Document 6501694
Transcription
Document 6501694
Chapter 1 Need-to-Know List Review Exercises Section 1.1 How to sketch and find x- and y intercepts of graphs of equations How to find equations and sketch graphs of circles How to use graphs of equations in solving real-life problems Section 1.2 How to find and use slopes of lines to graph linear equations How to write linear equations and identify parallel and perpendicular lines How to use linear equations to model and solve real-life problems Section 1.3 How to determine whether relations between two variables are functions How to use function notation, evaluate functions, and find the domains of functions How to use functions to model and solve real-life problems Section 1.4 How to use the Vertical Line Test-and find the zeros of functions How to determine intervals on which functions are increasing or decreasing How to identify even and odd functions Section 1.5 How to identify and graph linear, squaring, cubic, square root, reciprocal, step, and piecewise-defined functions How to recognize graphs of common functions Section 1.6 How to use transformations to sketch graphs of functions Section 1.7 How to find combinations and compositions of functions How to use combinations of functions to model and solve real-life problems Section 1.8 How to find inverse functions and verify that two functions are inverse functions How to use graphs to determine whether functions have inverse functions How to use the Horizontal Line Test to determine if functions are one-to-one How to find inverse functions algebraically 1-8 13-18 19-20 21-28 29-40 41-42 43-46 47-52 53-54 55-62 63-64 65-68 69-80 81-82 83-90 91-96 97-98 99-100 101-102 103-106 107-112 'Re-vlew m InExer~ises 1-4, complete a table of values. Use the ~solution points to sketch the graph ofthe equation. 1. y= 3x - 5 3. Y = X2 - 3x 1 +2 2. Y = -2:x 4. y = 2x2 - X - 9 In Exercises 25-28/ plot the points and find the slope of the line passing through the pair of points. ' @ (3,-4), (-7, 1) 26. (-1,8), (6,5) 27. (-4.5,6), (2.1,3) 28. (-3,2), (8,2) In Exercises 5-8, find the x- and y-intercepts of the, graph of the equation. In Exercises 29-32, find an equation.of the line that passes through the points. G)y 29. (0,0), (0, 10) ® = 2x - 9 = ex + 1)2 6, Y = 8. Ix - 41 - 4 y = x-J9 - x2 In Exercises 9-12, use symmetry to sketch the graph of the equation. 9.y 11. y 5- == 10. y x2 =.JX+5 = x3 12. y =1 - +3 3~; 9 14. 1 X2 17. + y2 = + 2)2 + y2 = 16 16. x2 X2 + y2 = + (y - 4 8)2 = 81 ind the standard form of the equation of the circle for which the endpoints of a diameter are (0, 0) and (4, -6). 18. Firid the standard form of the equation of the circle for which. the endpoints of a diameter are (- 2, - 3) and (4, -10). ®!..umb'er of Stores The number N of Home Depot , stores from 1993 to 2000 call be approximated by the model y ~ 953t2 + 162, where t is the time (in. years), with t = 3 corresponding to 1995. ~ giaph of tlae model and then use the ~lfrp.h to estimate the year in which the number of stores Will . ,be 2000. (Source: Home Depot, Inc.) @Geometry You have 100 feet of fencing to use for .. .' three sides of a rectangular fence, with your house enclosing the fourth side. The area of the enclosure is given by A = _2x2 + 100x. Graph the ",garniSfr-' to find the maximum area possible, and how long each side needs to be to obtain that area. slope and y-intercept (if possible) of the equation of the line. Sketch the line. .@=3x+13 Point stope 33. (0, -5) 3 Point, m = 2: '.0)10, -3) m =-2 1 +9 Slope 34. (-2,6) m=O 36. (-8,5) Undefined In Exercises 37-40, write an equation of the line throuqh the point (a) parallel to the given line and (b) perpendicular to the given line. Line Point (ij)(3, -:-2) 5x - 4y 38. (-8,3) @C4, + 3y 2x -1) = 8 =~ x=3 40. (-2,5) Y = -'4 Rate of Change In 'Exercises" 41 and 42, you are given the dollar value of a product in the 'year 2004 and the rate 'at which the value ofthe item is expected to change during the next 5 years. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 4 represent 2004.) 2004 Value Rate $850increase per year @$12,500 42. $72.95 $5.15 increase per year m In Exercises 43. 16x 45. 2x - 22. x =-3 24. Y = -lOx In Exercises 33-'36, find an equation of the line that passes through the given point and has the specified slope.Sketch the line. 43-46, determine whether the equation represents y as a f~nctioI:l of x. .ill In Exercises 21-24/ find the @Y=6 4), (2,0) Ixl In Exercises 13-16, find the center and radius of the circle and sketch its graph. ,15. (x ,~-1, 30. (2,5), (-2, -1) 32. (11,-2), (6,-1) y4 y - = 0 3=0 I j ,/ 44. y 46. =~ IYI = x + 2 , ; ,i -- ~'~.,c'-~evie~v'Exercises' •. ercises 47 and 48, evalu~te the functlon cls'indic;:afed. _,'plifyyour ahs"";ers.· . " " . .:" .' :. (x) -14 - yl 1 f( -4) (b) (d) -f(x+l) (c) f(t2) =,'{~;;:",i=i,= ~ ; .x , Cd) g(2) . (a) gC~2j~rk(~i)"(c)g(0) "Exercises 49-52, determine the domain of the function, " rify you r resu It with a graph. I~ &~~~ises 59-62, find @ j(x) = 3x2 x .. hex) = X2 - X - 6 = 1t + .f60i(x) ~. '8~ +3 ,~, . 11~x . X2 - + 25 25x . .•.. ", In Exercises 63 and 64, determine the inte;val~ over which the functi~n is increasing, decreasing, or constant. Gtv e. )< - v, .' Velocity The velocity of a bail thrown vertically rtpwaid from ground level is v (t) = - 32t + 48, ' where t is the time in seconds and v is the velocity in feet per second, . +~i 16x - 2 62. j(x),==:.'x3 - 11 '. th~ze~o$ of the function.· = 5x + 4x - 1' 60, f(x) . h(t) = - ;f0~) = ):2+: ,: (a) f(2) 58. x -101· ®f(X) = Ixl + Ix +. 11 , Y ,64. f(x) = (X2 - 4)2 . .' ,y ' ..:" (a) Find the velocity when r ~ 1. (b) .Pind the time when the ball reaches its maximum height. [Hint: Find the time when vCt) = 0.] , , (c) Findthe velocity when ~;<;'i,,,~4.Mixture 2. x Probl~m From afull Sfl-Iiter containe~ of 40% concentration of acid, x liters removed and , replaced with 100% acid. ' , i~ ~~<~"':',,' 8, ~: t = (a) Writethe 'afiillcuon amount of acid in thefillai niiXture as of x. In Exercises 65-68, determine whether the function is even, " odd, or rieither. '. " . " (b) ,Detepnille the domain and rangeofthe function. @ f(x) (cj Determinex if the.. final mixture ls50%acid. . '.. . . . .. '" ®, In E:X:ercises55-58, use the Vertical Une Test to, termine whether y is a function of x. To print an 'enlarged ,c:.C!pYofthe graph,go'to tli~\Neb~iteWwW.mathgrajJhs:com:. = 66. j(;:) = . .:t + 4x X4 - - 7 , lOx" @fex) = 2x-Jx2 + 3 'f 68. f(x) = -V6x2 .m -In Exercises that ithasthe the function. y x5 69 and ,70, write the linear function f so indicated function values. Sketch a graph of " , .'