An operational R-based interpolation facility for climate and meteo
Transcription
An operational R-based interpolation facility for climate and meteo
An operational R-based interpolation facility for climate and meteo data From science to operations DailyMeteo2014 Belgrade 27 June 2014 Dr. Raymond Sluiter Researcher Geo-ICT ESA-DOSTAG Delegate Overview ! Context ! Interpolation: research, production environment, users. ! Data distribution ! International projects ! Issues, challenges & lessons learned. 2 DailyMeteo2014 KNMI ! KNMI: “The national institute for weather, climate research and seismology in The Netherlands”... ! KNMI is an agency of the Ministry of Infrastructure and Environment. 3 DailyMeteo2014 KNMI - main activities • Operational services ! Weather forecasts (public & aviation) ! Weather alerts • Observations ! Meteorological / climatological observation network ! Seismological observation network ! Meteorological satellites & climate satellites ! • 4 Data processing and distribution Research ! Improve weather forecasting ! Climate research including Climate change models (numerical computation) ! Sensor / IT research DailyMeteo2014 Interpolation: 2000 - 2008 ! One Method: spline ! Arcview 3.2, GMT ! Manual “intervention” ! .Png only, no real data available for end-users. 5 DailyMeteo2014 Network 6 DailyMeteo2014 Research ! Data: temperature, precipitation, radiation, evaporation, wind… . ! Daily to 30 year averages. ! 1951 - present ! 5 - ~300 measurements. ! 1*1 km resolution. ! Methods: Kriging, KED, IDW, splines, regression, … . ! R-libraries: methods, sp, gstat, automap, fields ! Quality/uncertainty: Kriging variance, cross validation, visual. ! Metadata generation. ! Gridded datasets provided through OGC web services. 7 Research ! Interpolation methods for climate data literature review / R. Sluiter 2009 http://www.knmi.nl/bibliotheek/knmipubIR/IR2009-04.pdf ! Het interpoleren van temperatuurgegevens / F.W.J. Salet 2009 http://www.knmi.nl/bibliotheek/stageverslagen/stageverslag_Salet.pdf ! Optimization of Rainfall Interpolation / I. Soenario, R. Sluiter 2010 http://www.knmi.nl/bibliotheek/knmipubIR/IR2010-01.pdf ! Interpolation of Makkink evaporation in the Netherlands / P. Hiemstra and R. Sluiter 2011 http://www.knmi.nl/bibliotheek/knmipubTR/TR327.pdf ! Interpolating wind speed normals from the sparse Dutch network to a high resolution grid using local roughness from land use maps / A. Stepek and I. L. Wijnant 2011 http://www.knmi.nl/bibliotheek/knmipubTR/TR321.pdf ! Interpolation Methods for the Climate Atlas / R. Sluiter 2012 http://www.knmi.nl/bibliotheek/knmipubTR/TR335.pdf ! Assimilation of satellite data and in-situ data for the improvement of global radiation maps in the Netherlands / J. van Tiggelen 2014 8 Interpolation facility ! GeoSpatial Interpolation environment (GSIE) ! Recipe editor ! Input files ! Metadata ! R-scripts ! Database queries ! Legend descriptions ! WebGIS ! Wiki ! File access 9 Interpolation facility 10 GSIE: Parallel computing 11 For who? 12 Climate atlas: “Bosatlas van het Klimaat” For who? 13 Climate atlas: “Bosatlas van het Klimaat” For who? 14 Climate atlas: “Bosatlas van het Klimaat” For who? 15 Climate atlas: “Bosatlas van het Klimaat” For who? 16 Climate atlas: “Bosatlas van het Klimaat” For who? 17 Climate atlas: “Bosatlas van het Klimaat” For who? ! Climate atlas, general public & professional users 18 Climate Atlas http://www.klimaatatlas.nl 19 NCG Commissie Geovisualisatie 23 juni 2014 For who? ! Climate atlas scenarios, general public & professional users ! http://www.climatescenarios.nl/ 20 For who? ! Climate atlas scenarios, general public & professional users 21 For who? ! Netherlands Hydrological Instrument, professional users 22 