Chapter 11: AC Steady-State Power 11.1 Instantaneous and
Transcription
Chapter 11: AC Steady-State Power 11.1 Instantaneous and
Chapter11:ACSteadyͲStatePower 11.1 InstantaneousandAveragePower 11.2 EffectiveorRMSValue 11.3 ApparentPowerandPowerFactor 11.4 ComplexPower 11.5 PowerFactorCorrection,Measurement 11.6 MaximumAveragePowerTransfer 11.7MutualInductance 11.8LinearTransformers,IdealTransformers 11.9Design&Applications 11.10 Summary ThechoiceofacoverdcallowedhighͲvoltagepowertransmission fromthepowergeneratingplanttotheconsumer. 11.1InstantaneousandAveragePower(1) Theinstantaneouslypower(inwatts),pt v t Vm FRVZ t T v i t I m FRVZ t T i p t vt i t Vm I m FRVZ t T v FRVZtT i Vm I m FRVT v T i Vm I m FRVZt T v T i constantpower sinusoidalpoweratȦt pt ! : power is absorbed by the circuit; pt : power is absorbed by the source. P T p t dt Vm I m FRVT v T i T ³ Theaveragepower, P,istheaverageofpt overoneperiod. 1. P isnottimedependent. 2. Whenșv = și ,itisapurelyresistiveloadcase. 3. Whenșv– și = Ʋ R,itisapurelyreactiveloadcase. 4. P meansthatthecircuitabsorbsnoaveragepower. 11.1InstantaneousandAveragePower(2) P Vm I m FRVT v Ti P R P Vm I m Im R , R L RUC P 5H ª¬ 9, º¼ Vm I m FRV D , q Example:Acurrentflowsthroughanimpedance = q: .Findtheaveragepowerdeliveredtotheimpedance. Answer:N: 11.1InstantaneousandAveragePower(3) Example:Determinetheaveragepowergeneratedbyeachsource andtheaveragepowerabsorbedbyeachpassiveelementinFig. bymeshanalysis 1.5PowerandEnergy(1) Poweristhetimerateofexpendingorabsorbingenergy, measuredinwatts(:). dw dw dq vi Mathematicalexpression: p dt dq dt Passivesignconvention P = + vi absorbingpower p = – vi supplyingpower 5 11.2EffectiveorRMSValue(1) ThetotalpowerdissipatedbyR isgivenby: T i Rdt R T i dt T ³ HenceIeff isequalto: I eff T P ³ T I eff R T ³ i dt I rms Note:Therootmeansquare(rms)valueisaconstantitself whichdependingontheshapeofthefunctionit. The effectiveofaperiodiccurrentisthedccurrentthatdelivers thesameaveragepowertoaresistorastheperiodiccurrent. Therms valueofait = ImFRVȦt isgivenby: I UPV Im Theaveragepowercanbewrittenintermsoftherms values: Vm I m FRVT v Ti VUPV I UPV FRVT v Ti Note:Ifyouexpressamplitudeofaphasor source(s)inrms,thenalltheanswer asaresultofthisphasor source(s)mustalsobeinrms value. P 11.2EffectiveorRMSValue(2) Example:Findtherms valueofthecurrentwaveform.Ifthecurrent flowsthroughaȍ resistor,calculatetheaveragepowerabsorbed bytheresistor. Example:Findtherms valueofthefullͲwaverectifiedsinewave. Calculatetheaveragepowerdissipatedinaȍ resistor. 11.3ApparentPowerandPowerFactor(1) ApparentPower(inVA), S,istheproductofthermsvaluesof voltageandcurrent. ItismeasuredinvoltͲamperes orVAtodistinguishitfromthe averageorrealpowerwhichismeasuredinwatts. P VUPV I UPV FRVT v Ti ApparentPower,S S FRVT v Ti PowerFactor,pf Powerfactoristhecosineofthephasedifferencebetweenthe voltageandcurrent.Itisalsothecosineoftheangleoftheload impedance. 11.3ApparentPowerandPowerFactor(2) 3XUHO\UHVLVWLYH ORDGR 3XUHO\UHDFWLYH ORDGL RUC 5HVLVWLYH UHDFWLYHORDG R L/C șv– și P/S DOOSRZHUDUH SI FRQVXPHG șv– și ƲR P QRUHDOSRZHU SI FRQVXPSWLRQ șv– și ! șv– și /DJJLQJ LQGXFWLYHORDG /HDGLQJ FDSDFLWLYHORDG Example:Determinethepowerfactoroftheentirecircuitbythe source.Calculatetheaveragepowerdeliveredbythesource. 