Assessment for learning Systems Analysis and Design using
Transcription
Assessment for learning Systems Analysis and Design using
Assessment for learning Systems Analysis and Design using constructivist techniques Dr Jon Tepper Nottingham Trent University School of Science and Technology www: http://www.ntu.ac.uk/apps/staff_profiles/staff_directory/125395-2/26/jonathan_tepper.aspx T: 0115 848 8363 | E:[email protected] Common core module: no free lunch! Challenge of Learning Systems Analysis & Design Building on what they already know Impact of new approach Summary Teaching and learning differently Common core modules: no free lunch! INPUTS COMPUTING CLUSTER TECHNOLOGY CLUSTER COMPUTER SYSEMS CLUSTER PROCESS OUTPUTS ISYS10221/ISYS1 0241/ISYS10242: Systems Analysis & Design (20/30/40 cpt) 1)Select an appropriate systems development methodology 2)Analyse a system using appropriate systems thinking and problem solving techniques. 3)Construct an effective project and risk assessment plan 4)Formulate a set of process and related logic models. 5)Formulate a normalised data model PROBLEM: Maintaining relevance!! Spanning 10 courses in total, 200+ students per year, split into groups of 4-5 for the coursework Learning Systems Analysis & Design • Requires students to plan, analyse and collaborate • Traditional lectures, seminars and labs struggle to promote these skills (Oh Navarro & Van der Hoek, 2005) • Year 1 students have little affinity to learning software engineering (Shaw & Dermoudy, 2005) Build on what they already know! • Basic tenet of constructivism (Piaget, 1960; Bruner, 1977; Vygotsky, 1980) • Knowledge of the world is specific to the individual • Adaptation is key - initial conceptual structures are continually being adapted in response to new experiences, actions and knowledge • Social interaction is essential for validating new/existing conceptual structures Implications for Teaching • Remember: students perceive their environment differently to us (Biggs & Tang, 2011) o Mismatch in expectations will lead to disequilibrium in teaching system o Consequences: disengagement, inappropriate study techniques, answering the wrong question o Set clear expectations and ensure agreement • Always focus on what the student is doing o Apply constructive alignment (Biggs & Tang, 2011) i.e. getting students to engage in learning activities that are likely to result in their achieving the learning outcomes o Build on their existing knowledge….even if it doesn’t relate directly to the content We can all play games! “Games foster play, which produces a state of flow, which increases motivation, which supports the learning process…..well-designed game mechanics can result in learning experiences which are intrinsically motivating” (Paras and Bizzocchi, 2005) Games-based learning (GBL) approaches apply the principles of game play to educational contexts Most common approach is to develop computer games for students to play in order to problem solve and learn Why are games engaging? • In his popular book, Marc Prensky (2001, p106) revealed the following reasons: o o o o o form of fun form of play have rules have goals have outcomes and feedback Groff et al (2010) found evidence to support this GBL is not new in teaching SE/SA&D • SimSE: software simulations of managing large teams and projects and dealing with project plans, budgets and unexpected events (Oh Navarro & van der Hoek, 2005) • SimJavaSP: an interactive web-based, graphical simulation game of SDLC (Shaw and Dermoudy, 2005) • Hainey et al (2011) software game to teach requirements collection and proved as effective as role-playing and more effective than paper-based case studies. BUT….. • Need to balance trade-off between enjoyment and educational value • Drappa and Ludewig’s (2000) simulation game, SESAM, enhanced students’ motivation but failed to sufficiently improve either their learning or skills due to lack of interactive feedback So….. • How about having students design a game rather than playing it? • Prof Rachel McCrindle did just this for her 1st year SWEng students at Uni of Reading • Not a computer game but a board game • Excellent student outcomes reported after 6 years of use Won HEA Engineering Subject Centre’s Teaching Award 2010 http://www.reading.ac.uk/inter nal/staffportal/news/articles/sp sn-291537.aspx My approach to teaching differently • Create an open-ended GBL-based assessment brief • Follow McCrindle’s shift towards designing a game BUT: Assessment brief Deliverables You are required to design and model a board game which teaches managers about a systems development methodology. The methodology must be relevant to your course (e.g. agile methodology for BSc (H) Computer Science with Games Tech, spiral methodology for BSc (H) Information Systems). REPORT consisting of following sections: I. Introduction to Team and Methodology II. Team Concept Maps III. Project Schedule & Risk Assessment IV. System Proposal The name of your game; Game description; Motivation or inspiration; Game objective; list of functional and nonfunctional requirements; a summary of the Use Cases; the following three process models: Context level DFD, Logical level 0 DFD, Logical level 1 DFD for a level 0 DFD process; A logic model illustrating some calculation within the game (i.e. Structured English, Decision Tree or Decision Table); Logical Data Models consisting of a single table containing UNF, 1NF, 2NF and 3NF data and an ERD for 3NF tables showing key attributes only V. Evaluation The game must teach management about each of the four phases of the systems development lifecycle, namely, planning, analysis, design and implementation. In order for you to