What exactly? Netherlands Hydrological Instrument, professional users ! Daily precipitation 1961-present, 1*1km, ~300 observations. ! using ordinary kriging. ! Daily Makkink evaporation 1961-present, 1*1km, ~5-36 observations. ! using spline interpolation. ! Transformed scenarios time series 23 NHI 24 NHI Groundwater recharge (mm/year) 25 Evaporation (mm/year) LCW: (National Coordination Committee Water Distribution) Cumulative precipitation deficit (mm) region South-East NL 26 What exactly? – quality/uncertainty ! Leave One Out Cross Validation (LOOCV): RMSE, R2, ... . ! Radar daily precipitation; visual comparison: Interpolation 27 Radar What exactly? - quality ! Daily precipitation; Kriging variance: Interpolation 28 Kriging variance Present & future research ! High resolution climatology & data quality ! Temp, Wind, Radiation ! Data assimilation (model reanalysis, satellite images) 29 30 Data processing and distribution at KNMI Keyword: KDC = KNMI Data Centre 31 DailyMeteo2014 Why KDC? KNMI data: ! Large diversity of themes (weather, climate and seismology) ! Historical, real-time and forecast data (model data) ! Research & operational data ! Applicable in many domains However: ! Difficult to find ! Difficult to use ! Limited standardization ! Many different portals ! High maintenance costs 32 DailyMeteo2014 Why KDC? Earth Observation context: • Atmospheric processing systems ! OMI Data Processing System (ODPS) ! Netherlands SCIAMACHY Data Center (NL-SCIA-DC) ! Gome2 Processing System (G2PS) ! Netherlands Atmospheric Data Center (NADC) • Atmospheric portals ! Tropospheric Emission Monitoring Internet Service (TEMIS) 33 DailyMeteo2014 The KDC basis: • • • • Dataset managers can create and manage datasets Alle data is archived and managed Governance is in place Alle data has metadata • Metadata conform NL core set, INSPIRE and WMO and “open data” • Suitable for all KNMI data (and more!) • Findable by different criteria: – Preview – Search on location, time, key-words • Harmonization of metadata, file formats, file content • Solid base for further development 34 DailyMeteo2014 What is in KDC • • • • • • • • • Temperature and precipitation (daily/climate atlas) Scatterometer (wind above sea, OSI-SAF) NL Radar composite/volume European station time series (EOBS ECA&D) Multi sensor reanalysis of ozone OMI cloud/ozone/aerosols MSG Cloud Physical Properties (MSG-CPP) EC-Earth model data etc. KDC is growing with (“open data”) datasets and functionality 35 DailyMeteo2014 How does it look like? http://data.knmi.nl 36 DailyMeteo2014 Find 37 DailyMeteo2014 KNMI Data Centrum | 14 december 2012 38 DailyMeteo2014 39 DailyMeteo2014 40 DailyMeteo2014 41 DailyMeteo2014 42 DailyMeteo2014 International: • ECA&D • E-OBS • And many more 43 DailyMeteo2014 44 DailyMeteo2014 45 DailyMeteo2014 46 DailyMeteo2014 47 DailyMeteo2014 48 DailyMeteo2014 49 DailyMeteo2014 50 DailyMeteo2014 51 DailyMeteo2014 52 DailyMeteo2014 Issues, challenges and lessons learned • Large demand for (high resolution) interpolated datasets. • More communities are reached; quality/uncertainty information becomes crucial: • Metadata is essential for including quality/uncertainty descriptors. • Open issues how to communicate & visualize quality/ uncertainty information. • Station density. • International challenges: • (open) data availability. • Standardization gridded products (INSPIRE: 2020). • Organizational challenges: • Manage your internal processes (“chain”) well. • (Meta)data management. • More resources needed for (inter)national collaboration. 53 An operational R-based interpolation facility for climate and meteo data From science to operations DailyMeteo2014 Belgrade 27 June 2014 Dr. Raymond Sluiter Researcher Geo-ICT ESA-DOSTAG Delegate