Track Allocation and Path Configurations
Transcription
Track Allocation and Path Configurations
Freie Universität Berlin Track Allocation and Path Configurations Ralf Borndörfer 2015 Workshop on Combinatorial Optimization with Applications in Transportation and Logistics Beijing, 29.07.2015 Track Allocation and Path Configurations | CO∈TL 2015 1 Freie Universität Berlin Track Allocation: Block Occupation Track Allocation and Path Configurations | CO∈TL 2015 4 Track Allocation (Train Timetabling) Problem Freie Universität Berlin Charnes and Miller (1956), Szpigel (1973), Jovanovic and Harker (1991), Cai and Goh (1994), Schrijver and Steenbeck (1994), Carey and Lockwood (1995) Nachtigall and Voget (1996), Odijk (1996) Higgings, Kozan and Ferreira (1997) Brannlund, Lindberg, Nou, Nilsson (1998), Lindner (2000), Oliveira and Smith (2000) Caprara, Fischetti and Toth (2002), Peeters (2003) Kroon and Peeters (2003), Mistry and Kwan (2004) Barber, Salido, Ingolotti, Abril, Lova, Tormas (2004) Semet and Schoenauer (2005), Caprara, Monaci, Toth and Guida (2005) Kroon, Dekker and Vromans (2005), Vansteenwegen and Van Oudheusden (2006), Liebchen (2006) Cacchiani, Caprara, T. (2006), Cachhiani (2007) Caprara, Kroon, Monaci, Peeters, Toth (2006) Borndoerfer, Schlechte (2005, 2007, 2009, 2010, 2011, 2012), Caimi G., Fuchsberger M., Laumanns M., Schüpbach K. (2007) Fischer, Helmberg, Janßen, Krostitz (2008, 2011) Lusby, Larsen, Ehrgott, Ryan (2009) Caimi (2009), Klabes (2010) ... Track Allocation and Path Configurations | CO∈TL 2015 5 Track Allocation (= Routes in Space-Time) Railway Network + Trains Track Allocation and Path Configurations | CO∈TL 2015 Freie Universität Berlin Train Routes + Timetable 6 Integrated Train Routing and Scheduling Routing: Flow Track Allocation and Path Configurations | CO∈TL 2015 Freie Universität Berlin Scheduling: Headway constraints 7 Block Occupation Conflict Track Allocation and Path Configurations | CO∈TL 2015 Freie Universität Berlin 8 Track Allocation Problem Freie Universität Berlin … Train Path Packing Problem Track Allocation and Path Configurations | CO∈TL 2015 9 Multicommodity Flow + Arc Packing Model Freie Universität Berlin Block occupation conflict graph (here: interval graph, perfect) Conflict cliques Local for each block Packing constraints = local constraints Track Allocation and Path Configurations | CO∈TL 2015 10 Arc Packing Model (APP) (i) (ii) (iii) Freie Universität Berlin max cai xai iI aA i i a a a i ( v ) a i ( v ) i a ( a ,i )k i a x i (v ) v V , i I Trains x 1 k K Conflicts x {0,1} a A, i I Integ. x Theorem (Lukac [2004]): Let H be a quadrangle-linear headway matrix for train types Y, i.e., 𝐻 𝑖, 𝑗 + 𝐻 𝑗, 𝑘 ≥ 𝐻 𝑖, 𝑘 + 𝐻(𝑗, 𝑗) ∀𝑖, 𝑗, 𝑘. Then all maximal cliques in 𝐺𝐻 are of the form 𝑖 × [𝑡𝑖 , 𝑡𝑖 + 𝐻 𝑖, 𝑖 − 1] , 𝑖∈𝑌 if after setting 𝑡𝑖0 = 0 for some 𝑖0 ∈ 𝑌 the following holds for any different 𝑖, 𝑗: 𝐻 𝑖, 𝑖 − 𝐻 𝑗, 𝑖 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝐻 𝑖, 𝑗 − 𝐻(𝑗, 𝑗). Track Allocation and Path Configurations | CO∈TL 2015 11 Arc Packing Model (APP) (i) (ii) (iii) Freie Universität Berlin max cai xai iI aA i i a a a i ( v ) a i ( v ) i a ( a ,i )k i a x i (v ) v V , i I Trains x 1 k K Conflicts x {0,1} a A, i I Integ. x Track Allocation and Path Configurations | CO∈TL 2015 12 Block Occupation Configurations (B., Schlechte [2007]) Track Allocation and Path Configurations | CO∈TL 2015 Freie Universität Berlin 13 Arc Packing and Arc Configuration Model (APP) (i) (ii) (iii) (ACP) (i) (ii) Freie Universität Berlin max cai xai iI a A i i a a a i ( v ) a i ( v ) i a ( a ,i )k i a x i (v ) v V , i I Trains x 1 k K Conflicts x {0,1} a A, i I Integ. x max cai xai iI a A i i x x a a a i ( v ) a i ( v ) i (v ) v V , i I Trains yq 1 j J Configs yq xai a A, i I Coupling yq {0,1} {0,1} a A, i I q Q Integ. Integ. qQ j (iii) (iv) (v) aqQ xai Track Allocation and Path Configurations | CO∈TL 2015 14 Arc Packing and Configuration Model (APP) (i) (ii) (iii) (ACP) (i) (ii) Freie Universität Berlin max cai xai iI a A i i a a a i ( v ) a i ( v ) i a ( a ,i )k i a x i (v ) v V , i I Trains x 1 k K Conflicts x {0,1} a A, i I Integ. x max cai xai iI a A i i x x a a a i ( v ) a i ( v ) i (v ) v V , i I Trains yq 1 j J Configs yq xai a A Coupling yq {0,1} {0,1} a A, i I q Q Integ. Integ. qQ j (iii) (iv) (v) aqQ xai Track Allocation and Path Configurations | CO∈TL 2015 iI 15 Arc Packing and Path Configuration Model (APP) (i) (ii) (iii) (PCP) Freie Universität Berlin max cai xai iI a A i i a a a i ( v ) a i ( v ) i a ( a ,i )k i a x i (v ) v V , i I Trains x 1 k K Conflicts x {0,1} a A, i I Integ. x max cai x p iI pPi a p (i) xp 1 i I Trains yq 1 j J Configs 0 a A Coupling pPi (ii) qQ j (iii) xp a pP yq aqQ (iv) xp {0,1} p P Nonneg. (v) yq {0,1} q Q Nonneg. Track Allocation and Path Configurations | CO∈TL 2015 16 Model Comparison Freie Universität Berlin Theorem (B., Schlechte [2007]): vIP(PCP) = vIP(ACP) ACP PCP APP PPP = vIP (APP) = vIP(PPP) = vIP(APP') and vLP(PCP) = vLP(ACP) vLP (APP) = vLP(PPP) vLP(APP'). Track Allocation and Path Configurations | CO∈TL 2015 APP' 17 Column Generation Algorithm Freie Universität Berlin begin Solve Integer Program No Compute Solve duals Generate Generate Linear Program paths configs stop? Yes No All fixed? Fix variables Yes end Track Allocation and Path Configurations | CO∈TL 2015 18 Configuration Pricing = Shortest Path Problem (B., Schlechte [2007]) Track Allocation and Path Configurations | CO∈TL 2015 Freie Universität Berlin 19 Configuration Pricing = Shortest Path Problem Freie Universität Track Allocation and Path Configurations | CO∈TL 2015 Berlin 20 Configuration LP (PLP) max c x y iI (i) Freie Universität pPi a p i a xp p 1 i I q 1 j J pPi (ii) qQ j (iii) x a pP (iv) (v) (iii) aqQ q i j i a p aq Trains ( γi ) Configs (π j ) 0 a A Coupling (a ) 0 p P Nonneg. 