®f(2) = -6, f(-I) ~ 3" '70. /(0) = -5, f(4) = ~8 . -'-,;:;:~ i-: -.-: ~.' ",' ". " ..-,.::~: .:~! • ~.'. hiExercise~ ii~80, graph . the"... function . . ; " •.:.",-, - >-. , '. ; - : . ' ... ": ." ,.',: =x' - 2 71. j(x) ~ 3 "-:f 72. hex) 73.'j(x) 74. f(x) = = -.Jx JxTI :)". . 102 Chapter 1 ~ :75. g(x) 3 =- 77. f(x).= Functions ar:p Their Graphs . . 76. g(x) 1 = --5 78. g(x) = x [x] - 2 x Exercises 97 and ~8, use •the table, ,. :~.:, .•. , .-.~ ; .. ' '-', ," ';'" which showsthe total values [in billions of dollars} of u.s .: imports frbm Mexico and Canada for the 'yearS' 1995 .. through 1999. The variables Y1 and Y2 represent the total values of imports from Mexico and Canada, respectively. (Source': U.S. Census Buteau) . . [i; +.4] 79f(~;b'{S:4;~'5 ~~:; 80. Data Analysis .In .. ' k.~~~·:..l!:~-~.-r" + ,.. ' . ., jtf~·Jf'-·~'~; :~~O. . :':,~,:1sx : - a 5,., x > j I j .... In Exercises 81' and 82, identify the transformed function shawii' in the graph. " ... common . ®,~ y •.• .. , . ~ 144.4 . 1995 62.i ·199.6. 74.3 .155.9 1997 85.9 ,'-168.2 1998 94.6 . ;. . y ~~. :-: ".' i ~ . .' 'C¥). ,J,,;'" 109.7 1999 I I ! 173.3 198.3 x· ....~ 97.' Use a graphing utility to find quadratic models forI ]1 and Y2. Let t = 5 represent 1995. . 98. Use a graphing utility to graph Yl' Y2' and Yl + Y2 . iuthe same Viewing window. Use the model to . estimate the to~ -:a1ue of U:S. imports from .,. . Canada and~eXJ,co ill 2005: .. :.,. .• ~ .\ . ~ .~ gfapn .: . of the' .\ .,.... In Exercises 83- 90, identify the transformation off and sketch the graph ~f h. 6Yf«) i" ;", Mx) ~ 84.f(x) '~·fi;h(~) . @J(x) . $6. ~,' .. f(x) XL -7' ; .. -/x . '~ ',i;::;;(f"';~~)':";~;7t~r~"eoffinfo,,",J~i 9 ", .~:I~I,:··:··,.·;~(x)·-= Ix + 31·L~ 99. f(~) .; x ~ 7 1,0'0. f(x) =x +5 . '''': :11 '~';2, ., ·,f}?,·f(x) ~~3,' .89. fe;;) == ax], 9.0:·~ f(if;;;/Hxl' 'c' h(x) = - (x + 3)2 + 1 " h(x) '=--/x +.1 +9 hex) = In Exercises ~n 101 and 10:2, determine inverse function. ~ 'y ~.. 6' '. -fx 3 . '. + g) (x){ (b)(f _. g) (x); .: . I;;~e ..r..Sise,S ,93 and 9,4,fincda}f .og,a.nd (~) 9 d,~ing. domain 9r~~ch function and f'<lch compositefunction;" ~ Z;: ;:.; :c~:~:! ~ y ~ "":.i,' :.'1·.100.'~.:.'Ih((Xt.)·)_J-4.~::...,:.,3;,X ~ " ";;rt~~ . (f ~~)(x) == h(x). (There is m~~e'{h~rrdn:e' ~;;rj.e'6·~·risw~r,r'o,!·:.;;· . ~<hCx)=~; + 2 >~~.~. .: : ': - -:. ~. "' ...•.... 9"Ph;~gutility t09"ph 'to determine 'fii~ctio!1 is ~l:le-t~-one a~d so h~s an inv~rse function. " 1 ,,;i;., "1· I flihcti6n:\J;~'the 'Ho~izont~ILineT~st ~~.~:r~t,' # In Exercises 95 and 96, find two .f~nctjons f and g such that '. - '; x of "". :1' ~ :.: .~;:~ :t:ti ~~:2~; "" 19'~Jn~ii~;;e;\O~0106' •• ([Dex) ., (6~.; 5)3' whether the function hex) = -[x] + 6 , h(;)'i~; 5[~'::,:9]: iii In Exercises 91 and 92,find (a)(f \ . 1 . ®t(x)'~~r::&.. . 104_ f(x) ~ (x - 1)' 106. gG:)=,jx 6 + th. If if th~ . I' .', . Ji I I I I iI ( \ ... '103 Review Exercises ri Exercises 107-110, (a) find f-1, (b) sketch the graphs of f '-;Sj-l pn'i:h-e same coordinate system-and (c) veritY that :\VCx,.)). ==f(f~l(x)). . . . ..,.. ,. =:'~ ~U'J--Er.ictionaI Force p.4he.:mctionar force F between the tires and the road required tokeep a car on a ,,:~::; ..:.,.';-~urye.d\8ection ofa highway is directly proportion- ;~{~1'i:~{~i -.Jih~~&;~';'r;;';~:~;;i;~:~fai;~~;~:~ ~:;;:~~'!:~; ~EXer.:ises 111 ~nd112, restrict the domain of the func- ,.~ i~nf to an interval over-which the function is increasing' nd determine f-1 over that interval. 112. 'j(x) = /x - 2/ 118. Recording Media The table shows the numbers y (in millions) of CDs shipped :in the United States during the years 1990 through 1999. (Source: Recording Industry Association of America) 13. Data Analysis The federal minimum wage rates R (:indollars) :in the United States for selected years from 1955 through 2000 are shown in the table. A linear model that approximates this data is 1990 ' 1991 1992 R = 0.099t - 0.08 1993 where t represents the year, with t = 5 corresponding to 1955. (Source: Department of Labor) u.s. 0.75 1.00 1985 1965 1.25 1990 3.80 1970 1.60 1995 4.25 1975 2.10 2000 5.15 1955 1960 3.10 3.35 1980 (a) Plot the actual data and the model on the same set of coordinate axes. (b) How closel;: does the model represent the data? J1· !rfeQ§]j.rement You notice a billboard indicating that it is 2.5 miles or 4' kilometers to the next restaurant of a national fast-food chain. Use this information to find a Iinear model that relat~sini1es to kilometers. Use the model to find the numbers of kilometersin Z miles and 10 miles. , 15. Demand A company has found that the daily 28~5 ' '3333 " "407.5 ' 495.4 1994 662.1 1995 722.9. 1996 778.9 1997 753.1 1998 847.0 1999 938.9 , J . (a) Use the regression feature of agraphing utility to find the equation of the least squares regression line that fits the data. (b) Use the model to estimate the number of CDs .sbipped during the year 2005. (c) Interpret the meaning of the slope of the line~ ,model inthe context of the problem. Synth~sis' J True or False? In' Exercises 119 and 120, determine whether the statement is true or false. Justifyyour answer. Ii!): R~lative to the graph of j(x) ,,= --Ix, the function h(x) = - --.Ix +. 9 - 13 is shifted nine units to the i :F~:f~~~~E:!~;:!=~~~ left and 13 units downward, t1i~n-reflected in the t~l".~.',,[.i,.~,!,.! .. '.',,:.;.:,' ".>-, .:, demand. ,e,' , .. . ~: ~·?~6.Predator-Prey I:' ' i~:;< ~\<t7 . The number N of prey t months after a natiiral predator is introduced into a test area is inversely proportional to t + L If N = 500 when t ~ Wfuid N when t ~ 4. ' ,~fflS~d g are' two u:verse func~ons, , . domain of g is equal to the range of f then the ~'Wri~ng '. Explain the difference between the , Vertical Line Test and the Horizontal Line Test , 122~'Ifyis 'directly proportionaJ. to x for a particular . ~~ar model, what is the y-intercept of the graph of 'the model?" I j . f i j i I ·'104 Chapter 1 F>- . Functions and . Their Graphs ,\ '~ Take this test as you would take a test In class. When you are finished, check your: work against the answers given in the back of the book. . i I In Exercises 1-3, use intercepts 1. y = and symmetry 3 - 5x = 2. y i I to sketch the graph of the equation. ! -/x/ 4 i, I :";.:,'.i· 4. Write the standard form ofthe equation 'of the circle shown at the left. 