Solving Mathematical Problems, Game Theory, and Recreational
Transcription
Solving Mathematical Problems, Game Theory, and Recreational
Solving Mathematical Problems Here all links to books and articles in proprietary digital libraries are “local” – each link will work on any campus with legitimate (level of) access to those libraries. The links to open-access items will work everywhere. For a more comfortable library visit, use Google Chrome and, while you are scrolling through the titles, always right-click on the selected item’s link to “Open link in new tab” – after you close the new tab, your cursor will be where you right-clicked. This section of the library was updated on 03 June 2015. For more information, right-click on: http://competitive-learning.org/Notes.pdf This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License (available at: http://creativecommons.org/licenses/by-nc-nd/3.0/). This work is free for personal and classroom use as is; you may not use this work for commercial purposes. Professor Joseph Vaisman Department of Computer Science and Engineering, NYU-Poly [email protected] Table of Contents Problems, Solutions, and Techniques Game Theory Towers of Hanoi Magic Squares Fifteen-Puzzle Fibonacci Numbers Pascal’s Triangle The Quest for PI The Science of Sticky Spheres Problems, Solutions, and Techniques ====== Chapter 5 How to solve problems http://dx.doi.org/10.1017/CBO9780511808258.006 How to Think Like a Mathematician: A Companion to Undergraduate Mathematics Kevin Houston Cambridge University Press, 2009, ISBN 9780511808258 http://dx.doi.org/10.1017/CBO9780511808258 How to Solve It: Modern Heuristics; Second, Revised and Extended Edition Zbigniew Michalewicz and David B. Fogel Springer, 2004, ISBN 978-3-662-07807-5 **** book on AI – relevant chapters ******** http://dx.doi.org/10.1007/978-3-662-07807-5 Mathematics as Problem Solving, Second Edition Alexander Soifer Springer, 2009, ISBN 978-0-387-74647-0 http://dx.doi.org/10.1007/978-0-387-74647-0 Problem-Solving Strategies Arthur Engel Springer, 1998, ISBN 978-0-387-22641-5 http://dx.doi.org/10.1007/b97682 Problem-Solving Through Problems Loren C. Larson Springer, 1983, ISBN 978-1-4612-5498-0 http://dx.doi.org/10.1007/978-1-4612-5498-0 The Beauty of Everyday Mathematics Norbert Hermann Springer, 2012, ISBN 978-3-642-22104-0 http://dx.doi.org/10.1007/978-3-642-22104-0 Problems and Proofs in Numbers and Algebra Richard S. Millman, Peter J. Shiue, and Eric Brendan Kahn Springer, 2015, ISBN 978-3-319-14427-6 http://dx.doi.org/10.1007/978-3-319-14427-6 Complex Numbers From A to … Z, Second Edition Titu Andreescu and Dorin Andrica Springer, 2014, ISBN 978-0-8176-8415-0 http://dx.doi.org/10.1007/978-0-8176-8415-0 Mathematical Problems and Proofs: Combinatorics, Number Theory, and Geometry Branislav Kisacanin Springer, 2002, ISBN 978-0-306-46963-3 http://dx.doi.org/10.1007/b115295 Inequalities: A Mathematical Olympiad Approach Radmila Bulajich Manfrino, Jose Antonio Gomez Ortega, and Rogelio Valdez Delgado Springer, 2009, ISBN 978-3-0346-0050-7 http://dx.doi.org/10.1007/978-3-0346-0050-7 Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory Jiri Herman, Radan Kucera, and Jaromir Simsa Springer, 2000, ISBN 978-1-4612-1270-6 http://dx.doi.org/10.1007/978-1-4612-1270-6 Topics in Algebra and Analysis: Preparing for the Mathematical Olympiad Radmila Bulajich Manfrino, Jose Antonio Gomez Ortega, and Rogelio Valdez Delgado Springer, 2015, ISBN 978-3-319-11946-5 http://dx.doi.org/10.1007/978-3-319-11946-5 Problem-Solving Methods in Combinatorics: An Approach to Olympiad Problems Pablo Soberon Springer, 2013, ISBN 978-3-0348-0597-1 http://dx.doi.org/10.1007/978-3-0348-0597-1 Problem-Solving and Selected