Models for Railway Track Allocation
Transcription
Models for Railway Track Allocation
Models for Railway Track Allocation Thomas Schlechte Joint work with Ralf Borndörfer Martin Grötschel 16.11.2007 ATMOS 2007 Sevilla Thomas Schlechte Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) [email protected] http://www.zib.de/schlechte 2 Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results Thomas Schlechte 3 Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results Thomas Schlechte 4 Planning in Public Transport Tracks Timetables Vehicles Crews Strategic Tactical Operational Stage Stage Stage Stops Thomas Schlechte Lines/Freq. Cycles Connections Rotations Duties 5 The Problem (TraVis by M.Kinder) Thomas Schlechte 6 Schedule in 3d Thomas Schlechte 7 Conflict-Free-Allocation Thomas Schlechte 8 Railway Timetabling – State of the Art Charnes and Miller (1956), Szpigel (1973), Jovanovic and Harker (1991), Cai and Goh (1994), Schrijver and Steenbeck (1994), Carey and Lockwood (1995) Nachtigall and Voget (1996), Odijk (1996) Higgings, Kozan and Ferreira (1997) Brannlund, Lindberg, Nou, Nilsson (1998), Lindner (2000), Oliveira and Smith (2000) Caprara, Fischetti and Toth (2002), Peeters (2003) Kroon and Peeters (2003), Mistry and Kwan (2004) Barber, Salido, Ingolotti, Abril, Lova, Tormas (2004) Semet and Schoenauer (2005), Caprara, Monaci, Toth and Guida (2005) Kroon, Dekker and Vromans (2005), Vansteenwegen and Van Oudheusden (2006), Cacchiani, Caprara, T. (2006), Cachhiani (2007) Caprara, Kroon, Monaci, Peeters, Toth (2006) non-cyclic timetabling literature Thomas Schlechte 9 Complexity 2 1 Proposition [Caprara, Fischetti, Toth (02)]: 5 4 3 OPTRA/TTP is NP-hard. 5 4 3 2 1 Proof: Reduction from Independent-Set. 5 4 3 2 1 s Thomas Schlechte (1,2) (2,3) (2,4) (3,4) (4,5) t 10 Track Allocation Problem … Thomas Schlechte Train Requests Scheduling Digraph Timetable 11 Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results Thomas Schlechte 12 Packing Models Conflict graph Cliques Perfect Cacchiani (2007) – Path Compatibility Graphs Thomas Schlechte A B 13 Arc Packing Problem Variables Arc occupancy (request i uses arc a) Constraints Flow conservation and Arc conflicts (pairwise ) Objective Thomas Schlechte Maximize proceedings (PPP) transformation from arc to path variables (see Cachhiani (2007)) 14 Packing Models Proposition: The LPrelaxation of APP can be solved in polynomial time. … and in practice. Thomas Schlechte 15 Novel Model Track Digraph Timeline(s) Config paths Thomas Schlechte A B Artificial arcs represent valid successors ! 16 Path Coupling Problem Variables Path und config usage (request i uses path p, track j uses config q) Constraints Path and config choice Path-config-coupling (track capacity) Objective Function Thomas Schlechte Maximize proceedings (ACP) transformation from path to arc variables (see Borndörfer, S. (2007)) 17 Linear Relaxation of PCP dual variable Thomas Schlechte information about useful to bundle price analyse request track price analyse network arc price - 18 Dualization Thomas Schlechte 19 Pricing of x-variables Pricing Problem(x) : Acyclic shortest path problems for each slot request i with modified cost function c ! Thomas Schlechte 20 Pricing of y-variables Pricing Problem(y) : Acyclic shortest path problem for each track j with modified cost function c ! Thomas Schlechte 21 Observation Thomas Schlechte 22 And analogously ... Thomas Schlechte 23 Pricing Upper Bound • Lemma [ZR-07-02]: Given (infeasible) dual variables of PCP and let vLP(PCP) be the optimum objective value of the LP-Relaxtion of PCP, then: Thomas Schlechte 24 Model Comparison • Theorem [ZR-07-02]: The LP-relaxations of ACP and PCP can be solved in polynomial time. APP’ • Lemma [ZR-07-02]: vLP(PCP) = vLP(ACP) APP PPP ACP PCP = vLP(APP) = vLP(PPP) ≤ vLP(APP´) Thomas Schlechte 25 Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results Thomas Schlechte 26 Two Step Approach TS-OPT Thomas Schlechte Duals by Duals by Bundle CPLEX Method 1. LP Solving Column Generation 2. IP Solving Rapid Branching Heuristic Pricing by Dijkstra’s Shortest Path 27 Branch-Bound-Price or Dive-Generate Evaluation of only few highly different subproblems at iteration j to reach IP-Solutions fast. Thomas Schlechte 28 Rapid Branching Node selection of set of fixed to 1 variables by using perturbated cost function (bonus close to 1.0). Update Upper Bound Go on if target was reached, otherwise pseudo-backtrack. Thomas Schlechte Column Generation 29 Overview 1. Problem Introduction 2. Model Discussion 3. Column Generation Approach 4. Computational Results Thomas Schlechte 30 Results • Test Network • 45 Tracks • 37 Stations •6 Traintypes • 10 Trainsets • 146 Nodes • 1480 Arcs • 96 Station Capacities • 4320 Headway Times Thomas Schlechte 31 Model Comparison • Test Scenarios • 146 Train Requests • 285 Train Requests • 570 Train Requests • Flexibility • 0-30 Minutes • earlier departure penalties • late arrival penalties • train type depending profits Thomas Schlechte 32 Run of TS-OPT /LP Stage Thomas Schlechte 33 Model Comparison Thomas Schlechte 34 Model Comparison For details see [ZR-07-02, ZR-07-20]. Thomas Schlechte Thank you for your attention ! Thomas Schlechte Fon (+49 30) 84185-317 Zuse-Institut Berlin (ZIB) für Fax (+49 30) 84185-269 Thomas Schlechte Konrad-Zuse-Zentrum Informationstechnik Berlin (ZIB) Takustr. 7, 14195 Berlin [email protected] Deutschland www.zib.de/schlechte [email protected] http://www.zib.de/schlechte 36 Traffic Projects @ ZIB MCF 92-94 Thomas Schlechte 94-97 VS-OPT 97-00 DS-OPT VS: BVG 00-03 IS-OPT DS: BVG 03-07 TS-OPT Line+Price Planning Telebus CS-OPT 37 Planning in Public Transport B1 – B15 Tracks Timetables VS-OPT DS-OPT IS-OPT CS-OPT Vehicles Crews Strategic Tactical Operational Stage Stage Stage Stops Thomas Schlechte Lines/Freq. TS-OPT Cycles Connections Rotations Duties 38 The Problem (TraVis by M.Kinder) Thomas Schlechte 39 Schedule in 3d Thomas Schlechte 40 Conflict-Free-Allocation Thomas Schlechte 41 Outlook Algorithmic Developments • Bundle method • Model refinement (connections) • Adaptive IP Heuristics • Dynamic Discretization Simulation of results by Thomas Schlechte