'In Exercises 5 and 6, find an equation of the line passing 5. (2, -3), (-4,9) through the given points. 6. (3,0.8), (7, -'6) 7. Find an equation of the line that passes through the point (3, 8) and is (a) . parallel to and (b) perpendicular to the line -4x + 7y = - 5. . 8. Evaluatej(x) 9. Determine the domain FIGUflE FOR4 (a) f(7)(b).f(.~5) ~atea:9~Yalu~: = 'olj(x)' ~'.j100 ~ - 9).' (c) j(x x2 .,r' II In Exercises 10-121 (a) find the zeros of the function, (b) use a graphil1g utility to graph the function,' (c) approximate the intervals over which the function is increasinq, decreasing, or constant, and (d) determine whether the function is even, odd, or Thelnteractive CD-ROM and J~'tefnet versions of this text offer Chapter ' Pre-Tests andChapter Post-Tests, both -of wh ith have rahdomlygenerated exercises with ~iagn6stic capabilities, ( ·neither. . '\ 10~f(x) 2x6 = + 5x4 - , - X2 13. Sketch the graph of j(x);;:::: .1 . 11" j(x) 4x.J3=X = .{3X4.x2 -1-_ 7,1, ' 12. f(x) = /x + 51 x s -:,3 x > _ 3' , InExe~cises 14 and 15, identify the common sketch a graph of the function .. '. ., ,'.' 14. hex) =-[x] In Exercises in the transformation. Then function NO ~rctph . 16 and 17, fj~d (a) (f g)(x), and (f) (g f)(x). 0 (f 15. hex) + ;)(X)I (b) "-7"..Jx 1- 5 (f - g)(x), .. 0 =' +8 (fg)(x)/' (d) (f/g)(x)1 (e) . (c) . ., , 16. j(x)= 3x2 - 7, g(x):=! -'-x2 - 4x In Exercises 18-20, determine whether and if 501 find the inverse function. 18. f(x) ~. x3 +.8 ..-. . ~.', " , 19. f(x) + 5 17. j(x) or not the function = l;x;2 -.3/ + 6" , g(x) = ;, = 2.Jx 1 has an inverse function, . .' ". I 20: .,f(x) ~'3x.Jx ':':' , : ..... .. :.-\:: ',; ,." In Exerdse~ i1-'23,find a rriathematical model representing ca~e, determine the constant of proportionality) the statement. .' root of s. (v' = 24 when s . = 16.) (In each " ,/ i I r ;, r ( \.... Review Exercises Section 2.1 How to analyze graphs of quadratic functions How to write quadratic functions in standard form and sketch their graphs How to use quadratic functions to model and solve real-life problems Section 2.2 How to use transformations to sketch graphs of polynomial functions How to use the Leading Coefficient Test to determine the end behavior of graphs of polynomial functions How to use zeros of polynomial functions as sketching aids Section 2.3 How to use long division to divide polynomials by other polynomials How to use synthetic division to divide polynomial by binomials How to use the Remainder Theorem and the Factor Theorem Section 2.5 How to find rational zeros of polynomial functions How to use factoring and the Upper and Lower Bound Rules to find zeros of polynomial functions Section 2.6 How to find the domains of rational functions How to find the horizontal and vertical asymptotes of graphs of rational functions How to analyze and sketch graphs of rational functions How to sketch graphs of rational functions that have slant asymptotes How to use rational functions to model and solve real-life problems &116'n 2..4 h\(\~3~(\(h~\\\\'u~'\bers. 1-6 7-18 19-22 23-28 29-32 33-42 47-52 53-60 61-64 89-96 99-110 111-114 115-118 119-130 131-134 135-l38 R. e. vi« w:, ~ . . .. 187 Review Exercises ., 'Profit, A real ..estate 'offic:ehandles 50 " :a,p~~nt Units.,When the r~'[)tis $54o'per~ont1i',all "uJ;Jltsiie occupied. However, for each$36:intieai~ in ::tent, one unit becomes vacant. Ea(:h ocpipied hblt requires an average of $18 per month, f()'r~erVice -and "rypairs .. J.{hat.ieIl!,shou1~ Q~ charged tooPta.iTI. the ~a~!.·" 20. ·M.ax(mijtri In ExEffdsesl-4r find the quadrati~ f~riai6~ ihat and whose graph passes th;o~gh the eindicatedvertex Iven point. 2. y ',' '" , r;;;:{:~a;::;: "V~y . ~. ,".' - . P~~?~~'-soft ., manufa~~~r'has p~od~c:tion costs' of ., ' ", •.. :'. J . '," ",;:'" , C,"",'70,000 '~ , 120~ + 0.055x2 3. ertex: {I, ~4);Point: 4. vertex: (2,3); faint: (-1, is) " ' '5. a) /(X)=2x2 "6. (c)h(x) (b?g(x) + = ,Cd) kCr) = ~ o· approximated bythem6del ,y = -O.107:X2 "':"'18.5; 20:::;x, ,::;;25,\YhereyistlJ.e~ge ~2x25.68x ±X2~1' of ' , grocn~~6? (SouTce:T.tS.'Censlls ~cltff 'm ' ' ' " In ~~rcis~~ 23-28rsketth . the tfa6sf.()rmation," . ' 2~";:~i3,::j(~),'L '" I>.g(x) C" ~-h;. 8. f(x) dIU _~; = x + 8x + 1010.' h(x) = ,3 + 4x,-- j:z iflL f(t) == -2(2 +'4t + 1 . 12:j(x) ~:xi 7'- 8x'J: 12 ~ 13. hex) = 4X2 + 4x+ 13 l4.j(x) = xi ~6x 27. i"15. hex) = x~ + 5x 16:j(x) = 4x; 4x + 5 ;f". 24. Y T' 9. f(x) (X~., 1 ' d '' + +1 :3(x2 + 5x ~ 4) ~~ 18. f(x) .~ ~(6X2 '.c-: 24x + 22) . " ~~~, 17. f(x) =' !~:~':&YT'1>~perimete, ~' ~;r ~. ~', :' (~~,4)3 , ,~,2,~~4 " '. 26. Y==.X4, j(x) ~2(x:-2)4 y;';' 28, y ~ . x5, j(;) '=:=-:&~3)s' i x5, j(x) ~ x5 + 3 . :;-;. ~~ ", I ~hd In Exe.r(j~es29~32,d~t~r~ine;h~rigN-h~~d· left-'hand 'behavior 9f th€>/graph~ftj,e'pcilyJio'mjal function: ;"",' Of a rectangle is 200. (a) 'praw~ rectangle that gives a visuali:~pr6;6:b.t~~" tion of the problem. Label the length .and width in termsof.» and y,respectively ...·)/:.. (b) Write y as a 'fui1ction of xUse the area as a function of .r. ' of y = x~a~d r'. j(xh~~x' y=x4,/(x) 25. Bureau) the graphs ·•.~3~2~/hf(th)*~~;#:~~y,:::6pxl.~lxj E~ + of the groomand x is the age of the bride. For what 'age the bride is thb average"age'()fthe In Exercis~~7-18, write theqtiadratj~functionin ,'form and" sket~hjt5 graph.lpentify theverte;:~nd, "~'x-intercepts.' , 22'm~,'~arn~i?a!~gye',"'f'o"Thr"a~~a:ev:reangeaaggeioOffthth', ,6e','~bon9dme,'a,'c(an'a., fir,'.bset (d) k(x) = (x + 2)2 0) g(x) ,=4 -r- xZ, 2 4 ;,:(x. -:- 3)2 day ,' ~ Exercise~.s,and 6r graph each .function. Compare the raph of each functron with the g~aphof y == X2.' (c) hex) =x.? (a) j(;Y=,x2.- whereC is fue t~tal cost (in do1iar~)andi'i~i:he , number of units produced.iHow m~yunit~sh~uld, ,','be produ~~deacli to yi~ida minirrlllfucost?' (2, -3) . . x= ,~x '-'-:7x-:+ lOx " I r~:. I I tile r~s;Utto ~te (c) Of all possible rectangles with perimeters of 200 meters-find the dimensions, of the one with the maximum area, I I '} I Chapter 2 . J>- 188 _r-.. ':~ ','.-. '. .' .. ., ..• In'~~ids'e5 39-42~sketch the g'raph' of the function by (a).· applying the leading,Coefficient Test, (6) findiiig the zeros of the polynomial, tcJ 'pJettin~ ~f~liimt ~QIQtl6np1§im~, ,,~tf~awffil;p~~. gBf(Xl ~ -X' +'x' .~~' . .• ~O.g(x) 41. f(x) = x(x3 + r ,-' 5x-+ 3) 44. hex) = 3x2 .: x4' . '. . 44.' f(x~ == 45. f(x) := = 4(i'. f(x) .m 5x X4 - -r-r- + 3x3 7x4 + 1. - 8x2 (9 24x2-x8 47. . . . 3x - 2 5x3 -r-' 13x2 - 49. ---.----------- + 2 + , x-I e. - 54. 0.1x3 4x3 . 27x2 '2 - - 'CJ 19x2 5t4 .