11.4ComplexPower(1) Complex power (in VA) 6 is the product of rms voltage phasor and complex conjugate of rms current phasor: 6 9, 9UPV , UPV VUPV I UPV T v Ti where 9 Vm T v o 9UPV , I m Ti o , UPV 9 VUPV T v , I UPV T i 6 VUPV I UPV FRVT v Ti jVUPV I UPV VLQT v Ti 6 P j Q P istheaveragepowerinwatts deliveredtoaloadanditistheonlyusefulpower. Q isthereactivepowerexchangebetweenthesourceandthereactivepartofthe load.ItismeasuredinVAR.Q forresistiveloads (unitypf).Q for capacitiveloads (leadingpf).Q !forinductiveloads (laggingpf). 11.4ComplexPower(2) O7KHLPSHGDQFHWULDQJOHZKHUH== R + jXU7KHFRPSOH[SRZHUWULDQJOHZKHUH6 = P + jQ 11.4ComplexPower(3) 6 VUPV I UPV FRVT v Ti jVUPV I UPV VLQT v Ti 6 P ApparentPower:S Realpower:P ReactivePower:Q Powerfactor:SI PowerTriangle j Q _6_ VUPV ǘ IUPV P Q 5H6 IUPVR S FRVșv – și ,P6 IUPVX = S VLQșv – și P/S FRVșv – și ImpedanceTriangle PowerFactor 11.4ComplexPower(4) 9UPV R 9, UPV R $ Example:Foraload,.Determine:(a) thecomplexandapparentpowers,(b)therealandreactivepowers, and(c)thepowerfactorandtheloadimpedance. 11.4ComplexPower(5) Thecomplex,real, andreactivepowers ofthe sourcesequal therespectivesumsof thecomplex, real,andreactivepowersoftheindividualloads. Forparallelconnection: 6 9, 9 , , 9, 9, 6 6 The same results can be obtained for a series connection. 6 9, 9 9 , 9, 9 , 6 6 Example: Inthecircuit,theȍ resistorsabsorbs anaveragepowerof:.Find9 andthecomplex powerofeachbranchofthecircuit.Whatisthe overallcomplexpowerofthecircuit?(Assumethe currentthroughtheȍ resistorhasnophaseshift.) 11.5PowerFactorCorrection,Measurement(1) Mostdomesticandindustrialloads,suchaswashingmachines,air conditioners,andinductionmotorsareinductive.Theyhavealow, laggingpowerfactor.Theloadcannotbechanged,butthepower factorcanbeincreasedwithoutalteringthevoltageorcurrentto theoriginalload. Powerfactorcorrection: theprocessof increasing thepowerfactor withoutalteringthevoltageorcurrenttotheoriginalload. Tomitigatetheinductiveaspectoftheload,acapacitorisaddedin parallelwiththeload.Thepowerfactorhasimproved. 11.5PowerFactorCorrection,Measurement(2) Withthesamesuppliedvoltage,thecurrentdrawislessbyaddingthe capacitor.Sincepowercompanieschargemoreforlargercurrentsbecauseit leadstolargerpowerlosses.Overall,thepowerfactorcorrectionbenefitsthe powercompanyandtheconsumer.Bychoosingasuitablesizeforthecapacitor, thepowerfactorcanbemadetobeunity. Q S VLQș P WDQș QC = Q1 – Q2 P WDQș WDQș ȦCV UPV C P S FRVș Q2 = P WDQ ș Qc ZVrms PWDQ T WDQ T Z Vrms Powerfactorcorrectionis necessaryforeconomicreason. Therealpowerdissipatedintheloadisnotaffectedbytheshuntcapacitor. Althoughitisnotascommon,ifaloadiscapacitiveinnature,thesame treatmentwithaninductorcanbeused. 11.5PowerFactorCorrection,Measurement(3) Thewattmeter istheinstrumentformeasuringtheaveragepower. Themeterconsistsoftwocoils;thecurrentandvoltagecoils. í Thecurrentcoilisdesignedwithlowimpedanceandis connectedinserieswiththeload. í Thevoltagecoilisdesignedwithverylargeimpedanceandis connectedinparallelwiththeload. Basicstructure EquivalentCircuitwithload 11.5PowerFactorCorrection,Measurement(4) If vt Vm FRVZt T v and i t P 9UPV , UPV FRVT v Ti I m FRVZt T i Vm I m FRV T v Ti Theinducedmagneticfieldfrombothcausesadeflectioninthe currentcoil. Ideally,theconfigurationdoesnotaltertheloadandaffectthe powermeasured. Thephysicalinertiaofthemovingcoilresultsintheoutputbeing equaltotheaveragepower. 