Computer Simulation Problems Section 8.1: The MOS Differential
Transcription
Computer Simulation Problems Section 8.1: The MOS Differential
Computer Simulation Problems (a) For v GI = V C2 = 0 V, find Vovand Vcs for each of QI and Also find Vs, VDI' and VD2 . (b) If the current source requires a minimum voltage of 0.5 V, find the input common-mode range. Q2' ImJ Problems identified by this icon are intended to dem onstrate the value of using SPICE simulation to verify hand analysis and design, and to investigate important issues such as allowable signal swing and amplifier nonlinear distortion. Instructions to assist in setting up PSpice and Multisim sim ulations for all the indicated problems can be found in the corresponding files on the CD. Note that if a particular parameter value is not specified in the problem statement, you are to make a reasonable assumption. * difficult problem; ** more difficult; *** very challenging andlor time-consuming; D: design problem. Section 8.1: The MOS Differential Pair 8.1 For an NMOS differential pair with a common-mode voltage VCM applied, as shown in Fig. 8.2, let VDD = Vss = 1.0 V, k~ = 0.4 rnAN2, (WIL)I.2 = 12.5, V"' = 0.5 V, 1=0.2 rnA, RD = 10 ill, and neglect channel-length modulation. (a) Find VDvand Vcs for each transistor. (b) For VCM = 0, find ~~, IDI' I D2 , VDI' and Vm . (c) Repeat (b) for VCM = +0.3 V. (d) Repeat (b) for VCM =-0.1 V. (e) What is the highest value of VCM for which Ql and Q2 remain in saturation? (f) If current source I requires a minimum voltage of 0.2 V to operate properly, what is the lowest value allowed for Vs and hence for Vc ,,? 8.2 For the PMOS differential amplifier shown in Fig. P8.2 let VIP = -0.8 V and k; WIL = 4 rnAN2 • Neglect channel-length modulation. 8.3 For the differential amplifier specified in Problem 8.1 let vG2 = 0 and VGI = V id · Find the value ofv id that corresponds to each of the following situations: (a) i DI =iD2 =0.1 rnA; (b) iDI =0.15 rnA and i02=0.05 mA;(c) i Dl = 0.2 rnA and iD2 = 0 (Q2 just cuts off); (d) iDl = 0.05 rnA and iD2 = 0.15 rnA; (e) i DI = 0 rnA (QI just cuts off) and im = 0.2 rnA. For each case, find vs' V D" v D2 ' and (vD2 - VOl)' I:mI 8.4 For the differential amplifier specified in Prob lem 8.2, let v G2 = 0 and VCI = V id• Find the range of V id needed to steer the bias current from one side of the pair to the other. At each end of this range, give the value of the volt age at the common-source terminal and the drain voltages. 8.5 Consider the differential amplifier specified in Prob lem 8.1 with Gz grounded and VCI = v ut . Let V id be adjusted to the value that causes i Ol = 0.11 rnA and iD2 = 0.09 rnA. Find the corresponding values of v GS2 ' vs' V CSI ' and hence V id• What is the difference output voltage vD2-vDl? What is the voltage gain (vD2 - vDl)lv ut? What value of Vid results in iDl = 0.09 rnA and iD2 = 0.11 rnA? o 8.6 Design the circuit in Fig. P8.6 to obtain a dc voltage of +0.2V at each of the drains of QI and Q2 when v GI = v G2 = 0 V. Operate all transistors at V 0 v = 0.2 V and assume that for the process technology in which the cir cuit is fabricated, V tn = 0.5 V and flnCox = 250 J.!A/V2. Neglect channel-length modulation. Determine the values of R, RD, and the WIL ratios of Q], Q2' Q3' and Q4' What is the input common-mode voltage range for your design? +2.5V VDD = +1.2V 0.5 rnA +1.2V 0.1 mAl lO.4 mA 4kO 4kO -Vss = -1.2 V -2.5V Figure PB.2 Figure PB.6 Problems the lowest value that VDD must have to ensure saturation mode operation for QJ andQ2 at all times? Assume VI = 0.5 V. 8.18 A MOS differential amplifier is designed to have a differential gain Ad equal to the voltage gain obtained from a common-source amplifier. Both amplifiers utilize the same values of RD and supply voltages, and all the transis tors have the same WIL ratios. What must the bias current I of the differential pair be relative to the bias current I D of the CS amplifier? What is the ratio of the power dissipation of the two circuits? 