(b) 8t - + 20 g(.J2) In Exercises 61-64-, (a) verify the given factorfs) 6fthe func' tion t, (b) find the remaining factors of~ (c) use your result to write the complete factorization of f, (d) list-all real zero" of i, and (e) confirm your results by using a graphing utili. -. ..;' Factor(s) '~. = x + :4x2 - 25x - 28 2x3+ l1X2 .: 21X - 90 @r(x) = x4 - ~X3 - 7x2 + 22x + 24 64. j(x) = X4 -l1x3 + 41x2- 61X + 30 . '2 18x . ·69.. .' = 65-68, (x+ 2)(x-'-:'3 ex - 66.3 + 3' in_ :i':;:!~l - '~~25 68. ~5i t I 2) (x - 5),1 write, the c~rTlplex:..number + i2 , ''';~ ~> ((~5i)~:)-~+(5z.~. -12.) -+-Z 2 2 t - 2 . r}.'j. ",·21 2 '~ -~i)Jl! 7'1: 5i(13 - 8i)72. (10 -'- 8i)(2 ~ 3i) ·74. .. @ . , + 38x + 24 + 29x (x - 4) (x +6' 3 '70. -.--. .; In Exer~is~s 75 and 76, write the . 6+ ~::~75: 4- x- 4 3.x3.__+.2.0X2 56. -''-c'- < In Exercises 69-74, perform the operation a~d ~rite th~t result in standard form. x+ 0.3x2 - 0.5 :;;;-5 Q2x3 + (a) g(-4) 67• In Exercises 53-56, use synthetic division' to divide. . 6x4 ....,.f~ (d) x= (b) f( -1) - '(jj):a::;; -2-- . ··· . 60. 'g(t) = 2t5 m In Exercises 3x4 + 4X2 - 6x + 3' 51. 2 . . . '. x +2 6x4 + lOx3 + i3x2 -r-: 5x + 2 52. ~----~--~~~----~ =.! . ;'2x2~ i 53.. 2"1 X==;3 +2Q~ +44 = x4 + 10x3 - 24x2 62. f(x) 3x3 @ (c) ·/f~ 61. f(x) 2 50. x2-3x+l x4 - +?6 . -4 Function \! 48. 4x + 7 3x - 2 X 20x . 6.12 In Exercises 47-52, use long division to divide. · B -.: x== . to graph the function. 3.6.5x - (b) (a) f( -3) +3 X2 0.25x3 8x2 - ' .. (a) x=4 @f(X) use the Intermediate Value Theorem and the table feature of a graphing utility to find intervals one unit in length in which the polynomial function is guar~'nteed to have a zero, Adjust the table to approximate , the zdros of the function. Use-the zero or root feature of a graph'ing utility to verify your results. .s: == ,3x3 58. f(x) .:;"~ In Exercises 59 and 60, use synthetic division to find the.·;:C specified vai'Ueof th'ei fu~ction. . ..~" = ~ + 4r II In Exercises '43-46, 43. f(1) = 3X3 -'-~-",:I Polynomial and RationaI Functio!1s - _12 . , in sta~dard forl11:~~ qUO~~t Z i ~1. + ~i)(5 1(6 + z)(3 - 21)'Y~ -. . .....\~;~ '. {,;,;,\3 ~5 + 2z... +i , "~I • . ~~ x+3 In Exercises 57 and 58, use synthetic.division to determine 'whether the given values of x are zeros of the function. @ Ax) ., 20x + 4 . . (a) x = -1 9.x3 -1~x2 .; ,3x 3 (b) x = 4 (c) x = 0 ' '.,'.' ' (d);t = 1 -:In h~~ci·se.~'i7.ani7'~;,~e·rf~rn:~h~~;p;ratr()n9ri.dP~i~eth~~· . result In standard form. .: ..' .. .: , .. 4 . . , 77. 2'-'- 3i 2 ""., + I' + i .'.' , "'l ·1 ..... , ·'5'···~'. ..,/ 'l'· '78. 2 + i -: i + 4i;I~ -. ~ '1~"Exerci~e5 1 07 and 1 DB, use Descartes's R~le of Signs to , d~t~I;m}netV\: possible numbers of positive and negative ercises 79-81, find all so/utiohs of the equation. + 1= . 3xz , " 80. 2 +'-8x2 0 + 10 = 0 :;.1-:Lx 82. 6x2 = 0- .,;e~r():,pf!h~f~nC~iO~..' + 3x + 27" = 0 101.:g:(±) '~ 5x 3 ,.'.,.- ~fex:) = (x.- 4)(i- ~j(x) == x 3 + + .' (x) = X2 - 9x + 6x + 4)(x . 9)2 . ,'. .~ •. + '.", 3x2 ,." +9' -6x ";, '. + 4x3 ~ • ," 'J. .:.... 2x2 • _ ®f(X), = 4~ - 3.i2 + 4x - 3 .v ' :."',', , i(x) " == (x -": 8)(x -,5)z.(x " ;3 + i)(~ - -~ 6) (x - 2i)(x ' " " (a): Upper: x 0;= X + 2i) . = '!, \.~.; +5 In Exercises'109 and 110, use synthetic division to verifythe~ ,.' upper and lower bounds of the ;'e~1zeros off. ' . . ..' 8 ;:"fex) (x ,:".: :I.OK hex) ~ :""2x5 In Exercises 83-88, find all the zeros of the function. '., , f(x) = 3x(x - 2)2" 139 ReviewExercises , 1. • x=;"~4 (b) Lower: " ..• 'r- ".' '", -: .....• ".' . Il!), 3 -, i) , . . .. ==3x4 + 4x3 - 5x2 - . f(x) . (x) ", f(x) 5~f(x) ,c. f(x) x3 +'9X2 + 24x+ = -o-';14x 8 +8 '(b) Lower: x = ·....:4 m 8' Gf(X) ~ 'L:\r '" ~(x) = x:3 - 2x2 - 2lx -:- 18 == 3x3 - 20x2 + 7x +. 30 =7 x3 'lOx2 + 17x ':'::'~8 == 5X2 In Exercises 111-114, find the domain of the,~tlonal function. '"erCises 91~96,find all the real zeros of the.function. '. (x) 2,x3 - (a) Upper: x erci5~589 ~nd'90, use the Rational Zero Test to list all ibrera~i~i1alzeros ofr. ',' ',',.' '" .. .;, . ;, (x) = -4x3 + 8x2 -r- 3x + 15 ,:'f(x) f(xY:= -rr- _5_X -· I I 112. fex) ='1 ~~x 1 'X+ ~ 'x2+.x~2 =~2-:-:~Ox-t 24,114. fex) = X2 +4 j ) 20 ': In Exercises '115;-118, identify any horizontal or vertical asymptotes. :. 'Q,(x) + x3 - 1l~2 + X - 12 = 25x4 + 25~3 - 164x2 4x + 24 = X4 ",'~ " , =_4_ x+3 X2 »r- "@g(x) xercises 97 and 98, find a polynomial With real coeffi,Ilt;thathahhegh)erizeros~, :" ' '.,,' " ".; ,.,. 98. 2, -3, 1 .: 2i, ' = X2X~ '/ ,:I == 2x2 + 5x - 3 116. f(x) +2 ' I 1 118. g(x) = (x _ ?)2 4 I In Exercises119-130, identify iritercepts.es '±ti¥l'l1metry, identify any verticalo~ horizontal asymptotes,~ "~1?f'oElQf£'Tirtt$., . ~ Q ercises 99-102, use the given zero to find all the zeros he function, ' , ' '," ,',' I I ,4 120. f(x) '= x Function Zero I '/ x- 3 122. hex) = x-.:...,-z' I , I, 124. f (x) = X2 126. ',hex) = 2x -1- 4 ,. 4 ex ',_'", )2'1 j "':, I' .I / I' "1 2x2 ,,~~. j(x) =.x3 +4Xl -'- 5;r 4·-g(x)= ,'~:'i(x)= ~ X4 -.7r+:36 +4},~" 3.il + 40~ + 208 'G·f(r) = 'x4 + 8.:2 + 8,il - .72x - 153 , ,'129. y , :' ";''';''x:'' =--,-' 'x~ -,1 ~,~ X2 ,-,.4./ :.:.'.2 .,",./ 13.o~ g(x).'= (x ~ 3)2 I , >/1 I '. s 190 Chapter 2 );>-. Polynomial and Rational Functions . In Ex~rd'ies 131-134, state the domain of the function and ~s¥5IedI!I WI~ . ", .Identify any vertical and slant asymptotes, y = 18,47x - 2.96 0.23x + 1 ". x>O j~~-:._, ,.~ ... :'., .:,_,·i~:'~;]·:;:~;:.Il:f! co. . • .:' .." . 135. Average Cost C = • A C business has a cost of O.5x + 500 for producing x units. The aVl?rage',., ~'" ~r C= -; ":'5: + 500 = --x-- x > Jractio'n 'decomposition for the rational expression, Do. no f~r the constants. . , ';" 140'~iJi~ 139.X' : 20, 141~x;x-".~5;2 O. 'Determine the average cost per unit as x increases without bound. (Find the horizontal asymptote.) 136. Seiiure of Illegal Drugs . "sol~e 28 142·:;(xz.+ 2)2' ':'! The cost C (in millions . of dollars) for, thefederal government to seize p% of an illegal drug it enters the country is In Exercises 143-150, write the partial fraction decompos] .tion for the rational expression. -x 144. --'--'--~ as C = 528p 100 - p' X2 0:::; p < 100. (a) Find tl!e cost of seizing 25% of the :drug. 147. + 2x '(b) Show that the total area A on the page is A= 2x(2x +7). . x- 4 .' II(d)Use.a graphing utili1:y to graph the area func.tion9-lld approximate the page size for which the least amount of paper will be used. The amount y of CO2 uptake ill 'IDilligrams per square decimeter per hour at optimal t.c:;mp~ratriresandwiththe 146. 9 j:2_ .' . 