Topics in Number Theory: In the Spirit of Mathematical Olympiads Michael Th. Rassias Springer, 2011, ISBN 978-1-4419-0495-9 http://dx.doi.org/10.1007/978-1-4419-0495-9 104 Number Theory Problems: From the Training of the USA IMO Team Titu Andreescu, Dorin Andrica, and Zuming Feng Springer, 2007, ISBN 978-0-8176-4561-8 http://dx.doi.org/10.1007/978-0-8176-4561-8 Mathematical Olympiad Treasures, Second Edition Titu Andreescu and Bogdan Enescu Springer, 2011, ISBN 978-0-8176-8253-8 http://dx.doi.org/10.1007/978-0-8176-8253-8 Mathematical Olympiad Challenges, Second Edition Titu Andreescu and Razvan Gelca Springer, 2009, ISBN 978-0-8176-4611-0 http://dx.doi.org.databases/10.1007/978-0-8176-4611-0 The IMO Compendium - A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2009, Second Edition Dusan Djukic, Vladimir Jankovic, Ivan Matic, and Nikola Petrovic Springer, 2011, ISBN 978-1-4419-9854-5 http://dx.doi.org/10.1007/978-1-4419-9854-5 Geometric Problems on Maxima and Minima Titu Andreescu, Oleg Mushkarov, and Luchezar Stayanov Springer, 2006, ISBN 978-0-8176-4473-3 http://dx.doi.org/10.1007/0-8176-4473-3 103 Trigonometry Problems: From the Training of the USA IMO Team Titu Andreescu and Zuming Feng Springer, 2005, ISBN 978-0-8176-4432-1 http://dx.doi.org/10.1007/b139082 An Introduction to Diophantine Equations: A Problem-Based Approach Titu Andreescu, Dorin Andrica, and Ion Cucurezeanu Springer, 2010, ISBN 978-0-8176-4549-6 http://dx.doi.org/10.1007/978-0-8176-4549-6 Putnam and Beyond Razvan Gelca and Titu Andreescu Springer, 2007, ISBN 978-0-387-68445-1 http://dx.doi.org/10.1007/978-0-387-68445-1 An Invitation to Mathematics: From Competition to Research Dierk Schleicher and Malte Lackmann (Editors) Springer, 2011, ISBN 978-3-642-19533-4 http://dx.doi.org/10.1007/978-3-642-19533-4 The Art of Mathematics – Coffee Time in Memphis Bela Bollobas Cambridge University Press, 2006, ISBN 9780511816574 http://dx.doi.org/10.1017/CBO9780511816574 Thinking in Problems: How Mathematicians Find Creative Solutions Alexander A. Roytvarf Springer, 2013, ISBN 978-0-8176-8406-8 http://dx.doi.org/10.1007/978-0-8176-8406-8 Problem Solving for Engineers and Scientists: A Creative Approach Raymond Friedman Springer, 1991, ISBN 978-1-4615-3906-3 http://dx.doi.org/10.1007/978-1-4615-3906-3 Arnold’s Problems Vladimir I. Arnold Springer, 2005, ISBN 978-3-540-28666-6 http://dx.doi.org/10.1007/b138219 Exercises in Analysis, Part I Leszek Gazinski and Nikolaos S. Papageorgiou Springer, 2014, ISBN 978-3-319-06176-4 http://dx.doi.org/10.1007/978-3-319-06176-4 People, Problems, and Proofs – Essays from Godel’s Lost Letter: 2010 Richard J. Lipton and Kenneth W. Regan Springer, 2013, ISBN 978-3-642-41422-0 http://dx.doi.org/10.1007/978-3-642-41422-0 Inside Interesting Integrals Paul J. Nahin Springer, 2015, ISBN 978-1-4939-1277-3 http://dx.doi.org/10.1007/978-1-4939-1277-3 Problems from the Discrete to the Continuous: Probability, Number Theory, Graph Theory, and Combinatorics Ross G. Pinsky Springer, 2014, ISBN 978-3-319-07965-3 http://dx.doi.org/10.1007/978-3-319-07965-3 Back to the Table of Contents ======================================= Game Theory ========================== Also see: Game Theory shelf in the Economics and Finance section. New Dilemmas for the Prisoner Brian Hayes American Scientist, Volume 101, Number 6 (November-December 2013) http://dx.doi.org/10.1511/2013.105.422 Insights into Game Theory: An Alternative Mathematical Experience Ein-Ya Gura and Michael B. Maschler Cambridge University Press, 2008, ISBN 9780511754326 http://dx.doi.org/10.1017/CBO9780511754326 Game Theory: An Introduction, Second Edition E.N. Barron Wiley, 2013, ISBN 9781118547168 http://dx.doi.org/10.1002/9781118547168 