8.19 A differential amplifier is designed to have a differen tial voltage gain equal to the voltage gain of a common source amplifier. Both amplifiers use the same values of RD and supply voltages and are designed to dissipate equal amounts of power in their equilibrium or quiescent state. As well, all the transistors use the same channel length. What must the width W of the differential-pair transistors be rela tive to the width of the CS transistor? D 8.20 Figure P8.20 shows a MOS differential amplifer with the drain resistors RD implemented using diode connected PMOS transistors, Q3 and Q4' Let QJ and Q2 be matched, and Q3 and Q4 be matched. 669 (c) If f.in = 4 f.ip and all four transistors have the same chan nellength, find ( WI, 21 W 3 , 4) that results in Ad = 10 VN. 8.21 Find the differential half-circuit for the differential amplifier shown in Fig. P8.2l and use it to derive an expres sion for the differential gain Ad = v a/ v id in tenns of gm , RD , and Rs . Neglect the Early effect. What is the gain with Rs = O? What is the value of Rs (in tenns of 11 gm) that reduces the gain to half this value? Vid o-------J 2 I 2 Figure PB.21 *8.22 The resistance Rs in the circuit of Fig. P8.2l can be implemented by using a MOSFET operated in the triode region, as shown in Fig. P8.22. Here Q3 implements R s ' with the value of Rs detennined by the voltage Vc at the gate of Q3' Vid~ +-~ 2 1 - - - - 0 VG2 Figure PB.20 (a) Find the differential half-circuit and use it to derive an expression for Ad in tenns of gml,2' gm3,4' raj ,2' and r a34 · (b) Neglecting the effect of the output resistances r a' find Ad in tenns of f.in' f.ip, (WIL)J,2' and (W1Lh,4' I I 2 2 Figure PB.22 670 Chapter 8 Differential and Multistage Amplifiers (a)WithvGJ = vG2 = 0 V,andassumingthatQJ andQ2 are operating in saturation, what dc voltages appear at the sources of QJ and Q2' Express these in terms of the over drive voltage Vov at which each of QJ and Q2 operates, and VI' (b) For the situation in (a), what current flows in Q3? What overdrive voltage VbV3 is Q3 operating at, in terms of Vc, ating? Find an expression for r DS for each of Q3 and Q4 and hence for R, in terms of (WIL)J,2, (W1Lh,4' and gmJ,2' (b) Now with vGJ = v i/2 and vG2 = -v j /2, where vid is a small signal, find an expression of the voltage gain Ad =vo/vid in terms of gmJ,2' R D, (W1Lh,2, and ( W1L h,4' Vov,and VI? o *8.24 Figure PS.24 shows a circuit for a differential amplifier with an active load. Here QJ and Q2 form the differ ential pair, while the current source transistors Q. and Qs form the active loads for QJ and Q2' respectively. The de bias circuit that establishes an appropriate dc voltage at the drains of QJ and Q2 is not shown. It is required to design the circuit to meet the following specifications: (c) Now consider the case v GI = + vidl2 and v G2 = - v j /2, where vid is a small signal. Convince yourself that Q3 now conducts current and operates in the triode region with a small vDS' What resistance rDS does it have, expressed in terms of the overdrive voltage VOV3 at which it is operating. This is the resistance Rs. Now if all three transistors have the same WIL, express Rs in terms of Vov , VOV3 ' and gmJ,2' (d) Find VOV3 and hence Vc that result in (i) Rs = I/gm1,2; (ii) Rs = O.5/gmJ ,2· *8.23 The circuit of Fig. PS.23 shows an effective way of implementing the resistance Rs needed for the circuit in Fig. PS.21. Here Rs is realized as the series equivalent of two MOSFETs Q3 and Q4 that are operated in the triode region, thus, Rs = rDS3 + r DS4 ' Assume that QJ and Q2 are matched and operate in saturation at an overdrive volt age Vov that corresponds to a drain bias current of 112. Also, assume that Q3 and Q4 are matched. (a) Differential gain Ad = SO VN. (b) 1REF =1= lOO/lA. (c) The dc voltage at the gates of Q6 and Q3 is +1.5 V. (d) The dc voltage at the gates of Q7' Q., and Qs is -1.5 V. The technology available is specified as follows: J.inCox = 3J.ip Cox = 90/lAN2; Vrn = !VIP I = 0.7 V, VAn = I~pl = 20 V. Specify the required value of R and the WIL ratios for all transistors. Also specify 1D and IVGsl at which each transis tor is operating. For dc bias calculations you may neglect channel-length modulation. +2.5V Q3 tf IREFt II 0 VG2 VGI R Vid!2 1---0 -vj2 o--J Vod Figure PS.23 (a) With v GI = v