FSA/Regular Sets/Grammars
Transcription
FSA/Regular Sets/Grammars
Equivalence of Regular Language Representations cs466(Prasad) L14Equiv 1 Regular Languages: Grand Unification L( NFA s ) L( NFAs) L( DFAs ) (Collapsing graphs; Structural Induction) (S. Kleene’s work) L( FA) L( RE ) L( FA) L( RE ) (Construction) (Solving linear equations) L( FA) L( RG ) L( RG ) L( RE ) cs466(Prasad) (Parallel Simulation) (Rabin and Scott’s work) L14Equiv 2 Role of various representations for Regular Languages • Closure under complemention. (DFAs) • Closure under union, concatenation, and Kleene star. (NFA-s, Regular expression.) • Consequence: Closure under intersection by De Morgan’s Laws. • Relationship to context-free languages. (Regular Grammars.) • Ease of specification. (Regular expression.) • Building tokenizers/lexical analyzers. (DFAs) cs466(Prasad) L14Equiv 3 Application to Scanner (Lexer, Tokenizer) • High-level view NFA Regular expressions DFA Lexical Specification Table-driven Implementation of a minimal DFA cs466(Prasad) L14Equiv 4 Construction of Finite Automata from Regular Expressions L( RE ) L( FA) Show that there are FA for basis elements and there exist constructions on FA for capturing union, concatenation, and Kleene star operations. M(a) cs466(Prasad) L14Equiv Basis Case 5 Constructions on NFA-s M(R1) M(R1) M(R2) M(R*) M(R1 U R2) M(R) M(R2) M(R1 R2) cs466(Prasad) L14Equiv 6 Construction of Regular Expression from Finite Automaton • Expression Graph is a labeled directed graph in which the arcs are labeled by regular expressions. An expression graph, like a state diagram, contains a distinguished start node and a set of accepting nodes. cs466(Prasad) L14Equiv 7 Examples ab L(M) = (ab)* cs466(Prasad) L14Equiv 8 Examples b+ a ba aub L(M) = (b+ a)* (a u b) (ba)* cs466(Prasad) L14Equiv 9 Examples ba bb b* a+ L(M) = (b a)* b*( bb u (a+(ba)*b*) )* cs466(Prasad) L14Equiv 10 Main Idea • To associate an RE with an FA, – reduce an arbitrary expression graph to one containing at most two nodes, – by repeatedly removing nodes from the graph and relabeling the arcs to preserve the language. • Without loss of generality, we can assume one accepting state (because of the presence of the union operation). cs466(Prasad) L14Equiv 11 Example qj qi qk Wi,k Wj,i qj qk Wj,i Wi,k cs466(Prasad) L14Equiv 12 Wi,i qj qk Wi,k Wj,i qi qj qk Wj,i (Wi,i)* Wi,k cs466(Prasad) L14Equiv 13 Final Graph : Alternative 1 u L(M) = (u)* cs466(Prasad) L14Equiv 14 Final Graph : Alternative 2 u w v x L(M) = (u)* v( w u (x (u)* v) )* cs466(Prasad) L14Equiv 15 Detailed Example b q0 q1 a b a b a q2 q3 b cs466(Prasad) L14Equiv 16 Delete node q1 b q0 b ab a q1 bb a b a q2 q3 b cs466(Prasad) L14Equiv 17 Delete node q2 ab*ab q0 ab b u bb a a q2 q3 b cs466(Prasad) L14Equiv 18 Finally ab*ab q0 b u bb a q3 (ab*ab)*a ((bubb) (ab*ab)*a)* cs466(Prasad) L14Equiv 19 • For precise details, see Algorithm 6.2.2 on Page 194 in Sudkamp’s Languages and Machines, 3rd Edition. cs466(Prasad) L14Equiv 20 From Regular Expression to NFA to DFA to Regular Grammars Via Examples cs466(Prasad) L14Equiv 21 Exercise • Construct a DFA for a+b+ q0 a cs466(Prasad) a q1 b q2 b L14Equiv 22 Equivalent DFA a a b {q0,q1} b {q0} a b {q1,q2} {} a,b cs466(Prasad) L14Equiv 23 Two Equivalent (Right-linear) Regular Grammars <q0> -> | <q1> -> | <q2> -> a <q0> a <q1> b <q1> b <q2> λ <{q0}> -> a <{q0,q1}> <{q0,q1}> -> a <{q0,q1}> | b <{q1,q2}> <{q1,q2}> -> λ | b <{q1,q2}> • All productions involving <{}> can be deleted, as <{}> does not derive any terminal strings. cs466(Prasad) L14Equiv 24 Two Equivalent (Left-linear) Regular Grammars <q0> -> λ | <q0> a <q1> -> <q1> b | <q0> a <q2> -> <q1> b cs466(Prasad) <{q0}> -> λ <{q0,q1}> -> <{q0,q1}> a | <{q0}> a <{q1,q2}> -> | <{q0,q1}> b | <{q1,q2}> b L14Equiv 25 From Grammars to Finite Automata S A B F S -> aA | c A -> bB | bA B -> λ b a S c cs466(Prasad) A -> -> -> -> aA | cF bB | bA λ λ b B F L14Equiv 26 From Grammars to Finite Automata S A B F Z S -> aA | c A -> bB | bA B -> λ b a S c cs466(Prasad) A -> -> -> -> -> λ Sa | Ab Ab Sc B | F b B F L14Equiv 27