4x - 2· 9 )2 + 4x 4x2 149·(x2 + 1)2 150. (x - 1)(x2 + 1) ::: Synthesis True or Fali~? In, Exercises 1.51 and 152, determin whether the statement is true or false. Justify your answe 151. A fourth-degree polynomial can have -5, - 8i, 4, and 5 as its zeros. 152. The domain of a rational function can never be .. sdof ~real numbers. 153. Write quadratic equations that have (a) two distim . real solutions, (b) two complexsolutions, and (b (c) Determine the domain of the function based on the physical constraints of the problem . ·.ml138. Photosynthesis + 3x + 2 148.' ( 3 x-I 2 3x3 (a) Draw a diagram that gives a visual representation of the problem. . - 15 x2 + 2x 3 (c) Find the cost of seizing 75% of the drug. A page that is x inches wide and y inches high contains 30 square inches of print. The top and bottom margins are 2 inches deep, and the margins on each side are 2 inches wide. ',; X2 (b) Find the cost of seizing 50% of the drug, 137. Minimum Area . . 145. ---:?'~--~ x-x+x-1 (d) According to this model, would it be possible c to ,~eize 100% of the drug? . j;2 natural supply o.f CO2 is. ' ,....... . . .':~ppihxi.Iiated by the' model" no real solution. = a(x - h)2 + k, state . values of a, h, and k that yield a reflection in ¢ .. x~~ ;'ith either a shrink or a stretch of the grip of the functionj'(x) = X2. " 154.' Gi';e~'the';~ctionf(x) (; '0. )5? ' . What is the degree ofa function that has exactl '·two real zeros and two complex zeros? . . .-1.56. Because z-2.= ~ , "'riWn:~~~'a~eal 1, is the square of any compI number? Explain, ." . Pra.ciic .' •. ' 7..: ", ~'.: ; ~, ,!" e Chapter.Test1ST .• -:~'!;'~:',\:,(~:-=~-: !.:->~,\: •. ~\ ::·~~-·':··--;;~~···~·~l':+·~< ... :.' "';', v • ,.,' <.,:,' . "', _ .• .:~r~"'-=·;,.,. : " _, .:. . <:(::';::\. : · :- Take thls 'testa's you would take.a test in class. When you are finishedcheck your · ..:' .' iiJb~~ag'al~5t\heanswer5 given in the back ~f the book. :.'.- r 1.;es~~~~hOW , (a)g(x) =; .(b}. $(x) = fuegraph~f 2 - i diffeT~'fro~'~egraPh off(x) = .: ~2 (x -" ~y 2. Fmd an equation of the parabola shown ill the figure at the left. ~?oX2 + 3. The path of a ball is givenbyy :;= 3x.+ 5, where y is the height (in . feetjof the ball and x is the horizontal.distance (ill feet) from where the ball .was thrown. Flnd (a) the maximum height of the ball and (b) the distance the ball travels. .,';, 4. Determine the right-hand and left-hand behavior of the graph of the function het) = ":"'~t5+ 2t2• Then sketch its graph. 5. Divide by long division: 3x3 . e Interactive CD-ROM~nd Internet + 4x - X Perform the operation and write the result in standard fo~. (a) 10i-(3+-J~25).. (b) · .: .... ..: -;' ':.:~',: . 9:g(t) 5' ( ; ? .and ~ 2t4 - 10, find all the' real zeros of the function .. 3t3 + 'i6t - .y(Fin'd~ zeros ofJ(x) ; . . . . ". ". the 9l!otient in. standardfo~:~i+ lnfx~rcise5 ': .' ;(2+.:.,)3i),(2 - Ai) .' X·Writ.e .. 1 -7-:xl-+ l. 6. Use synthetic division to show that x = A is ·a zero of the function Jex) ==: 4x3 - X2 - 12x + 3. Use the result to factor the polynomial function completely and list all the real zeros of the function . rsions of this text offer Chapter re-Tests and Chapter Post-Tests, both fwhich have randomly generated .,ercises with diagriostic capabilities. = X4 . 10~ hex) ~.·3:x5 24 -:- x3 + 2X2 '- + "', ~4 ': . .2 $x - 4x - 8 given,thatJ(2i) :;= O. j ',: '. ... . '. In.Exercisas 12 and 13,find a polynomial function with integer~oefficients i the giVen zeros. ·.?t~·6~:':~' ~i: v ". 3 - i ',~,1 ,+,'~i;l "'"., 1 I ~.J3i,2,2 ',: ," in'Exerd~~s' 14-16, sketch the graph bf the ratio~aJ function '> •. c·, .' 'idehti:r:Y"i3J1,intercepts and asymptotes .... : . . ..~...'. . . that has 'py hand.Be . .,., s~tkto '1 I I .... I. ." :.' x2+2 ;'16 .. g(x) '7 .../ ..... . . .; . .-:. x;"" :. l~'-~' ..J;. 1 I .> . '. f ~ r-: ':':'- ,::. ',I ..• , I " ,-" 2x + 4 x2(2':"" x) 3);2 - 20. 'x2 -4 x3 +2x' f i Chapter 4 Need-to-Know List Review Exercises Section 4.1 How to describe angles How to use radian and degree measure How to use angles to model and solve real-life problems Section 4.3 How to evaluate trigonometric functions of acute angles How to use the fundamental trigonometric identities How to use a calculator to evaluate trigonometric functions How to use trigonometric functions to model and solve real-life problems 1-4 5-20 21.,22 39-42 43-46 47-52 53-54 n - . ··\X}"', ..··--_··,· tx- e V i~'.· ~ III one-half Exercises 1-4, estimate radian. ·21. Phonograph. Compactdiscs have an but repjaced·(·i phonograph records-Phonograph records arevinylv discs that rotate on a turntable. A'tYPical record ' album is 12 inches in diameter and plays at· 331 revolutions per minute. 3 the angle to the nearest . . l°L 2.. ~ 3'A~ 4'0- .,:. .. (a) What is the angular speed of a record album? (b) V0Cit}s the linear speed of the outer edge Of a .reccird album? . 22. Bicycle At what speed is a bicyclist traveling when " his 27 "inch-diameter tires are rotating at an angular speed of 57Tradians per second? 'j I I 4 ! . ~ In Exercises 13-::J 6, convert degrees: Ro'tind}our~nswer 0;:',' .. ·.c ..~. - to . ~ .: :. ;",i the measure from radians to two decimal plac~s.· . •.... 14' • r ' 111, 6 ," 6 ... ".'~.- .~I. '. ';,' . , 42 . r . 15. ~3.516. . . 5,,7 . 111'.Exercises 17-:;W, ·radians. Round your answer to four decimal places. ·"Y.;.480 \..[!.) 18. - f27S ~ '19. -33°45' 20. 196°'77' 0·' 9 convert the measure from degrees to . e 5 0 ~ o 00 ~'~.RailTDadGrade 43-46, use the given Junctjpn '1~J.ueand m~~dc identities {including fhe'~bf4ncticir{;la¥nti- "''lcises find the indica~ed. trigonometric . TIJl1dions:-'- ; A tr@l""trav~~3.5 kilometers on a; .straight. track-with a ~Je-of-~r10" C·'see.: .... .u.gore} .c;. '.-.' ;~:'--'-' '.. . '. .~'''c._~~~ .$+""" ..... .. .:Wb.at:iSthe vertical rise of the ,train in that distiji.2e? -,0:0 •. -. 1 {1==3 eSG e (b) cas e see e (d) tan e e=4 j 'e ') cot e (bj see e CDS 8 (d) csc e r,iy ~re e=4 SID e (b) cas e ) see . (d) tan A ~y wire Tuns from the ground to the top of a 25-foot telephone pole. The angle .formed. e between the wire and the ground is 52°. How far: e from the base of the pole is the wire attached to the grolJJJ.d? 'sc e = 5 a) SID e c) tan e . (b) cot e r (d) see (90° ,- e) . " {,. ;. ,~ '. rcises' 47-52, use a calculator to evaluate the trigona~functian.·Round your answerto two decimal pl~ces.'· k>, ; 348 Chapter 4 ~ ~:Trigonom~try' Take this. test as you 'would take a test in class, When you are finished, check work againstthe answers gIven in the back of the book. 00nSideran.ang1eth~t y measures 51T~:radians. , ,(a)Sfetc1:;t the angle in standard pOSID.On . .