G2 = 0 V, what dc voltages appear at the sources of QI and Q2? What current flows through Q 3 and Q4? At what overdrive voltages are Q3 and Q4 oper -2.5V Figure PS.24 + 678 Chapter 8 Differential and Multistage Amplifiers 8.82 A differential amplifier for which the total emitter bias current is 500 JlA uses transistors for which f3 is specified to lie between 80 and 200. What is the largest possible input bias current? The smallest possible input bias current? The largest possible input offset current? **8.83 In a particular BIT differential amplifier, a produc tion error results in one of the transistors having an emitter base junction area twice that of the other. With both inputs grounded, find the current in each of the two transistors and hence the dc offset voltage at the output, assuming that the collector resistances are equal. Use small-signal analysis to find the input voltage that would restore current balance to the differential pair. Repeat using large-signal analysis and compare results. o 8.84 A large fraction of mass-produced differential amplifier modules employing 20-kn collector resistors is found to have an input offset voltage ranging from +3 mV to -3 mY. By what amount must one collector resistor be adjusted to reduce the input offset to zero? If an adjustment mechanism is devised that raises one collector resistor while correspondingly lowering the other, what resistance change is needed? If a potentiometer connected as shown in Fig. P8.81 is used, what value of potentiometer resistance (speci fied to I significant digit) is needed? (b) Current source ! is implemented with the modified Wilson current mirror shown in Fig. P8.87. Recalling that for the simple mirror R5S = r0 IQs and for the Wilson mirror Rss = gm7ro7ro5' and assuming that all tran sistors have the same I f'A I and k' WI L, show that for case (a) CMRR = 2(~r r;)V and for case (b) CMRR = 2J2(iov r where Vov is the overdrive voltage that corresponds to a drain current of 112. For k'WIL = 10 mA/V~ J = I mA, and 1V41 = 10 V, find CMRR for both cases. I I It! I Section 8.5: The Differential Amplifier with Active Load o 8.85 In an active-loaded differential amplifier of the form shown in Fig. 8.32(a), all transistors are characterized WI L = 3.2 mAN2 , and I f'A I = 20 V. Find the bias by current J for which the gain v / v id = 100 VN. e lEI 0 8.86 It is required to design the active-loaded differ ential MOS amplifier of Fig. 8.32 to obtain a differential gain of 50 VN. The technology available provides JinCo, = 4Jip Cox = 400 JlAN2, = 0.5 V, and V~I = 20 V/Jlm and operates from ± I V supplies. Use a bias current J = 200 JlA and operate all devices at a ~ = 0.2 V. IVII I IV (a) Find the WIL ratios of the four transistors. (b) Specify the channellengtb required of all transistors. (c) IfVcM = 0, what is the allowable range of va? (d) If I is delivered by a simple NMOS current source operated at the same Vav and having the same channel length as the other four transistors, determine the CMRR obtained. 8.87 Consider the active-loaded MOS differential ampli fier of Fig. 8.32(a) in two cases: (a) Current source I is implemented with a simple current mirror. Figure P8.87 o 8.88 Consider an active-loaded differential amplifier such as that shown in Fig. 8.32(a) with the bias current source implemented with the modified Wilson mirror of Fig. P8.87 with J = 200 JlA. The transistors have IV,I = 0.5 V and k / WIL = 5 mAN2• What is the lowest value of the total power supply (VDD + Vss) that allows each transistor to oper ate with IVvsI ;0: IVas[? *8.89 (a) Sketch the circuit of an active-loaded MOS dif ferential amplifier in which the input transistors are cas coded and a casco de current mirror is used for the load. (b) Show that if all transistors are operated at an overdrive voltage Vov and have equal Early voltages If'A I, the gain is given by Ad = 2( f'A / Vov )2 682 Chapter 8 Differential and Multistage Amplifiers (s) With VA = v;/2 and VB = -v;/2, find the voltage gain volv id' Assume an Early voltage of 5 V. VDD ~ o *8.109 In a particular design of the CMOS op amp of Fig. 8A1 the designer wishes to investigate the effects