 0.1 Leiden 2011 35 / 38 Numerical examples A fold singularity The birth of meandering tori K= 0.450000 0.5 0.4 0.3 0.2 T = −0.0309003 T = 0.0309003 y 0.1 0 -0.1 -0.2 -0.3 -0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 x 0.7 0.8 0.9 1 -0.0016 0.00 -0.0018 A <h 0.01 -0.01 -0.02 -0.0020 0 0.02 A. Haro (UB) 0.04 p 0.06 0.08 0.1 -0.0022 0 0.02 Singularity Theory for Non-twist Tori (I) 0.04 p 0.06 0.08 0.1 Leiden 2011 36 / 38 Conclusions Conclusions A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 37 / 38 Conclusions Conclusions Main contributions The infinite dimensional problem of finding invariant tori for Hamiltonian systems is reduced to the finite dimensional problem of finding critical points of the potential. Singularity Theory for invariant tori Non-twist tori correspond to degenerate critical points. Applicable to any finite-determined singularity of the frequency map. Efficient numerical algorithms to compute and validate invariant tori and its bifurcations. Persistence results for small twist systems. Applicable to perturbation of isochronous systems. A. Haro (UB) Singularity Theory for Non-twist Tori (I) Leiden 2011 38 / 38
Similar documents
Singularity Theory for Non-twist Tori - MAiA
Haro (2002): computation of non-twist tori and normal forms.
More information