597 592 Chapter 10 ...
Transcription
597 592 Chapter 10 ...
Chapter 10 597 592 592 591 CHAPTER 10 Miscellaneous 10.1 What is an Eigenvector ? If a structure is released from rest in a position of an Eigenvector, the structure is vibrating only in the pattern of that Eigenvector with the associated frequency. This was already shown with the software SPRI-MOVE in chapter 4. Here we verify it with the numerical procedure RUNGE_KUTTA ; the code is written in VISUAL BASIC. The system of two differential equations second order are rewritten as a system of four differential equations first order. Figure 10.1 SPRI_MOVE Software , Two Mass , Two Spring , Two Damper System Coded in Visual Basic using Runge_Kutta Method The demonstration in chapter 4 , was based on a code , written in C ++ . Chapter 10 597 593 593 592 The code reads : part 1, part 2 , part 3 , part 4 , part 5 , part 6 Print y(i) within Sub RKSFX lists the output values : y(i) = velocity mass 1 y(i+1) = displacement mass 1 ; y(i+2) = velocity mass 2 ; y(i+3) = displacement mass 2 Chapter 10 597 594 594 593 M(i,j) is the mass matrix ; C(i,j) the damping matrix ; and K(i,j) the stiffness matrix ; TMAX = 3.5 sec ; DELT = 0.002336 (time increment) . The RUNGE_KUTTA Method is very sensitive to the selected time increment. For larger time increments the Method leads to wrong results. (See special literature for estimated time increments) The two Eigenvectors for the system are : {y} 1 = { 1.0 , 1.62 } ; {y} 2 = { 1.0 , -0.618 } Figure 10.1a Oscillations of the Two Mass System , Initial Value Mass 1 : 1.0 Initial Value Mass 2 : 1.62 Figure 10.1b Oscillations of the Two Mass System , Initial Value Mass 1 : 1.0 Initial Value Mass 2 : -0.618 It can be observed , that the pattern of the second Eigenvector due to damping is nearly zero after Tmax = 3.5 sec . ( Modal Analysis is so effective , because the higher modes are canceling out) . If initial displacement conditions are selected , not identical of an Eigenvector, is shown in the following graph : Chapter 10 597 595 595 594 Figure 10.1c Oscillations of the Two Mass System , Initial Values Mass 1 : 1.0 Initial Values Mass 2 : 1.0 It can be seen that at first arbitrary oscillations of the two masses are performed , but then due to the fact that the initial conditions given , are close to the first Eigenvector , the pattern of oscillation is nearly identical with that of the first Eigenvector . 10.2 Adaptive Meshing Following [31], and [32] the Energy Error Norm Results can be used, to change a regular mesh in several steps to an Adaptive Mesh. The results set stores a scalar error value for each element. This data is useful for determining the quality of the analysis results based on the existing mesh. It can help you to decide whether the existing mesh is acceptable , or whether it should be refined. The larger the error, the more the mesh can be refined. Adaptive meshing calculates the new mesh size as : New mesh size = old mesh size * (error norm / actual error ) ** (1 / element order ) The adaptive meshing software lets you set the desirable error percentage . The results set stores a scalar value ξ i for each element i . ξ i = ׀׀e ׀׀i / ׀׀U ( ׀׀Ώ / Ώ i ) ½ , with the element error strain energy norm ׀׀e ׀׀i . ׀׀e ׀׀i = √ ∫ Ώ i ( σ * - σ ) T ( ε * - ε ) dΏ , with the element total strain energy norm ׀׀U ׀׀i ׀׀U ׀׀i = √ ∫ Ώ i ( σ *) T ( ε * ) dΏ , and ׀׀U ׀׀2 = ∑ ׀׀U ׀׀2i , Ώ = ∑ Ώ i ; Ώ i is the element volume , σ * , ε * are averaged stress , strain , σ , ε are the finite element calculated stress , strain . The mesh is optimal if the specific error (error strain energy per unit volume) is the same over the entire model. Chapter 10 INDEX A ABAQUS 585 Acceleration 395 485 Accuracy of calculations 335 351 Adaptive meshing 594 Analysis, structural 42 134 338 365 Animations 246 520 524 ANSYS 585 Assembly of element matrices 70 135 219 328 Automatic meshing 334 506 507 Axi-symmetric shell elements 357 B Back-substitution 73 74 Bandwidth of Matrix 9 Bar elements 574 Bending 93 Beam elements 96 Bevel Gear with curved teeth 522 Blue Print 519 Boolean Operations : unite, subtract, Intersect 500 504 511 Boundary conditions in analysis : Displacement 48 Force 55 56 Boundary value problem 330 BOUSSINESQ equation 336 B-Spline- , curve , surface I.2 Buckling problems I.11 C CAMSTUDIO software 520 Cards , NASTRAN 568 GRID,CROD, PROD, MAT1, FORCE, SPC,CBAR,PBAR,CQUAD4,PSHELL 597 596 596 595 634 Characteristic polynomial 243 277 Characteristic polynomial Cholesky Method 9 Cholesky Method 9 Column of matrix 49 Compatibility in elastic theory 330 Completeness of a polynomial 298 Computer programs I.2 I.3 Computer- aided design (CAD) , CAD/CAM I.2 I.3 51 336 Concentrated loads Condensation 373 Condition number 15 Conical dome 523 Connectivity – or Rigidity matrix) 309 Consistent-, load vector , mass matrix 107 108 314 Constant strain of a triangle element 319 Constraint equation 374 Convergence 298 Coordinate system of element 56 Curvature 83 85 Cutting edge 31 D D’Alembert’s principle 311 Damping -, matrix , vibrations 458 Deformation 105 334 349 523 Degree of freedom 18 to 23 Design I.3 Determinant 243 Diagonal matrix 248 Digital simulation I.3 Dimension 519 Displacement method of analysis 293 Distortion of elements 525 Distributed loads 164 Divergence 298 (see convergence) Documentation 544 Double precision arithmetic 591 Drilling holes 522 Dynamic response 279 DYTRAN 1.3 597 631 631 596 597 Chapter 10 E Efficiency 244 Eigenvalue problem 3 243 Eigenvector 244 368 524 Elbow 514 Element-, matrix , stiffness matrix 185 321 325 Energy norm 594 (see adaptive meshing) Engine system 388 Equations of finite elements 134 195 Equilibrium equation 331 Error in solution 335 351 358 364 370 371 F INDEX Electrodynamics 631 I.3 I IDEAS I.2 Idealization 341 347 Ill-conditioning 15 Initial conditions 250 Instability 15 Integration methods I.9 (chapter 13) Interpolation functions 296 316 322 Intersecting cylinders 499 Inverse of matrix 2 Iteration 244 FEBEAM 58 204 Fillet 499 Finite element method 42 81 204 Finite volume method I.9 Fluid flow analysis I.9 Force 51 207 Four –bar mechanism 474 Frame element 207 Frequency , natural 242 J G L Galerkin method (chapter 18) Gauss elimination 3 Graphics, computer 235 (chapter 3 , 4 , 5 , 6 , 7 , 8) GTSTRUDL 561 LANCZOS algorithm 244 Landing gear 448 Least square procedure I.9 (chapter 18) Line loads 107 108 Loads in analysis 135 Local coordinates 74 Lofting 513 Lumped mass matrix 248 H Harmonic motion 250 Heat transfer analysis I.9 (chapter 18) Higher order elements (chapter 13) Hinge 400 402 Hooke’s law 27 Joints of element Joint loads 170 183 328 K Kinematic conditions Kinetic energy 240 374 M Man-hole 503 507 Mapped meshing 507 Mass matrix 242 314 Master degrees