Back to the Table of Contents ======================================= Towers of Hanoi ======================== The Tower of Hanoi – Myths and Maths Andreas M. Hinz, Sandy Klavzar, Uros Milutinovic, and Ciril Petr Springer, 2013, ISBN 978-3-0348-0237-6 http://dx.doi.org/10.1007/978-3-0348-0237-6 About the remarkable similarity between the Icosian Game and the Tower of Hanoi Martin Gardner Scientific American, Volume 196, Number 5 (May 1957) Pages 150-157 http://www.nature.com/scientificamerican/journal/v196/n5/pdf/scien tificamerican0557-150.pdf The curious properties of Gray code and how it can be used to solve puzzles Martin Gardner Scientific American, Volume 227, Number 2 (September 1972) http://www.nature.com/scientificamerican/journal/v227/n2/pdf/scien tificamerican0872-106.pdf Yin and yang: recursion and iteration, the Tower of Hanoi and the Chinese rings A. K. Dewdney Scientific American, Volume 251, Number 5 (November 1984) http://www.nature.com/scientificamerican/journal/v251/n5/pdf/scien tificamerican1184-19.pdf Sierpinski’s Ubiquitous Gasket Ian Stewart Scientific American, Volume 281, Number 2 (August 1999) http://www.nature.com/scientificamerican/journal/v281/n2/pdf/scien tificamerican0899-90.pdf Chapter 1 “The Lion, the Llama, and the Lettuce” Another Fine Math You’ve Got Me Into… Ian Stewart http://books.google.com/books?id=u5GPE97ZhsC&printsec=frontcover&dq=intitle:another+intitle:fine+intitle:math &hl=en&ei=PJygTr2GLKna0QGKx7T6BA&sa=X&oi=book_result&ct=resu lt&resnum=1&ved=0CD0Q6AEwAA#v=onepage&q&f=false The Generalized Towers of Hanoi for Space-Deficient Computers and Forgetful Humans Timothy R. Walsh The Mathematical Intelligencer, Volume 20, Number 1 (March 1998) http://dx.doi.org/10.1007/BF03024398 Back to the Table of Contents ======================================= Magic Squares ========================= In general, a magic square is an arrangement of the integers from 1 to n*n, in cells of an n-by-n square, such that the numbers in each row, column, and diagonal give the same sum, the magic sum. You have access to a thorough explanation at the link below – disregard that it is intended for a very young audience. http://www.dr-mikes-math-games-for-kids.com/3x3-magicsquare.html Anything but square: from magic squares to Sudoku Hardeep Aiden http://plus.maths.org/content/anything-square-magic-squares-sudoku Magic Squares Pages 16-24 http://dx.doi.org/10.1007/978-1-4612-1088-7_2 Ramanujan’s Notebooks, Part I Bruce C. Berndt Springer, 1985, ISBN 978-1-4612-1088-7 http://dx.doi.org/10.1007/978-1-4612-1088-7 Magic Squares of Order Three T. S. K. V. Iyer Pages 76-78 http://dx.doi.org/10.1007/BF02834335 Basis Properties of Third Order Magic Squares Shailesh A Shirali Pages 79-89 http://dx.doi.org/10.1007/BF02834336 Resonance, Volume 11, Number 9 (September 2006) Magic “Squares” Indeed! Arthur T. Benjamin and Kan Yasuda American Mathematical Monthly, Volume 106, Number 2 (February 1999) Pages 152-156 http://dx.doi.org/10.2307/2589051 Constructing All Magic Squares of Order Three Guoce Xin http://arxiv.org/abs/math/0409468 Quadramagicology Dana Mackenzie Pages 50-53 New Scientist, Volume 180, Issue 2426-2428 (December 20, 2003) http://search.ebscohost.com/login.aspx?direct=true&db=n2h&AN=257 15053&site=ehost-live Magic Square Patterns D. B. Eperson The Mathematical Gazette, Volume 43, Number 346 (December 1959) Pages 273-275 http://www.jstor.org/stable/3610655 Magic Squares of Order 4 Dame Kathleen Ollerenshaw and Herman Bondi Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, Volume 306, Number 1495 (October 15, 1982) Pages 443-532 http://www.jstor.org/stable/37143 On ‘Most Perfect’ or ‘Complete’ 8 X 8 Pandiagonal Magic Squares Dame