0 q Q Nonneg. iI (ii) y xp yq (DUA) min (i) p Berlin jJ j i c a a a 0 0 , , Track Allocation and Path Configurations | CO∈TL 2015 a p p Pi , i I Paths q Q j , j J Configs 21 Configuration Pricing = Shortest Path Problem Freie Universität (DUA) min iI (i) (ii) (iii) i j i a p aq jJ Berlin j i c a a a 0 0 , , a p p Pi , i I Paths q Q j , j J Configs Prop. (B., Schlechte [2007]): Config pricing is an acyclic shortest path problem with arc weights ca = a, that can be solved in polynomial time. Track Allocation and Path Configurations | CO∈TL 2015 22 Path Pricing = Shortest Path Problem (DUA) min iI (i) (ii) (iii) i j i a p aq jJ Freie Universität Berlin j i c a a a 0 0 , , a p p Pi , i I Paths q Q j , j J Configs Prop. (B., Schlechte [2007]): Route pricing is an acyclic shortest path problem with arc weights 𝑐𝑎 = −𝑐𝑎 + 𝜆𝑎 , that can be solved in polynomial time. Track Allocation and Path Configurations | CO∈TL 2015 23 Model Comparison Freie Universität Berlin Theorem (B., Schlechte [2007]): vIP(PCP) = vIP(ACP) ACP PCP APP PPP = vIP (APP) = vIP(PPP) = vIP(APP') and vLP(PCP) = vLP(ACP) vLP (APP) = vLP(PPP) vLP(APP'). vLP(PCP) and vLP(ACP) can be APP' computed in polynomial time. Track Allocation and Path Configurations | CO∈TL 2015 24 A Dual Bound Freie Universität (DUA) min iI (i) i (ii) j i a p aq jJ j i c a a a 0 0 , , (iii) Berlin a p p Pi , i I Paths q Q j , j J Configs i max (cai a ) i i i (cai a ) i I , p Pi (γi ) pPi a p qQ j aq j max a j a p j j a j J , q Q j a p Prop. (B., Schlechte [2007]): ([+]+,[+]+,) is dual feasible for PLP and (, , )= [+]+i+ [+]+j is an upper bound on v(PLP). Track Allocation and Path Configurations | CO∈TL 2015 25 Solving the LP-Relaxation Track Allocation and Path Configurations | CO∈TL 2015 Freie Universität Berlin 26 Rapid Branching & Track Allocation (B., Schlechte, Weider, Reuther [2013]) Freie Universität Berlin HaKaFu, req32, 1140 requests, 30 mins time windows Track Allocation and Path Configurations | CO∈TL 2015 27 Packing vs. Configuration Model ( Schlechte [2011]) Freie Universität Berlin Scenario REQ_36 from ttplib.zib.de (Packing , Config ) Track Allocation and Path Configurations | CO∈TL 2015 28 Track Allocation and Train Timetabling Article Freie Universität Berlin Stations Tracks Trains Modell/Approach 6 5 10 Packing/Enumeration 17 16 26 Packing/ Lagrange, BAB 74 (17) 73 (16) 54 (221) Packing/ Lagrange, BAB 37 120 570 Config/PAB Caprara et al. [2007] 102 (16) 103 (17) 16 (221) Packing/PAB Fischer et al. [2008] 656 (104) 1210 (193) 117 (251) Packing/Bundle, IP Rounding Szpigel [1973] Brännlund et al. [1998] Caprara et al. [2002] B. & Schlechte [2007] Lusby et al. [2008] B. & Schlechte [2010] ??? 524 66 (31) Packing/BAP 37 120 >1.000 Config/Rapid Branching BAB: Branch-and-Bound PAB: Price-and-Branch Track Allocation and Path Configurations | CO∈TL 2015 BAP: Branch-and-Price 29 Thank you for your attention Freie Universität Berlin Ralf Borndörfer Freie Universität Berlin Zuse-Institute Berlin Takustr. 7 14195 Berlin-Dahlem Fon (+49 30) 84185-243 Fax (+49 30) 84185-269 [email protected] www.zib.de/borndoerfer Track Allocation and Path Configurations | CO∈TL 2015 (Photo courtesy of DB Mobility Logistics AG) 51