of freedom 373 597 631 631 598 597 Chapter 10 Material properties 345 MATH-TYPE Software 520 Matrix multiplication 2 188 MBB – Company I.1 Mechanism 388 Pressure 348 Principle of virtual work chapter 13) Publication 520 Meshing Meshing 506 507 Minimization of bandwidth 9 Minimum of potential energy 294 Modeling 496 (chapter 7) Mode shape 352 368 369 524 N Moment Modulusofofinertia elasticity101 27 Mold 495 Moment of inertia 84 93 N Q NAVIER-STOKES equation I.3 (chapter 17) Nodal loads (single joint loads) 170 Node, (see joint) 183 328 Nonlinear analysis I.10 Normal modes 352 368 369 524 Norms 15 Numerical integration I.15 NURBS (non-uniform rational b-splines) I.2 NX-, IDEAS , NASTRAN , NX-6 I.2 O Optimization , structural I.11 (chapter 22) Orthogonality of eigenvectors I.9 (chapter 15) P Partitioning of matrices 219 Plane stress element ,( plate stretching) 330 338 Plate bending element 343 Poisson’s ratio 309 Positive definiteness 15 Post-processing 528 (chapter 8) Potential energy 240 307 Pre-processing 495 (chapter 7) I.9 636 632 312 Quasi- uniform sequence of meshes 506 507 R Rayleigh-Ritz analysis 294 Reaction 55 Rectangular element matrix 325 Reduced linear system 50 Reduction procedure I.4 (Reduktions-Verfahren ) Regular mesh 506 507 Resonance 279 Response 279 (chapter 15) Results 56 334 369 524 Reverse engineering 179 Roller boundary condition 437 Rigidity Matrix 309 Rigid element 373 RITZ-, procedure , condition 294 Rotation 135 Row of matrix 135 RUNGE-KUTTA code 591 S Scanning, 3D I.1 (ME 595) (Rapid Product Development) Section 249 Shape function 301 316 322 Shear- , deformation , modulus 80 195 Shell element 23 24 Simulation 338 343 365 Singularity 15 Slave nodes 373 Solid elements 365 Solid modeling I.3 495 (chapter 7) 597 631 631 598 599 598 637 633 Chapter 10 Solutions of equations 54 56 Spherical-, pressure vessel , dome , roof 357 SPRI-MOVE code 245 591 Spring 239 Stability 15 Static condensation 373 Stiffness matrix 207 321 325 Strain-displacement matrix 319 323 Stress-, calculation , distribution 320 Stress-,lines calculation , distribution , Contour 324 342 354 566 Stress – strain relation 309 STRUDL STRUDL I.1 591 562 580 Substructure 29)19) Substructure I.9 I.9 (chapter (chapter Support 50 Surface 509 Symmetry of a matrix 2 49 328 Systems of ordinary differential Equations (solutions) 93 T Thermal coefficient 324 Thickness of element 321 325 Torsion 80 Torus 495 Transcendental equation 249 to 259 399 479 493 Transformation of a matrix 46 181 Transmission structures 465 468 Transpose of a matrix 2 Triangle plane stress element 316 Truss- , element , structure 37 to 56 U Un-damped vibrations 239 to 265 Unit matrix 2 Units (conversion-factors) 16 17 Unstable structure 15 INDEX V V V Variational formulation I.9 (chapter 13) Vector 1 Velocity 394 482 493 453 Velocity Vibration analysis 239 to 265 Visualizer 40515) I.9 (chapter Virtual work principle I.9 (chapter 25) Visualizer 349 369 522 524 VON MISES VON MISES stress stress 379 329 W Weighted residual I. 9 (chapter 18) Wheel assembling 513 Wing 513 WORD- 2007 software 520 X X-Y plane 104 Y Young’s modulus 27 Z Zero (null) matrix , vector 3 Chapter 10 REFERENCES 597 631 631 600 599 634 638 [1] Arora , Jasbir , S.; 1989 Introduction to Optimum Design McGraw-Hill, Inc. [2] Bathe , Klaus- Juergen ; 1996 Finite Element Procedures Prentice Hall, Upper Saddle River ,New Jersey 