(b)' Determine (c) Convert me angle to degree measure. x .·2. FIGURE FOR 3 .two coterminal angles (one positive and one negative). it ~i A truck is rnoving at a Tate 90 k;il~:i:rieters,per hour, and the diameter of .wh~e1s is 1 ~~16i~'FiJ1d the angclar speed of the wheels in radians per mlnU( 3. Find the e;il¥t'~~~es ..in the :5guTe':0jYkF(: CV;~~en o . o.~~.. that "0 of the six tri~ono:r:o.etricfunctions of the angle 8 sho~ .. ~':~:F~,:find the other five trigonogletric functions of 8, .:o;}~~~~t~~o~ .00. • :.0 ~o'. '): };,,~ .; .j ,!,; ,"'; Al06 :.nswers to Odd-Numbered Exerer,e, and Test, 71. <a) and (IJ) allclTests. Answers to'9dd-Num~~led·Ele:rclse.:s l:t:'· .. ,g 17S ~ J'p ..l '''' ~ 0; y-intercept: CO, 6) 3; y-Intercept; (0,13) 23. m ~ , 53. (aJ 16 f~et per seccnd - (c) -16 feet per second ', "55. Function i, 59~ 3 1~i): 1I I I I I I 1. .1) " 50 1(1 100 ·rtlc:.('~lQ)· Ce) Y'~ LOat.+ 17.7.1 (0) part (b): 57. Not 'J (d) Tho models are similar. 232fcet;part (e): 240.02foot -2 5. (1) An&!.l'S~"'Mll '1''''1- (~I0) . x-intercept: ., , y-intercept: (0, -,,9) (4 ..5,6) I y-axis symmetry .•.. "x qqestlonable . - when based on su~h limited = -1 -:-f--t--t-+-~ .. -;-{ 7"1_~ ..1.... ,6 , 2y -: =D 10 = 0 35. " +. 2y - 4.~ ~ } H-i--H+JI -1 -:1-" ,,:.. ... ... '.. -~ , : I ~ .. 15.' 73. ~ 8 ° 3 a .1 ., ~t--t--t--+- -3 _1_, 0); Radius; 3. 2. 1 "' ,.J .•... !. ..-f ,'. 6 .. •. ... t += -f-H-H -~ ..-"..., ' -l· " 13. Center..{O, .~ ~1,.- ..... si. Ax -t- 3y 0 ]x - willlnerea86 If Ji is posltlve and y will decrease if k i<negatlve.· ~ .. data. -6 -t-+--f-"H)-:J. 1 1 , •. . --+--t--t-- -! m= Bachyear, the annual receipts for motion picture movie theaters her ••••es by $412.9 million .. 79• x s: 4,"':? (3,-4) -. 75. False. y ,,: .. -4 ~3-1 -L1 .. .~..'.:: Iii; . '.: -+-+---t--+-- 4: j + 3642 77. The tlCClJuwy!.~ _ ,(1.1,3) -. Cd)2000: ~1771.0million; 2002: $8596.8 million (0). l j . CO, 1) .j-Intercept: 9. 11. . '." t . , I 67. Ode} 65. Neither even I!or qdd 69. f(x} = -3x' 7. x-intercept; (,-1, C)· 41291 -ll Constant on [-1, OJ. , & 1 ',. a functicn (0. 00)' on Deei~~ing.,,~(:"00, 73. ~l)and (e) (b}.R ": -+ Gl: 63. Increasing t.+121 y~ A10? .(\» 1.5 seconds -, 81. x> 5 -j -s ~ I :& 83. (a> thv\ J." -I. J' (b) [I '" -t 'I II ( I $.6, (e) 21 1 .... I I .. . (a) 5x - 4y.- 23 ='0 Review Exercises .. (page 100) i 1:~2"" .".:"- . -! . -ll -8 :', 0 .1. -5 .-2 2 1 + 3)'= 17, {x - 2)1 + (y 13 {{43. No 19'1:~tLH /. ~ uoo· ~ i 1000 ~ soo :' ~ i'1!47. . , Il)j H 1991) (b) 17 (c) t' + 1 19. ,.. 5y - 2 ~ O· .e-o.. ," 4-~~~~' -l-1 -I -<J J " ..~ .t -'. (d).-.•'·;:-2x - ~ .51. All real numbers ~: ~.' ~n' ?:;~ ', , a -I-+-H-l -Jj-'~-3 0-0 e-o .-J -0 -6 -I-l-t-I-t-+-JI 1 6 , 12 11 _I:l ~ -13 x oF 3. -2 "'" L r, • iii,.'.., ~>-'--t-If---<.....,..I.;- fJ~~~ , 0-<> t~ I' '. . !,? . .• 3'6 Yu.r(3 2004 " + 45. Yes (a) 5 1:~~9.:;:5$·x~.5 , ': (b) 4x 77. -0 ~;N9, (a) x = 4 (b) Y =: - l' i~i1.V = 8S0t + 9.100, 4 '.:5: t S; 9 ./ ; (10,-3) ,~l-'l jt <:, ~ ..__ .J - . "'--" A10B Answers: 10 Odd-Numbered 01 nln. units downward 83. VCltical.hift '~' -'\ 95. lex) = xl. g(x) = 6x - 5 (An~weris not unique. Answers to Odd·Nutr/oer.ed "Xercli.5.nctTe,ts 97. Y,'= 0.207" + 8.65''+ 14.2' y,'= 1.414,'·- 7,28' + 146.9 -H--f-:-~ Exercises and Tests ' _2 :to -I x I' r 99. • l(.) = x.t·7 a),,~ 103. ~="., '. l·~:1' The functlon has. an .u,... shlfl of three units 'to the left and vertical. shift ofiiye unlts.gov,nw.rd -a~" f· 105. .8.... Ej,,.. -s .,.£ ..... -.).".; .. il.;:.i: . • • ' .1 . . :' :1" .he .•ctual data. .' ',' . -.., - .. , (. '3 ',' (b::"-'~"~":" '4 -11 (c) r'(ji,x» =.i(tx - 3) + 6 = s - 6 + 6 = ~(17+ 6) -3 - l';' 3- 3 .;, 109. (a) rl(x)''''.x' . (b). D ""., - 1, x ~ Cv\.\ a 'y. , .., .Y ,. ." (c) 2x'.:: ,:' +6. - 3 '~3, (a) x +..~x' + 3 -l· (I:i) x •.,. (d) 2. _ I' x (c) /-I([(x» 1 *;; 8 Domain off, s:,f. 8. and g 'J: ell real'numbera .. = r(..fi+1): x:> -1 - Jx' . . .',,\ . . ,1 1 (c) racr~"jllg ~. ':-4 ,:"3 -:1'7!.1+~·I','3," .: • r: (4,0) 13. ~"..:1 ,,' " -12 a \~~,. y-axis·symmetry • '-1 Oil ( -s, (0) t~ .... r.... (~)'·~*i~~?;~~:~~·-·5~.':,'>;::j,~~ ; " ~, . .:,,·(X+·l) -'1 = x', f(f-l(X»'=f(x'~ 1), x:> 0 . .'.'\ :.". . " ~(O,~) ',': 'I',," ..... .: ; (b):':::.~ -s I. + 2<.+ 2 .. {b) ~'-'2>' (-00,:1.) (ai~:-5:·.··..·., ,': .I •• " • 0)\ . "D~c'~••Jng on (2, 3) . '(d):treiUteJ .v.nll~r~ad. H. H,O) . (e). jnclo""ing 2. taxi, ,ymmetr5- "'~'((') x' . ...11 "':" . No sYJl'\llletry .. 91 (0) " , . (page 104) apter Test • _"', , ' . Jtr'(x»:. 0). (Q,3L,;"'; -O.31i::(o.o:ilJ) . 11, (.). 0, 3 Line Test is usee! t~'determine if the graph of y if'a·function of x, The'Horlzontal Line Test.is .used to' " determineifa function has an-inverse functiop, .. ... ;'-:,'1:"':' ar,.c:-O,31, '. ,.Xiec;U'i"~ on (..'..cc, .~'. . \ !. ;1 -~1 :(c):It1~'ing . The Vertical I I' ~ ~ .6". 11$~ " 0, U.43~"'· -II . x' - 0.. .(d) BV<)l J. -3_3 ". (b) . =a '('.')"-JX' 'n ·'-E9;E1 n.$~r:" '. )'1. ., I ,,::I, 1 ~9 4y - 53' = 0 -1O",;;;:s; 10' . 10. (0) Palse, The. graph is reflected in.the x-axls, shifted-nine. ~·nii.'rto the..leff,.nd·then ;hifted'13 units downward. 17 + 6 JOJ,,- , ,",0.50:; 117. Aiactorof4' ! ._4 107. (a)/-I(.).=' 69. Relleption in the .-axis·and vertlcal shift of six units upward O-Q ::.":.;., ~,.." , -4. --1..' 12 . ". 4, I '. ·:·667unH, .. (b)' -i L7x + 6. J 87. R~flection In·the x-axi" horizontal sbift of One unit to the .1eft•.and vertlcol.llift of nino unit, upward i.. Ie·· " ,0"30 .. :.(b) The model is a "gooHli':'for " .: 10 , Yen (S +t, -, . j). . I, •. . \:,1 ):'L . , (0. . ·:~6·.3 85. lIodrontal •• 8 jI']'5 ):,109 3)' '= 1.5' + 4<1-. = O,Cb)'1",+ 7. (a) 4>:- 7y .•. ~,.. .S.>!· .101. The function has an inverse. ~ -u· 4' . fU-l1;t.»),=i ~ 7 •. 7 =x i-I(f(x») =x - 7 +7 =x •• ji;, + ', :>,4; [I(X) = + (y.-:5,17 + '] -:-l ='0. 4. (x - 1]' '" :'\ .,: \' ~:,' •..~I-+-,l:· ...... -1 +1 . ~:.,. ~.x ":.' ~.~3 ..-4 v • r- : ,. . '~. . •... ,: .. II;' ..~'.;.:. Al10 '\,._""r, to Odd-Numbered Exercises and Tests 11.124 14. Reflectlcn In the x-ub ofy = [xJ 0.0 ~ , 3. (a) The function wlll be even. 00() e-o 3 s-o ~ 0-<> -t -,~ 5. + ... + 'j{x) = ~I1X1.~+~_1x1'1-2 QlXl x-12 x(x - 4) =f(x) ..., (b) 25~miles per hour + 3400 -, . 'ood~J.-' 11'3500 3001l 9 ,:lSOO . , 4.x2 + 4. -3,,· - 12-' + 2:2.' + :iSx 3x"-T' . (d) _,,1.~4.:c + ", x'" -5; 1 (f) + 24,1:' + 18":>-- 1 + 2:x'!Z 2-./X 7' + 68 (e)~, x 18. rl(x) = > 0 (t) .v:x=l' 2:x'/" :l.