Kathleen Ollerenshaw Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Volume 407, Number 1833 (October 8, 1986) Pages 259-281 http://www.jstor.org/stable/2397989 On Karnaugh maps and magic squares Dieter Schuett and Sebastian Meine Pages 120-123 Informatik-Spektrum, Volume 28, Number 2 (April 2005) http://dx.doi.org/10.1007/s00287-005-0468-3 Latin Squares Bhaskar Bagchi Pages 895-902 Resonance, Volume 17, Number 9 (September 2012) http://dx.doi.org/10.1007/s12045-012-0098-4 Magic Graphs, Second Edition Alison M. Marr and W.D. Wallis Springer, 2013, ISBN 978-0-8176-8391-7 http://dx.doi.org/10.1007/978-0-8176-8391-7 Back to the Table of Contents ======================================= Fifteen-Puzzle ========================== How Safe Is Sam Lloyd’s Bet? The 15-Puzzle and Beyond Jyoti Ramakrishnan Pages 80-89 Resonance, Volume 5, Number 11 (November 2000) http://dx.doi.org/10.1007/BF02868496 Back to the Table of Contents ======================================= Fibonacci Numbers ===================== Fibonacci Numbers Ron Knott http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/ Ron Knott’s web pages on Mathematics http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/ FIBONACCI – HIS RABBITS AND HIS NUMBERS and KEPLER Keith Tognetti http://www.austms.org.au/Modules/Fib/ Fibonacci Numbers Nicolai N. Vorobiev Springer, 2002, ISBN 978-3-0348-8107-4 http://dx.doi.org/10.1007/978-3-0348-8107-4 Fibonacci and Catalan Numbers: An Introduction Ralph P. Grimaldi Wiley, 2012, ISBN 9781118159743 http://dx.doi.org/10.1002/9781118159743 Catalan Numbers: with Applications Thomas Koshy Oxford University Press, 2009, ISBN 9780195334548 http://dx.doi.org/10.1093/acprof:oso/9780195334548.001.000 1 Fibonacci and Lucas Numbers with Applications Thomas Koshy Wiley, 2001, ISBN 9781118033067 http://dx.doi.org/10.1002/9781118033067 Pell and Pell-Lucas Numbers with Applications Thomas Koshy Springer, 2014, ISBN 978-1-4614-8489-9 http://dx.doi.org/10.1007/978-1-4614-8489-9 Applications of Fibonacci Numbers, Volume 9: Proceedings of the Tenth International Research Conference on Fibonacci Numbers and Their Applications Frederic T. Howard (Editor) Springer, 2004, ISBN 978-0-306-48517-6 http://dx.doi.org/10.1007/978-0-306-48517-6 Applications of Fibonacci Numbers, Volume 8: Proceedings of ‘The Eighth International Research Conference on Fibonacci Numbers and Their Applications’ Fredric T. Howard (Editor) Springer, 1999, ISBN 978-94-011-4271-7 http://dx.doi.org/10.1007/978-94-011-4271-7 Applications of Fibonacci Numbers, Volume 7: Proceedings of ‘The Seventh International Research Conference on Fibonacci Numbers and Their Applications’ G. E. Bergum, A. N. Philippou, and A. F. Horadam (Editors) Springer, 1998, ISBN 978-94-011-5020-0 http://dx.doi.org/10.1007/978-94-011-5020-0 Back to the Table of Contents ======================================= Pascal’s Triangle ======================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pascal’s Triangle Nathan Hoffman The Arithmetic Teacher, Volume 21, Number 3 (March 1974) http://www.jstor.org/stable/41188488 Pascal’s Triangle Karl J. Smith The Two-Year College Mathematics Journal, Volume 4, Number 1 (Winter 1973) http://www.jstor.org/stable/2698949 Differences and Pascal’s triangle Chris Houghton Mathematics in School, Volume 20, Number 4 (September 1991) http://www.jstor.org/stable/30214830 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Extended Pascal Triangles Richard C. Bollinger Mathematics Magazine, Volume 66, Number 2 (April 1993) http://www.jstor.org/stable/2691114 Pascal + Fermat -> Gauss Per Haggmark The Mathematical Gazette Volume 61, Number 418 (December 1977) http://www.jstor.org/stable/3617404 Pascal’s Triangle and