design and model the game, you will be required to move through the Planning and Analysis stages yourself. From not very original…. Teaches management about a prototyping methodology • Based on monopoly • Aim is to complete 3 board iterations (prototypes) each time gaining a letter of W, I or N • Obstacles, traps, perks and question cards relating aspects of SDLC & methodology to add excitement to original and interesting…. Teaches management about Spiral Methodology • 2-6 player board game • Start at the centre of spiral and work way around to the outside of spiral through each cell by taking turns to roll dice and answer question • Each cell has a number of points to win or lose depending on answering questions (min=0) • Planning section includes ‘risk assessment’ questions which doubles players scores • Winner is the one who exists the Spiral with the highest points to showing excellence! Teaches management about Extreme Programming Agile Methodology To win, a player must either: o be first to the centre within 45 mins OR o (if no-one makes it) the one with the most code/test objects • Inspired by Talisman and AtmosFear board games • Timer for 45 mins starts game and is monitored by DVD • Players roll dice and move around the board in turn, answering questions to pick up code and test objects • A number of levels on the board – each refers to a version of the system and can only move to next level if answer key ‘user acceptance test’ question • Regular interrupts by DVD halts timer and issues instructions to do activities Impact of new approach • • • • • % % 3 Year Average Current Year % IO3YA Min 32.85 42 28 Mean 58.84 61.27 4 Median 57.98 62 7 Max 87.62 81 -8 2012 results saw significant improvement over 3YA More challenged students better able to engage with module Robust improvements in mean & median indicate most students advantaged by the approach Although poorer performance observed for max, not entirely unexpected as previous assessment scenarios were closed rather than open-ended = more demand on students as contextualise the assessment for themselves Post-curriculum review version of module (2012/2013): Min=Fmid (32%) Avg=Mid 2.2, Median=Low 2.1, Max High 1st (89) IO3YA – Improvement over 3 Year Average Helped take out basic knowledge of SAD to a higher level. We now feel we have modelling skills to carry out projects to a high standard Helped us to learn the principles in the textbook – brought them to life Helped us to understand the principles of SAD as it made us go through the stages ourselves to design and model the game Common student feedback Not a good idea – we felt a system such as an on-line ordering system would have been better as we would apply to real-world situation ‘showed’ us the advantages and disadvantages of different methodologies and relevance to our programme. We can now justify the methdologies we choose Proved resourceful for learning the tools we have been taught however we recommend you are actually required to build a prototype of the board game rather than just model it! Summary • Moved away from closed assessment scenarios to openended ones…from convergence to divergence • Variant of McCrindle’s GBL approach applied to enable students to learn systems analysis and design • Inherently constructivist: o Common knowledge of board games used as a means for learning subject-specific knowledge o concept mapping was used to enable groups to visualise and evolve their understanding over time. Thank you! Q&A References • • • • • • Biggs, J., and Tang, C. (2011). Teaching for quality learning at university. 4th ed. Buckingham: The Society for Research into Higher Education & Open University Press. Bruner, J. S. (1977). The Process of Education, Cambridge, Mass: Harvard University Press. Drappa, A., and Ludewig, J (2000) Simulation in Software Engineering Education Education. In Proceedings of the 22nd International Conference on Software Engineering, Limerick, Ireland, ACM Press, pp. 199-208 Groff, J., Howells, C. and Cranmer, S. (2010). The Impact of Games in the Classroom: Evidence from schools in Scotland. Bristol: Futurelab. Hainey, T., Connolly, T.M., Stansfield, M.H., and Boyle, E.A. (2011). "Evaluation of a Games to Teach Requirements Collection and Analysis in Software Engineering at Tertiary Education Level", Computers and Education, Vol. 56, Issue 1, pp 21-35. McCrindle, R. (2010) Software engineering –engagement through innovative and interaction. Higher Education Academy, Engineering Subject Centre, Teaching Award 2010 http://www.engsc.ac.uk/downloads/teaching-awards/case-studies2010/210610-McCrindle-TA2010_web.pdf (accessed 05 September 2011) References • • • • • • Oh Navarro, E., and van der Hoek, A (2005) On the Role of Learning Theories in Furthering Software Engineering Education. In H.J.C. Ellis, S.A. Demurjian, and J.F. Naveda (Eds), Software Engineering: Effective Teaching and Learning Approaches and Practices, IGI Global, 2008. Paras, B. and Bizzocchi, J. (2005). Games, Motivation and Effective Learning: An integrated model for educational game design. Proceedings of the DiGRA 2005 Conference, ‘Changing Views:Worlds in Play’, Vancouver, Canada Piaget, J. (1960). The Psychology of Intelligence. Totowa, NJ: Littlefield Adams & Co. Prensky, M. (2001). Digital Games-Based Learning. New York: McGrawHill Shaw, K. and Dermoudy, J. (2005). Engendering an empathy for software engineering. In Proceedings of the 7th Australasian Computing Education Conference (ACE2005), Newcastle, Australia, 42, 135–144 Vygotsky, L. S (1980) Mind in Society, (Eds. M. Cole., V. John-Steiner, S. Scribner, and E. Souberman), Harvard University Press; New Ed edition, 15 Oct 1980.