-./X 7' x 22. A = ~XY13~ ·6 >0 '(6) X" (d) Problem S()lving (page 106) 1. (n). WI = 2000 + oms (b) W. b x= I (b) . _ .... '.' '1, , f(xl=-:--3~:::':4)' + 187) t. (~,:;,::..: .. ;.. ,"<.'. . ='1 .' i. ~2.-!.1. -('-l -a- . 7.- 4x (b), -, :2 \~ •• .:. "1; -4 ~2000 1 Tx 'venlcalsbeich . 11- f(f(x» . ~u '. , x-I' = -,- Domain: all real numbers x " 0, 1 . (d) =x . The graph. .is not a line because: there ;= Oandx= 1. (c) OO~~'" 2300'+'O.05S . J' "- ~, I I ,\1/, , I , 1(. Maximum: 400'P Minimum: 266.7'F 8:f1 59. P~lse. The partial fraction decempositlon is loo,OtD Both jobs pay the same monthly salary if sale. equal $15,000. " tVl r:t/ . i !¢ibJ ~R~~i~~!.~K~.r~~;c7.~.'(page = I'-.2000'1 - .. Ymin 1 . (c) f(f(j(x») , ,', '~" (e) 11le dist~ce x = 1 yields a time of 1.68ho Range: all real numbers (l5,000,3,OJO) DR (bjYmax. 11. (0) Domain: all real number •• '" 1 . t.', 0' f\' 'P1e vertical asymptotes are the same. 2000 : . 2000 i 57, (a) 7'.- 4x - 11 _ 7x' 0 < x :;; 1 -\ 21. v = 6-!S >,.t< :~.~:.,:"", .. 71"'~~" :~ l~~ r.. ',. 'I:' ·'r.i~----~ ,~ , . , 4'.Jx1- 6, +10 0 > 0 ' 140:1 1 ~X" . "... ~ . x +'3 , . . '.. ,, ~ b =~. a I,:;", 'l s (b)0';x;;3 x 19. No inverse 20. rl(x) = Gx)1/1, x';, 0 (c) 1 rr-r+x y=-y=J: -.3' :. ., Hours 1 - 2x'/l x >. O. (d) . 9 X2 - ·'1 neno :\" .3"5 2(4;' - a) . . '0 . : .. '~'.: ~'O-I~'~~~~":-,r I~ . ;.JO,~IJ • 3060 (b) --x-' 1 ..IX . = the. sa~~. x.+3 . 9, (a) T = '2,,4,+.xl+ 0 x,> '000' ~ 1500 •13.1000 A 3'" 35 -9.' + 3Ox' :..- 10 17. (a) -. -. -,,-.. (c) 120x 3' - 12 (0) (e) 3x' y~' 'jj 16. (a) 2.1:' - 4>=,-- 2. : (b) 69, ~," 55,~+~ x-3 (d) -1 .. -I The vertical asymptotes y.:;; 3400 Range: 0 S •.. ,1 ,~ 67. J ..•.... 7. (a) 81~hours :':180 (c).y = -7-'>: Domain: 0 S x··S !!p -a 65. 2 + ao 10 -oj. 3 y=;-.y=-~ ",,_,(-x)"'-' +. , ,+ ",(-xl' + ao -, --+--+--l-~' _l_) G3.:.!.(1 +_1_) a-;x a Y «<s), t . 2a a+.r I(",:x) = .,,(-x)'· + ...., ~ 00() 15. Reflection in the x-uis, horizontal shlft. and-vertical shift ofy= -./r ,-6 61. 1.c(_1 _ y=-- (c) The function will be neither eveu nor odd. -~ -l_lt~4 Exerclses and Tests 2- 53. -.,--x ,x - 4 The function will be odd.if 'the two functions are . '''equal: . (b) • ,OK> -6 Answers to Odd-Numbered (d) No. Job 1 would pay $3400andjob 2 would pay.$3. _A_+~+ __ C_ x" (x - 10)" 10 :x·-·lO ·Ve[tiCal·tf~S!BU~I1: . ".~" :/- .','. .-\' ..... :t' ~: ·;L- 'fl 9. j(x} = (x + 4)2 - 6 Exercises and Tests . vertex: (- 4, - 6) l~. h(x) = 4(x ., ,' '- (±../4I - 5 =:-.2--; ,.. ,:tilt'" ' '.'t" :j-:t:l:'~}' -3 ()'.. + f .- <,: ~f~i~ . ~}~. (~t)\ J... .' -H\J1-----1-+i -1·-, . 4' ~W'· t~"\~' ,1 ...e::ertex: I~~: (.../6 ) ~~~\..t.jnte[Co.~t~:,1 ± T',O. .H, 12) 97. 'lx4 3 ' 43. [-1,0];--0.900. l'' r+cr :1 \. < ,. ,'-' ; 2 47. 8x + 5'+3x. _ 2 .. .... .59. (a) -421" 61., (a) (b) ,,' .. ~~ 37. 0, even ';':ulti~iicity; 119.N~~t",~e~~" (d) No Y'.""" ) 0 ~ . ~ ':35, 0, f, odd ±-!3, odd multipllelty multiplicity .. 63, (a) • • . ~ymp!ote:x = 0 +1)(" - 4) . .,'., .': r- ~,' 121. ,,-itllercep"·.(':'i;d) Answers wllf vary.. (b) (x +1); (x - 4) (d) (e) .. ~(-'.~1 . y.intor'cep!: (0;'2). '. ;. Yeltical' •• -: J (').~, ..1' , . .-3 '., ... :-10. "- ,55,,..6.t-.21;'.. 67,·1.1'+ 3i, ~ 40 .r" . + 651...c' " 73, -4 -. 46/; 69,3 ,F71' .. ~ 75 '. IT )0 + iil . ",;~:. ,,;.,,:.;:_~·~;t'\, : ;:-,.;'~~::.~~~r:: ..; , ",\ ....~':,..~ " .r': ympl.to: "'.'C' }j~ri"~~t.i ~~Y~l'~oi~: ., ':"1 ""':'" ...•.;, i' .• -,. ,,~:, . .. ,;',N~'Il~.b o~o4glti symmetry' :.';" . 1«) :' (x+ ~)(x-: 4)(" +2)(>::;-3) (d) -'2, -1,'3, 4 -t-I~j ~ . .~,- ~; . r l'. (x + J) (e)· Answers will.vary. , .... " ~ = 1· ":', (b)-[ 3 : _. . ,,'<. sYlllrIJe"1' Vertical, ~'" -f--, , -I' ~ -4 , _ };!7, 1(.) ='1(. + t)'.~l!. .~. .. 1Iodzoll,lal!asymptote: . ~. 39. (a) nlsosto.fue left,.falia to the right -"5 ~~~ =·0 ..,.: " v; =::'2, x 4'I 2 . (e) 33, -7,~; odd multiplicity ~,: -.I4T' ~r- x.intetcepj~:'.(±-.-2-'-" V"~7), ~9. Palls 10 the leJ't;·fall. to the right .' '.f . 55,2<'- llx --:6 (bf-9---- Answers.willvary,' j(')=·;(,+7)(x (d) -7, :"1,4 ~', ...•. It', -10· ,~;~,:. , k~" VcrL-e);: (-f, -~) y..,. (~) Yes (e) :,~.,' 31. Rises to the left, rises to...the right . 117. V"ti~"i ::SYIl1~t~te9: ~ . . 8 53.6x' +.~x' :",llx -:,4:-.:;;::t, (b) ,,:':"-3' ') H~rjzOJ;I.r.,y;"plole:'y -: 3i +- 2·,:·x' + 2 57, (a) Yes " 115. Yertlc.l asym~tot~; 1 ", .,";; 99. 12,:1:1 '103. q,I''':'~lf(x)=*-'l)' 111. Domsin; 011fei\l nurnbers r '" "' ~2 . 113. ·D~m.in: ,,11reel number x >to 6,4- 49. 5x.+2 . 51:.x' '. 95, .~4. 3' )4'" + 17,' - 42x -l- ~4 -:- 109. A'U7Jerg WiJl1UY,' 45. [-1,0], [I, 2J; ~. -O.200.~1.772 ' " "81' -4, .,:1:21 it, :I.:'~,~!: ±12~,.±·h ::.I:tl ±Q:.I 2. ~07. Tw~.r n·op~'ltl"o.'e81 te,o~'''~l1';neg,[yo re;! ' 27. 3 8,1 :1:15, 81.1::1: 31 105. -4.:2 ~ 3i; g(x) =' ex -I---4)'J" ., 2 - 30(x - ~ . ~.7 .' ~.' --;1' 1~1;-~,t.2±i .' 2.l ·8S, =!:11 ±:3,.±5, '79., ~ - 91, ·-1.:-::~:6 .:.'-:93, 1,8 • ~. ~o x-Intercept " = 50, y = 50 ,< -t::-=t-ll r-i-H-: ." .: ·X '89. .J . -1- ~~:~. ~ . '.. ~M"'~Icx: (1, 3} . ". \j)i'~' 83.0,2 A = 100>: -x' (e) -AI 77:*'- (d) 100-x ' I (b) -3,0,.1. (e) Answers will vary. (b) y-= 25, 'lr ~ -1 10 '. Exercises and Tests 1091 units' , " .. , 12 Answers to Odd-Numbered 41: (a) Rises to the rigbt, rise. to U,• .Jeft ) 0 23. < IS'" I h(.) = x + ~y+ F. I A126 ~r: "-"'0' x-intercepts: (-4±.JG,0) .A125 I, -ffi Vertex: (x-intercepts: ~},!-; 'i,lS, ,.--.v "~,,,~,/ Answers to Odd-Numbered (o.:n .I( ~-~;~~-~: ~.. ~~-- ~.~. ,> . :':i;:;=i~ !AT~·;:: I, . i~r:: , ~J~i' (11 3• Intercept; \~l "1" Exercises and Tests ()0, 0 131. Domain: all real numbers y-axis symmetry Slant asymptote: y = 2x. ~:i~:f I~!~ '. < Answers to Odd·Numbered ;'h~ Al27 A128 " "~Il1jJtot."y ~ 1 HorizOlll~ ,p,~ ,", I'I I :" ~~i: ~m.~ ----~. ----'~'r? ...) -l -1 (0.OJ' • li'f ., 1',~ . , (a) 133. Domaln: all real numbers .x •• - 2 . bl' iJ't //. j I:" ++-1 -11 1<\0) ~;1(.;~~::t jf---:'-l--J4-.>' ·'.1 ~·i. I;;; , ~f.27, Intercept j " ,: .. "~ , , (0,0)' . ~ij 11I.,.1" ~;~)~ 2.y ~'ex:;- 3)'- 6' , '" 3, (a).50 feet.· (\Ji 61,6 feet . :, , ,:::1'-6 ~~LL:'fl\T"3T ... .. Area 5.3x+-,. ,x -+ 1 ':(4, 14) 6"j(~J ;(4~- esx . 'I-_. 'x- 4 , '= u" Iwir Horizontal asy,;"ptote: ~ = 0 ~t 7. (a) -'g 9,.,-2, (c) 4 < x < cc .. : 'E]~O ,' + SL(b) L :)0. 13,1ex) 14, "! , ~j.', ~ 7 8, 2 - / . 11. 2, -'1, ±2i :t1, -~ .' , -, '.0 ! '= (0,1) (-.,Il";O) 9,48 inches x 9,48 inches }"$' :' :,);-, ~ A 139, ;+~ B . ABC W,':;+;;+ (;ll'IO) " -?- -1.,. x-5 ·:..1 ~l -: . '! 'l~'i~ ~•.• ' ,W~ as,ml;~ot.:;. ~ ~,+:\ . :; ; , '~;f~', 3"" .,:, 1 .~~~ ~8,;;.