11.6MaximumAveragePowerTransfer(1) =7K R7K jX 7K =L RL jX L , 97K = 7K = L 97K R7K jX 7K RL jX L P , RL 97K RL R7K RL X 7K X L Themaximumaveragepowercanbetransferredtotheloadif XL = –X7K andRL = R7KLH = L RL jX L R7K jX 7K Z 7K Theloadimpedancemustbeequaltothe ? PPD[ complexconjugateoftheThevenin impedance. Iftheloadispurelyreal,i.e.XL ,then RL 97K R7K R7K X 7K =7K 5.6MaximumPowerTransfer(1) Ͳ Thereareapplicationswhereitisdesirabletomaximizethe powerdeliveredtoaload.Also,powerutilitysystemsare designedtotransportthepowertotheloadwiththegreatest efficiency byreducingthelossesonthepowerlines. Ͳ IftheentirecircuitisreplacedbyitsThevenin equivalentexceptfortheload,thepower deliveredtotheloadis: P i RL § V7K · ¨ ¸ RL R R L ¹ © 7K Ͳ Maximumpoweristransferredtotheload resistanceequalstheTheveninresistanceas seenfromtheload. RL R7K PPD[ V 7K RL Thepowertransferprofile 20 withdifferentRL 11.6MaximumAveragePowerTransfer(2) Example:Forthecircuitshownbelow,findtheloadimpedance=L thatabsorbsthemaximumaveragepower.CalculatePPD[. 11.7MutualInductance(1) Transformer: anelectricaldevice designedonthebasisofthe conceptofmagneticcoupling. Itusesmagneticallycoupledcoilstotransferenergyfromone circuittoanother Itisthekeycircuitelementsforsteppinguporsteppingdown acvoltagesorcurrents,impedancematching,isolation,etc. • Maxwell’s equations: (differential form) u' w% wt w' - wt UQ u% u( u+ James Clerk Maxwell (1831-1879) was a Scottish mathematician and theoretical physicist. His most significant achievement was aggregating a set of equations in electricity, magnetism, and inductance — Maxwell’s equations — including an important modification of Ampère's Circuital Law. It is famous for introducing to the physics community a detailed model of light as an electromagnetic phenomenon, building upon the earlier hypothesis advanced by Faraday. [The work of Maxwell] ... the most profound and the most fruitful that physics has 22 experienced since the time of Newton. —Albert Einstein, The Sunday Post. 11.7MutualInductance(2) Whentwoconductorsareincloseproximitytoeachother,the magneticfluxduetocurrentpassingthroughwillinducea voltageintheotherconductor.Thisiscalledmutual inductance.Firstconsiderasingleinductor,acoilwithN turns.Currentpassingthroughwillproduceamagneticflux,I. 9 Ifthefluxchanges,theinducedvoltageis: v N 9 Intermsofchangingcurrent: v N 9 Solvedfortheinductance: L N dI di dI di di dt L dI dt di dt Thisisreferredtoastheselfinductance,sinceitisthe reactionoftheinductortothechangeincurrentthrough itself. 11.7MutualInductance(3) NowconsidertwocoilswithN1 andN2 turnsrespectively. EachwithselfinductancesL1 andL2.Assumethesecond inductorcarriesnocurrent.Themagneticfluxfromcoil1has twocomponents: I I I I11 linksthecoiltoitself,I12 linksbothcoils. Eventhoughthetwocoilsarephysicallynotconnected,we saytheyaremagneticallycoupled. Theentirefluxpassesthroughcoil1,thustheinducedvoltage dI incoil1is: v N dt Incoil2,onlyI12 passesthrough,thustheinducedvoltageis: v N dI dt 11.7MutualInductance(4) Mutualinductance:istheabilityofoneinductortoinducea voltageacrossaneighboringinductor,measuredinhenrys(H). TheopenͲcircuitmutualvoltage acrosscoil2: v L di dt v M di dt TheopenͲcircuitmutualvoltage acrosscoil1: v M di dt 25 11.7MutualInductance(5) Ifacurrententers(leaves)thedottedterminalofonecoil,the referencepolarityofthemutualvoltageinthesecondcoilis positive(negative)atthedottedterminalofthesecondcoil. 