07458 [3] Beer , Ferdinand P. and Russell E. Johnston , Jr.; 1997 Vector Mechanics for Engineers Dynamics , Sixth Edition 1997 , McGraw Hill Book Company [4] Beer , Johnston , DeWolf John T.; 2006 Mechanics of Materials , McGrawHill Company , New York [5] Clough , Ray W. Penzien Joseph ; 1975 Dynamics of Structure , McGraw-Hill Inc. [6] Collatz L. ; 1963 Eigenwertaufgaben mit Technischen Anwendungen , 2. Auflage Akademische Verlagsgesellschaft , Leipzig [7] Cook , Robert D. ; 1974 Concepts and Applications of Finite Element Analysis John Wiley & Sons , Inc. New York [8] Esfandiari , Ramin S. ; 2008 Applied Mathematics for Engineers , Atlantis Publishing Company http ://www.atlantispub.com/ [9] Esfandiari , Ramin S. Vu , Hung V. ; 1997 Dynamic Systems , Modeling and Analysis , The McGraw-Hill Companies, Inc. [10] Falk , Sigurd ; 1969 Mechanik des elastischen Koerpers , Dritter Band , Springer Verlag Berlin-Heidelberg-New York [11] Gottfried , Byron S. ; 2001 Programming with Visual Basic , McGraw-Hill Inc. ( Schaum’s Outline Series) [12] Haug , Edward J. , Arora Jasbir S. ; 1979 Applied Optimal Design ( Mechanical and Structural Systems) John Wiley & Sons, Inc. New York [13] Heinrich Juan C. Pepper Darrell W. ; 1999 Intermediate Finite Element Method , Fluid Flow and Heat Transfer Applications , Taylor & Francis Group, Boca Raton , Florida [14] Hoellig , Klaus ; 2003 Finite Element Methods with B-Splines , SIAM Society for Industrial and Applied Mathematics , Philadelphia [15] Hughes Thomas J. R. ; 1987 The Finite Element Method , Linear Static and Dynamic Finite Element Analysis Prentic-Hall, Inc. , Englewood Cliffs , New Jersey 07632 [16] James M. L. Smith G. M. Wolford J. C. Whaley P. W. ; 1994 Vibrations of Mechanical and Structural Systems (Second Edition) Harper Collins College Publishers [17] Jennings Alan ; 1977 Matrix Computation for Engineers and Scientists , John Wiley & Sons , Chichester , New York [18] Jin Jianming ; 1993 The Finite Element Method in Electrodynamics , John Wiley & Sons , Inc. [19] Kantorowitsch L. W. , Krylow W. I. ; 1956 Naeherungsmethoden der Hoeheren Analysis , Deutscher Verlag der Wissenschaften , Berlin [20] Knothe K. Wessels H. ; 1999 Finite Elemente ( Eine Einfuehrung fuer Ingenieure) 3. Auflage Springer-Verlag Berlin , Heidelberg Chapter 10 597 632 632 601 600 REFERENCE S 635 639 [21] Komzsik , Louis ; 1987 NASTRAN Numerical Methods Handbook , MacNealMacNealSchwendler Cooperation , Los Angeles [22] Komzsik , Louis ; 2004 The Lanczos Method : Evolution and Application , SIAM [23] Komzsik , Louis ; 2005 Computational Techniques of Finite Element Analysis , CRC Press , Taylor & Francis Group , Boca Raton , Florida [24] Komzsik , Louis ; 2007 Approximation Techniques for Engineers , CRC Press Taylor & Francis Group , Boca Raton , London , New York [25] Komzsik , Louis ; 2009 Applied Calculus of Variations for Engineers , CRC Press Taylor & Francis Group , Boca Raton , Florida [26] Lawry , Mark H. ; 2004 I-DEAS Student Guide , Second Edition , McGraw-Hill, New York [27] MacNeal B. E. 1989 MSC/EMAS (Modeling Guide) , (Electromagnetic Field Analysis Software) , The MacNeal-Schwendler Cooperation , Los Angeles [28] Meirovitch , Leonard 1986 Elements of Vibration Analysis , MacGraw-Hill Book Company [29] Morris A. J. ;1982 Foundations of Structural Optimization (A Unified Approach) John Wiley & Sons, Ltd. [30] Muskhelishvili N. I. 1963 Some Basic Problems of the Mathematical Theory of Elasticity ,P. Noordhoff Ltd. Groningen The Netherlands [31] NX-SIEMENS ; 2009 On-Line Software Documentation , NX-IDEAS , NX-6 , NX NASTRAN 6 [32] NX-SIEMENS ; 2008 NX-NASTRAN (Quick Reference Guide Version 6.0 Volume 1 , Volume 2 (Card Documentation) [33] Ohtmer , Ortwin ; 1970 Schwingungsanalyse balkenartiger und netzfoermiger Flugzeugstrukturen , Theoretische Grundlagen und Beschreibung des Programmsystems VIBRANAL , Messerschmitt-Boelkow-Blohm, Muenchen Band I , Band II [34] Ohtmer , Ortwin Rehker F. ; 1970 Die Methode der Finiten Elemente und ihre Anwendung in der Statik , Application MBB-STRUDL , MSC-NASTRAN ‘ Messerschmitt-Boelkow-Blohm , Muenchen [35] Ohtmer , Ortwin ; 1972 Berechnung Statischer , Dynamischer, Aerodynamischer und Thermodynamischer Probleme einer Komplexen Struktur nach der F. E. Methode mit den gleichen geometrischen Eingabedaten , MesserschmittBoelkow-Blohm , Muenchen [36] Ohtmer , Ortwin ; 1988 ICES-STRUDL Operation Manual ,ICES-STRUDL Application Manual Volume I , Volume II , European ICES Distribution Agency Eurocopi-JRC Euratom-Ispra , Italy [37] Ohtmer , Ortwin ; 2005 Creating Curves and Surfaces via NURBS (MAE 590/690) Lecture Notes , www.KrishnaCopyPro.com [38] Ohtmer , Ortwin ; 2006 Design Graphics via NX-IDEAS (MAE 172) Lecture Notes , www.KrishnaCopyPro.com , 1785 Palo Verde Ave. , Long Beach, CA 90815 [39] Piegl Les Tiller Wayne ; 1997 The NURBS Book , Springer Verlag Berlin Heidelberg [40] Popov , Egor P. ; 1999 Engineering Mechanics of Solids , Second Edition Prentice Hall , Englewood Cliffs , New Jersey 07632 Chapter 10 REFERENCE 597 633 633 601 602 [41] Przemieniecki J. S. ; 1968 Theory of Matrix Structural Analysis , McGraw-Hill Book Company , New York [42] Rogers , F. David ; 2001 An Introduction to NURBS , Morgan Kaufmann Publishers , New York [43] Schlichting , Truckenbrodt ; 1967 Aerodynamik des Flugzeuges (Erster Band , 2. Auflage ) Springer Verlag Berlin , Heidelberg , New York [44] Silvester P. P. Ferrari R. L. ; 1986 Finite Elements for Electrical Engineers Cambridge University Press , Cambridge , London , New York [45] Szabo , Istvan ; 1958 Hoehere Technische Mechanik , Springer Verlag Berlin Goettingen , Heidelberg [46] Timoshenko S. and Goodier J. N. ; 1951 Theory of Elasticity (Second Edition) McGraw-Hill Book Company , Inc. [47] Versteeg H. K. Malalasekera W. ; 2007 An Introduction to Computational Fluid Dynamics (The Finite Volume Method , Second Edition) , Pearson Prentice Hall New York [48] Von Mises R. Frank P. ; 1961 Die Differential-, und Integralgleichungen der Mechanik und Physik (2.Auflage) I. Mathematischer Teil , II. Physikalischer Teil , Dover Publications , Inc. New York ; Friedr. Vieweg & Sohn Braunschweig [49] Washizu , Kyuichiro ; 1968 Variational Methods in Elasticity and Plasticity , Pergamon Press , Oxford [50] Zeid , Ibrahim ; 1991 CAD/CAM Theory and Practice , McGraw-Hill , Inc. [51] Zienkiewicz O. C. and Taylor R. L. ; 1989 The Finite Element Method ,Volume 1 Fourth Edition , McGraw-Hill Book Company London , New York [52] Zurmuehl R. ; 1961 Praktische Mathematik fuer Ingenieure und Physiker , Dritte Auflage , Springer Verlag Berlin , Goettingen , Heidelberg [53] Zurmuehl R. ; 1961 Matrizen und ihre technischen Anwendungen, Dritte Auflage, Springer Verlag Berlin, Goettingen , Heidelberg