-:-!X '- ;., " .:', "'~\~ f.9.'i){ . 'I, " . -l- ;i}{i '{.,ii. :!.,~rl 5 "',1 1". ',' , (O)"1(.t) •.••'..;,(r:·~3)~1,1(.,1."';;";'x'I-· 8.x"1- '1 " . ~ ..: '. . . ". .,.. '. 3. AI1~WC11wll~ ~.[y, ., '5. ea) and (bW '" ";~1 -I- 5";:"'4 I ' . 'j, ,~~J: . ;j!~4: 1~1 .\21 7:':'~/~'~Fr~'~:~~ ".'~~~':I-'.:'1 ,:.r~ -I- ,;;:~.;~. !;~y 9, (0) ili. (0) II (c) Iv .(d) I·'· ; .. ":' . ,', , ,::.,, 'l'c~~ 11. Ca):As: lal 'Increases, tlre grnl;);"b~c~l;io,j: wlder, md , "':dec!e'ues.,II,lo '~II»l\' bcc6i~es, llo.rrbwci., Fat', ~ :<;.... O~;! " 'graplt)~ fOiJ'!'ted 11tIho,lx:a~i{;~';';L:':':;;~-/ : .' '?J~ J ,'" 'I' 'c.n(~l=~~'2)~' ":",5)=;>-:U x'·',.~ ." :" _..... : .•. . + 28x' - 30x =x·~.6x' + 16J:"- 24x+ J6 ~"',' ,,!. .' 1)(x -.A)(x -t- ,/3); 12. j(x) = x~':'" 9x' Cd) ..JI% ';.~t~!jj~~~~i\··1 .' '1, !, ±../3 Real zeros: , a'~(2X+:7) .. x-4 Vertical asymptotes: x If "'IV ;, Pro.~[~J.~Sot~,i~lg~, (pa~e ","'I 4x +.l4 .. ':"x=--·,:x - 4 11i~)~ it.- -5., (x - 4)Cy.- 4) ='30 ,,,In:t. -.: .' '1: :~.' -J. (b) ..',~ }I I ,~9·A~h;;;~,{~.! ~:/;f~~~:~ '1:~/:"':~1 ">",':" . j -a- _•. Origin symmetry , '::'11 :-',/ 17. ;t' -.2 -;-~ .~~-.,.II 11(\. -4 -1 ~~. t#: . ,Sl.~t I ~jr.,1~29,Intercept:" (0, 0) ~~'. lhree h~f units 10 ihe right ,\ Hotiz.nt~l·syrnp!ot~: y.= O. 16:·, "3" ....•-+-< '--4 in the-u-axls followed' by, a vertical translation of.two units upward·. , (b) .Hori~onlallra'nslaUon·of - .••• ( J . r.\li:~ y:~;.: ~,:e')'Refl;eli~n ', ~ I ·1 ;;0,' . .4" Rise, ~o.the lefl,-f.lIs l~ ihe~~Ighl HOlizont~l'n~ymptote:y M~!i' -. 14 l ~~i '11"~J 'j' ,,_.:,,~,O\; ~ O· cha~t~iTe~('.(pag~1'g1) H '.~~~ J'= -,1 ;~:~. ,~[>[::,'" ° 135. As x increases, the.cost.approaches !!le horlzonul asymptote.c ::i·.O.S;1'he,ave.rage costperunit is $0.50; ,137. Ca) '; . 1M: x' .,..-... 149, --+---. .. ~> + L (x' + 1)2:, +1 155:Fo~rth degree', CiAd -,. y,axis symmelry" AI,,, 3x ' 8(x,- ~) ,. - .' "f!ori,oJlJ<ll1ymptote: x' +"lx - 8 = 0' . 0:>+x+5'" (c) x' +'4 ·,;" .... ·1 , ! i!!I\' l~1f (0) , . Vertical asymptote: x = ~2· .Slant asymptote •.y ~ x + 1 .. .,ymPto.1e! y ": c. Horizonul 3) 9 • 153,. Answ~~s will vary. ~0r example: '''r t,11t J,i;, 145. .Lt- --.~-8(x + 5) zeros, 'and complex zeros occur In cOlljupate pairs. ~ 4'., Orlgln ",symmetry 25 ·x - ,g", Exercises and Tests 151. Fa1se.~A fourth-degree polynomial can h~ve at ~ost four lii{~ r;j25, Intercep; ,(0, 0) '" \1:;\1 4 -x + 4: 147 - ----, 2. x:,~ \' ..'"x'· a- ~~i\', '3 143, --'. x +2 1(' M,l; 'jJlo L(~ Answers to 'Odd-Nurnbered J s " (Iii ;/"sjb! j~~r~a~:",ill0'g~;Phb~'~~rii~•. ~j(ic;,I,d ,1:lt "decreases, llre grfljJl1becomes ~R1,:r.?\;V~I. ~~r~ >. ~!; graph ls Iransi.ted \0. tberlghi; ;f7.oI·'b.< .a; the Iefleet'd.ID 1l10.:c·~~1' ti'ns!.t'~ to liloJ~j\f?l " -~ .. , ,.. . :""d'I'. ,!;. .. gl!~!\! ','" ,.' !\Ib··r '):'(W'r. ':f, ",.' , :/!I,,:' -, ':. "; .. :' "\" .'.',t~~;~,~"':: ." '~1II ..1" A154 Answers to Odd-Numbered Exercises and Test' -,1 m'f -l··'fee "''T <t. •.• 71. Y $ 1 :j '. "~~. 29. 'IU( -~) . Exercises ~eVlew :1. O.5.radian :?T: 3 . .. (page' 344) '. ¥ . .+. + '. "., . . 412 5ffi co. = 41 ' . 4 . Ian 0 = -5 .' .'. • It 250 •- 470 .. 0', 1. ../3) 25 '" --:n . ~ ~~i ",,' -~ (page 348 ) """ (b) Hir " . 4' 4 .... '~"'13 I'" ,,-', . :~,j,.' ,--,' '.3: . ~; • t ) = '. '" ; Vi .oos495':=:-'2' •. . .." e ~ i' cscf 3 JI3 e = --. cas e -. 2.fi3 = -- 13 . ~ ,~ . cotf := ~ 3 . ..... 1 :1 ~III. I .. ' I,. . '"Fo, ~ h . se <7' -, :~_ ~ ,,:"""'''r'' .... ;" '3, . '3 --113 . .., t.· sec'@··'·2---.-..seee-' ' _ .: .,','.,:;, . . i"" .. ,.,.,". .. " . '" 81.3.24 L' . ~:? : .:.:, I . -YI3 . 99;· . :~'~'.': 0__ tan495:-1. ~ -2' ~s>: := ., .. .... . . .: . " ;.t.. 'n' " ".' 2' .,." ....•. w--~_:jl3'- m sin 97. 1. .(-240')..;,.""../3.... I'''' . .. l~~;77~anO'i6:·'79.b,ri6 (c) 225° .1;; .. cOS-,=: ~[}5. sln{-240').=Tieos(-240) .. ~:. 4, Fo,.,!) ~ _ 3-rr'q 1 " ~i "_ . . 2:" ..':~." , Y' I ··1· to -; (an- -.....;3 2 3 '. 1 7"")~ ./3. cos(_1!! =. ~~: '"i\\j <,:, -tr 3 ;.~i;! 15 I ' A . A" 1\,(: . .3 .~kl... If?3. SIU495.' .iNk ':~, ''t,; '95. .':'~.~" .' ~r::(.~~)~;~~.: 'I'" ,1»; . ( ..,,'.' 4 . ,2! = _" ~,;\~.9'sm3 2'. ".,,,, cotO=- - 5 :.J, , ''';;~l 15 . ·i'l· 53. 71.3'meterf.;t".,:~ e = ../24T 9= 1/j~ '(.~~; CSC/)=-.- ',ee 4 Test '1. (a) cot 0 = ../24T ;', . .. ~ . sffi· . si.. ,!;? IS· l ··.ii!~ : y'.",":, :M11 '''''''''' .;"4' ( ) ;.> ,,': >:. ..: .... ..... tan9='-~ 4-%\lW~;:2ffi 4 '15' 93, -z 15' .,,' (b) 264 cycles per second' .J.1 secO = d../i3 91, (.) y =J.:~ip528'11;<. 3· ,iit.; '241 -/3 (_...2!) ~apter . .'. 15../241. 57.. sln9=--..... \ ' 241 ~,4..im .••.•••• .~~.. e = _./55 kG7. Sin 6. =":-s. ":~;::r':::::r~J = -----u.- '.~Iril (d) 55 cot ~~~;~ cot 6. = ~f..!J .. =21 " 8./55 aecf _. _ .. 5::;rr .. "rJ.<;:.. [ .. .csc 9. ='3. 3../'i .51., 3.67' :.. cscs tan 0=:"'" < \~. ,'Nlhi .../'i 87• 8 5 6../IT /l,>-, ,1i1!1i. ... ' 55 . ~~~. csc ~Z~' (c) -- . 49,0.56. o'';f 'e~:o ;0'", .- .....• . ..~..' 1~. 128.57. .15 •. -200.54 11. 8.37.16' 19. -0.5890 21. (a) 66~,"r.dian,permlnute mInute (b) 400,,-incbuper 23 ( 47. 0.65 ."< "55.'in 0 = __ ceo s -.-1:'1 I~~ ... ·:it~ I ='4. .JIT ",.«. ~l ·,";4'~~!;,' '3-'.' tan 0 = _ 3./55 6' ~;nl~1 ':Q~,r ;;~{% 4../i3 (b) .. 4 ccs f ~N{.tan )'li\~ ~.h ~. -If ~65. ./55 .. ccs e =.._ -a-' -6- ..'5" '.' Cl ~L "",,! -/3 .JIT _.j3 cot8- 3 4"" . Ji5 45 (a) • 4 , 'i'i:\ii.~ secO~2 ..~ 1 "P~ ,;t~1j cse9=-3- .' 2../'i 43. (a> 3.', (b):--y (0) • -tiO 8 - 21 2-/3' "cOb. 5. _5 :cotO ,"7 '4 .". . ,~",r ;,fiM. ,: • -a- ,i)I:.. e = ~ r: 85. .. l' . 'socO=07' .' ," . 4 cot 6 't.) .. ~~)~~~~ e5C,o:".~;: .' , li!.?).slo 0 --:-. ,y =;:!!!. esc 0 17 ,WH ·oj~!i"i:' Ian 0 = coss J!~'!! 1!~I~'JI1: cos 17 =.Jf!- l~i!; tan 0 = 4 '1tii.'I.:. 4:t sin \!,41. SUI 0 'Ii'~j~. "':l.\'i." 2~;!, = 4.jl7 '~., :liv~!\ .-/3 =T .. + 83. 1 cot 8·-'-0.1 ;!;t . i~ (:.~ .;.,~l! --d2.". .../41 -lj<. 3!.'~~·'*:1 1 6. .;~? '.it.ll. '37. 3.24 r 11.·' 430 • -290 6 8 . ~ _101J" 3t 3 9.., f' 39· sin 0 = ~ "" • .~ _51r :4"~' 4 . .35. -75.31 . 7., . . = . 3. 4.5 radian, .' ,"2]~~ . 17,"' .. 717'. ·.33.Sin(~-)=sin-=·~- - • . cot( = ..J3 3. . see(--)=-2 . 3 2· . 2?T . = -- esc( --) 31. Sinl~"-sin~ r 5. . L = -- tan(--) 2./3 e~ seC.e"", -9. k.!.lae~-M '1/"" '~f& tan8--9 :" 2'fT csc ~'•. ~I :~{!t J.3 c,ot7= -/3 ..;~ "i: 3 7'fT cos(-~)=.-- .... '. . 6 tr . I~' --4 '-'" . '" tan-p=·3··.... -I . . '. '. • see?.!!. = _2.j3 2 7'11" ,,3 j • -I • ' -. 6 . . . .J3 cos!:!!. == _ A1S5 Answers to Odd-N umbered ~xercl,e, ,and Tell, . 13 2 CDS e= .. . . 2.JE" ...!..-- .13 .'.' l _ .:...JTI. ..... . ' .':=:'.~. cot.e' 3 :