the Tower of Hanoi Andreas M. Hinz The American Mathematical Monthly, Volume 99, Number 6 (June-July 1992) http://www.jstor.org/stable/2324061 Pascal’s Triangle, Difference Tables and Arithmetic Sequences of Order N Calvin Long The College Mathematics Journal, Volume 15, Number 4 (September 1984) http://www.jstor.org/stable/2686393 Pascal Triangles and Combinations Where Repetitions Are Allowed Kendell Hyde The College Mathematics Journal, Volume 19, Number 1 (January 1988) http://www.jstor.org/stable/2686707 Paths and Pascal Numbers John F. Lucas The Two-Year College Mathematics Journal, Volume 4, Number 1 (Winter 1973) http://www.jstor.org/stable/3027286 Recurrent Sequences and Pascal’s Triangle Thomas M. Green Mathematics Magazine, Volume 41, Number 1 (January 1968) http://www.jstor.org/stable/2687953 Relating Geometry and Algebra in the Pascal Triangle, Hexagon, Tetrahedron, and Cuboctahedron Part I: Binomial Coefficients, Extended Binomial Coefficients and Preparation for Further Work Peter Hilton and Jean Pedersen The College Mathematics Journal, Volume 30, Number 3 (May 1999) http://www.jstor.org/stable/2687595 Relating Geometry and Algebra in the Pascal Triangle, Hexagon, Tetrahedron, and Cuboctahedron Part II: Geometry and Algebra in Higher Dimensions: Identifying the Pascal Cuboctahedron Peter Hilton and Jean Pedersen The College Mathematics Journal, Volume 30, Number 4 (September 1999) http://www.jstor.org/stable/2687666 Restricted Occupancy Theory – A Generalization of Pascal’s Triangle J. E. Freund The American Mathematical Monthly, Volume 63, Number 1 (January 1956) http://www.jstor.org/stable/2308048 The Towers and Triangles of Professor Claus (or, Pascal Knows Hanoi) David G. Poole Mathematics Magazine, Volume 67, Number 5 (December 1994) http://www.jstor.org/stable/2690991 Zaphod Beeblebrox’s Brain and the Fifty-ninth Row of Pascal’s Triangle Andrew Granville The American Mathematical Monthly, Volume 99, Number 4 (April 1992) http://www.jstor.org/stable/2324898 Correction to: Zaphod Beeblebrox’s Brain and the Fifty-ninth Row of Pascal’s Triangle Andrew Granville The American Mathematical Monthly, Volume 104, Number 9 (November 1997) http://www.jstor.org/stable/2975291 Back to the Table of Contents ======================================= The Quest for Pi ======================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Quest for Pi D.H. Bailey, J.M. Borwein, P.B. Borwein, and S. Plouffe Mathematical Intelligencer, Volume 19, Number 1 (Winter 1997) *** Item # 47 **************************************** http://www.davidhbailey.com/dhbpapers/index.html#Technica l-papers http://dx.doi.org/10.1007/BF03024340 Home Page of David H. Bailey http://www.davidhbailey.com/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pi: A Source Book, Third Edition Lennart Berggren, Jonathan Borwein, and Peter Borwein Springer, 2004, ISBN 978-1-4757-4217-6 http://dx.doi.org/10.1007/978-1-4757-4217-6 Pi – Unleashed Jorg Arndt and Christoph Haenel Springer, 2001, ISBN 978-3-642-56735-3 http://dx.doi.org/10.1007/978-3-642-56735-3 Back to the Table of Contents ======================================= The Science of Sticky Spheres ============= This shelf contains the original article, and will contain inks to the article’s bibliography, and links to additional items I consider relevant and useful. The Science of Sticky Spheres Brian Hayes American Scientist, Volume 100, Number 6 (November-December 2012) http://dx.doi.org/10.1511/2012.99.442 Computing Science column and book reviews http://www.americanscientist.org/issues/issue_byAuthor_list.a spx?authorID=6660&pageID=1 Website http://bit-player.org/ Back to the Table of Contents =======================================