26 11.7MutualInductance(6) Dotconventionforcoilsinseries;thesignindicatesthepolarity ofthemutualvoltage;seriesͲaiding connection&seriesͲ opposing connection. ˢL L L M VHULHVDLGLQJFRQQHFWLRQ %\)DUDGD\ VODZ dI v N v dt ˢL L L M VHULHVRSSRVLQJFRQQHFWLRQ Michael Faraday (17911867), was an English chemist and physicist who contributed to the fields of electromagnetism and electrochemistry. dI N dt 27 11.7MutualInductance(7) TimeͲdomainanalysis: ApplyingKVLtocoil1, v i R L di di M dt dt ApplyingKVLtocoil2, v i R L di di M dt dt ApplyingPhasor, 9 9 R jZ L , jZ M, jZ M, R jZ L , FrequencyͲdomainanalysis: ApplyingKVLtocoil1, 9 = jZ L , jZ M, ApplyingKVLtocoil2, jZ M, = L jZ L , 28 11.7MutualInductance(8) Example:Determinethevoltage9o inthecircuit. Example:Determinethephasor currents, and, inthecircuit. 29 11.7MutualInductance(9) • Theinstantaneousenergystoredinthecircuitisgivenby w Li Li r Mii Note:Thepositive signisselectedforthe mutualtermifbothcurrentsenteror leavethedottedterminalsofthecoils; thenegativesignisselectedotherwise. Thecouplingcoefficient,k,isa measureofthemagneticcoupling betweentwocoils;k . M 1RWHk LooselycoupledTightlycoupled k k ! k LL d M d LL I I I RUk I I I I I I I 30 11.7MutualInductance(10) Example:Determinethecouplingcoefficient.Calculatetheenergy storedinthecoupledinductorsattimet Vifvt = FRVt + Ʊ 9. Example:Determinethecouplingcoefficientandtheenergystored inthecoupledinductorsattimet V. 31 11.8LinearTransformer,IdealTransformer(1) ItisgenerallyafourͲterminaldevicecomprisingtwo(ormore) magneticallycoupledcoils. Thecoilthatisconnectedtothevoltagesourceiscalledthe primary. Theoneconnectedtotheloadiscalledthesecondary. Theyarecalledlinearifthecoilsarewoundonamagnetically linearmaterial. = LQ 9 , R jZ L = R ZKHUH= R ZM LVreflected impedance R jZ L = L 32 11.8LinearTransformer,IdealTransformer(2) ª 9 º «9 » ¬ ¼ ª jZ L « jZ M ¬ jZ M º ª , º jZ L »¼ «¬, »¼ Anequivalentcircuitremovesthemutual inductance.Thegoalistomatchthe terminalvoltagesandcurrentsfromthe originalnetworktothenewnetwork. TransformingtotheT networktheinductorsare: Transformingtothe3 networktheinductorsare: 33 11.8LinearTransformer,IdealTransformer(3) Example:CalculatetheinputimpedanceinFig.andthecurrent fromthevoltagesource. Example:DeterminetheTͲequivalentcircuitofthelineartransform inFig.(a). 34 11.8LinearTransformer,IdealTransformer(4) AnidealtransformerisaunityͲcoupled,losslesstransformerin whichtheprimaryandsecondarycoilshaveinfiniteselfͲ inductances. k = 9 9 N N n , , N N n 9 !9n !їstepͲuptransformer 9 9 n ї stepͲdowntransformer (a) IdealTransformer (b) Circuitsymbol 35 11.8LinearTransformer,IdealTransformer(5) Complexpowersuppliedtotheprimary isdeliveredtothesecondarywithout loss.Theidealtransformerislossless. Inputimpedanceisalsocalledreflectedimpedance. Impedancematchingensuresmaximumpowertransfer. Equivalentcircuit: 1.Secondaryonetoprimaryone 2.Primaryonetosecondaryone 11.8LinearTransformer,IdealTransformer(6) Equivalentcircuit: 1.Secondaryonetoprimaryone Tofind97K , , VRWKDW 9 Tofind=7K 9s2 , n, DQG 9 9 n 11.8LinearTransformer,IdealTransformer(7) Example:Anidealtransformerisratedat2400/120V,9.6kVA,and has50turnsonthesecondaryside.Calculate:(a)theturns ratio,(b)thenumberofturnsontheprimaryside,and(c)the currentratingsfortheprimaryandsecondarywindings. Example:Intheidealtransformercircuit,find(a),E9o,and(c) thecomplexpowersuppliedbythesource. Example:Calculatethepowersuppliedthe10Ͳɏ resistorinthe idealtransformercircuit. 