of increasing the W;L ratio of both Q, and Q2 by a factor of 4. Assuming that all other parameters are kept unchanged, refer to Example 8.5 to help you answer the following questions: J--o Vo (a) Find the resulting change in IVovl and in gm of Q, and Q2' (b) What change results in the voltage gain of the input stage? In the overall voltage gain? (c) What is the effect on the input offset voltages? (You might wish to refer to Section 8A). -Vss Figure P8.l06 Section 8.6: Multistage Amplifiers 8.107 Consider the circuit in Fig. 8A1 with the device geometries (in J.lm) shown in the Table P8.107. Let IREF = 225 J.lA, IVt! = 0.75 V for all devices, PnCox = 180 J.lAIV2, J1p Cox = 60 J.lAN2, IV4 = 9 V for all devices, VDD = Vss = 1.5 V. Determine the width of Q6' W, that will ensure that the op amp will not have a systematic offset voltage. Then, for all devices evaluate I D , IVovl, IVGS I, gm' and roo Provide your results in a table similar to Table 8.1. Also find A" A2 , the open-loop voltage gain, the input common-mode range, and the output voltage range. Neglect the effect of VA on the bias current. 1 o *8.108 The two-stage CMOS op amp in Fig. P8.l08 is fabricated in a 0.18-J.lm technology having k~ = 4k; = 400 J.lAN2, Vtn = -VtP = OA V. (a) With A and B grounded, perform a dc design that will result in each of Q" Q2' Q3' and Q4 conducting a drain cur rent of 200 J.lA. Design so that all transistors operate at 0.2 V-overdrive voltages. Specify the WIL ratio required for each MOSFET. Present your results in tabular form. What is the dc voltage at the output (ideally)? (b) Find the input common-mode range. (c) Find the allowable range of the output voltage. 8.110 Consider the amplifier of Fig. 8A1, whose parame ters are specified in Example 8.5. If a manufacturing error results in the W;L ratio of Q7 being 5010.8, find the current that Q7 will now conduct. Thus find the systematic offset voltage that will appear at the output. (Use the results of Example 8.5.) Assuming that the open-loop gain will remain approximately unchanged from the value found in Example 8.5, find the corresponding value of input offset voltage, Vos· 8.111 Consider the input stage of the CMOS op amp in Fig. 8A1 with both inputs grounded. Assume that the two sides of the input stage are perfectly matched except that the threshold voltages of Q3 and Q4 have a mismatch ~Vt. Show that a current gm3~Vt appears at the output of the first stage. What is the corresponding input offset volt age? *8.112 Figure P8.112 shows a bipolar op-amp circuit that resembles the CMOS op amp of Fig. 8Al. Here, the input differential pair Q,-Q2 is loaded in a current mirror formed by Q3 and Q4' The second stage is formed by the current source-loaded common-emitter transistor Q5' Unlike the CMOS circuit, here there is an output stage formed by the emitter follower Q6' The function of capacitor Cc will be explained later in Chapter 10. All transistors have f3 = 100, WBEI = 0.7 V, and ro = 00. (a) For inputs grounded and output held at 0 V (by negative feedback, not shown) find the emitter currents of all transis tors. (b) Calculate the gain ofthe amplifier with RL = 10 kil. Table P8.l07 Transistor WIL Q, Q2 Q3 Q4 Qs Q6 Q7 3010.5 30/0.5 10/0.5 10/0.5 60/0.5 W/0.5 60/0.5 Q. 6010.5 J Problems 683 VDD =+ 1 V Figure PS.l0S -5V Figure PS.112 08.113 It is required to design the circuit of Fig. 8.42 to provide a bias current Is of 225 J..lA with Q8 and Q9 as matched devices having WIL =6010.5. Transistors QIO' Qll' and Q13 are to be identical and must have the same gm as Qs and Q9' Transistor Q12 is to be four times as wide as Q13' Let k~ = 3k; = 180 J..lAN 2, and V/)D = Vss = 1.5 V. Find the required value of RB • What is the voltage drop across RB? Also specify the WIL ratios of Qw Qll' Q'2' and QI3 and give the expected dc voltages at the gates of Qw QIO' and Q8' 8.114 A BIT differential amplifier, biased to have re = 100 Q and utilizing two l00-Q emitter resistors and 5-kQ loads, drives a second differential stage biased to have re = 50 Q. All BJTs have jJ = 100. What is the voltage gain of the first stage? Also find the input resistance of the first stage, and