38 11.9Design&Applications(1) The matching network in the figure is used to interface the source with the load, which means that the matching network is used to connect the source to the load in a desirable way. FIGURE: Design the matching network to transfer maximum power to the load where the load is the model of an antenna of a wireless communication system. The purpose of the matching network is to transfer as much power as possible to the load, i.e., the maximum power transfer. An important example of the application of maximum power transfer is the connection of a cellular phone or wireless radio transmitter to the cell's antenna. For example, the input impedance of a practical cellular telephone antenna is = j ȍ. State the Goal: To achieve maximum power transfer, the matching network should match the load and source impedances. The source impedance is = V RV jZ LV j S j : For maximum power transfer, the impedance =LQ, shown in Figure, must be the complex conjugate of =V. That is, =LQ =V j : Generate a Plan: Let us use a transformer for the matching network as shown in Figure. The impedance =LQ will be a function of n, the turns ratio of the transformer. We will set =LQ equal to the complex conjugate of =V and solve the resulting equation to determine the turns ratio, n. ActonthePlan: 11.9Design&Applications(3) TransformerasanIsolation Device toisolateacsupply fromarectifier. Isolationbetweenthepower lineandthevoltmeter. AsanIsolationDevicetoisolatedcbetweentwoamplifier stages. 41 11.9Design&Applications(4) AsaMatchingDevice Example: Using an ideal transformer to match the loudspeaker to the amplifier to achieve maximum power transfer. Equivalentcircuit Example: Calculate the turns ratio of an ideal transformer required to match a 400Ͳё load to a source with internal impedance of 2.5 kё. Find the load voltage when the source voltage is 30 V. 42 11.9Design&Applications(5) Powerdistributionsystem 43 11.10Summary(1) With the adoption of ac power as generally used conventional power for industry and home, engineers became involved in analyzing ac power relationships The instantaneous power delivered to this circuit element is the product of the element voltage and current. Let vt and it be the element voltage and current, chosen to adhere to the passive convention. Then pt vt ǘ it is the instantaneous power delivered to this circuit element. Instantaneous power is calculated in the time domain. The instantaneous power can be a quite complicated function of t. When the element voltage and current are periodic functions having the same period, T, Ͳ it is convenient to calculate the t T average power P T ³ t i t vt dt 11.10Summary(2) The effective value of a current is the constant (dc) current that delivers the same average power to a 1 – ɏ resistor as the given varying current. The effective value of a voltage is the constant (dc) voltage that delivers the same average power as the given varying voltage. Because it is important to keep the current I as small as possible in the transmission lines, engineers strive to achieve a power factor close to 1. The power factor is equal to FRV ș, where ș is the phase angle difference between the sinusoidal steadyͲstate load voltage and current. A purely reactive impedance in parallel with the load is used to correct the power factor. 11.10Summary(3) 11.10Summary(4)