Coordinate Geometry 2
Transcription
Coordinate Geometry 2
Coordinate Geometry Student Book - Series J-1 (y1, y2) (x1, x2) Mathletics Instant Workbooks Copyright © Coordinate geometry Student Book - Series J Contents Topics Date completed Topic 1 - Plotting points __/__/__ Topic 2 - The distance formula __/__/__ Topic 3 - The midpoint of an interval __/__/__ Topic 4 - The gradient of a line __/__/__ Topic 5 - Different forms of linear equations __/__/__ Topic 6 - Parallel lines __/__/__ Practice Tests Topic 1 - Topic test A __/__/__ Topic 2 - Topic test B __/__/__ Author of The Topics and Topic Tests: AS Kalra Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning CHAPTER 10 Coordinate geometry Coordinate Geometry Topic 1: Plotting points page 45 UNIT 1: Plotting points Plot each pair of points on the number plane and find the distance between them. QUESTION 1 a EXCEL INTERMEDIATE MATHS YEARS 9–10 A(1, 2) and B(4, 2), AB = __________________________ b C(1, 4) and D(3, 4), CD = __________________________ c E(3, 1) and F(3, 5), EF = __________________________ d G(2,1) and H(2, 2), GH = __________________________ e I(4, 0) and J(4, 5), IJ = __________________________ f K(1, 3) and L(5,3), KL = __________________________ g M(1,5) and N(5, 5), MN = __________________________ h Q(0, 1) and P(4, 1), QP = __________________________ 6 y 5 4 3 2 1 0 1 2 3 4 5 x QUESTION 2 Use Pythagoras’ theorem to find the distance AB in each diagram. Leave your answers in surd (square root) form where necessary. a b y • A (4, 4) c y y • A (1, 3) • B (–2, 1) • A (5, 3) x 0 • x 0 B (–3, 0) x 0 • B (–3, –2) _______________________ ________________________ _______________________ _______________________ ________________________ _______________________ QUESTION 3 Use Pythagoras’ theorem to find the length of each interval. Leave your answers in surd form where necessary. a b y y M (3, 4) P (–3, 4) • A (1, 4) 0 c y • x • x 0 L (–3, 0) • 0 x • Q (5, –2) • B (5. –3) _______________________ ________________________ _______________________ _______________________ ________________________ _______________________ 91 Chapter 10: Coordinate Geometry Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 1 Coordinate Geometry Coordinate geometry UNIT 2: The distance formula EXCEL INTERMEDIATE MATHS YEARS 9–10 pages 50–51 Topic 2: The distance formula QUESTION 1 Use the distance formula d = (x2 – x1 )2 + (y2 – y1 )2 to find the distance between the following pairs of points. Leave your answer in surd form if necessary. a A(2, 5), B(7, 13) _________________________ b _______________________________________ c A(0, 1), B(3, –4) _________________________ _______________________________________ d _______________________________________ e A(4, 5), B(7, 9) __________________________ A(–1, –4), B(3, –8) _______________________ A(3, 2), B(6, 6) __________________________ _______________________________________ f _______________________________________ A(5, –2), B(7, –5) ________________________ _______________________________________ QUESTION 2 Calculate the distance between the following pairs of points. a P(4, 3), Q(3, 2) __________________________ b _______________________________________ c P(–1, –3), Q(2, –5) _______________________ _______________________________________ d _______________________________________ e P(1, 3), Q(3, 5) __________________________ P(2, 5), Q(8, 12) _________________________ P(–3, 2), Q(1, –6) ________________________ _______________________________________ f _______________________________________ P(4, –5), Q(6, –9) ________________________ _______________________________________ QUESTION 3 Find the perimeter of a triangle whose vertices are A(6, 2), B(5, 2) and C(–4, –5). _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ QUESTION 4 Find the distance between the points A(2, 5) and B(5, 10) and then square it. _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ 92 EXCEL ESSENTIAL SKILLS: YEAR 9 MATHEMATICS REVISION AND EXAM WORKBOOK 1 Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 2 Coordinate Geometry CoordinateUNIT geometry 3: The midpoint of an interval EXCEL INTERMEDIATE MATHS YEARS 9–10 pages 50–51 Topic 3: The midpoint of an interval QUESTION 1 Use the midpoint formula x = x1 + x2, y = y1 + y2 to find the midpoint of the interval joining the following points. a 2 A(0, 6), B(2, 4) _________________________ 2 b _______________________________________ c A(–3, 2), B(–5, 0) ________________________ _______________________________________ d _______________________________________ e A(7, 0), B(5, 0) __________________________ A(4, 8), B(6, 10) _________________________ A(3, 8), B(7, 2) __________________________ _______________________________________ f _______________________________________ A(2, 10), B(4, 4) _________________________ _______________________________________ QUESTION 2 Find the midpoint of the interval joining the following points. a P(–4, –11), Q(7, 4) _______________________ b _______________________________________ c P(2, 10), Q(8, 8) _________________________ _______________________________________ d _______________________________________ e P(–3, –6), Q(1, 4) ________________________ P(10, 4), Q(8, 6) _________________________ P(4, 5), Q(6, 9) __________________________ _______________________________________ f _______________________________________ P(–8, 2), Q(4, –6) ________________________ _______________________________________ QUESTION 3 The vertices of a triangle ABC are A(–2, 9), B(10, 11) and C(–7, 1). Find the midpoint of each side. _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ QUESTION 4 Prove that the midpoint of (7, –3) and (–7, 3) is the origin. _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ 93 Chapter 10: Coordinate Geometry Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 3 Coordinate Geometry Coordinate geometry UNIT 4: The gradient of a line EXCEL INTERMEDIATE MATHS YEARS 9–10 pages 46, 50 Topic 4: The gradient of a line QUESTION 1 Use the gradient formula m = y2 – y1 to find the gradient of the straight line passing through the x2 – x1 following. a (2, 6) and (1, –8) _________________________ b _______________________________________ c (–1, –2) and (3, –8) _______________________ _______________________________________ d _______________________________________ e (8, 7) and (2, 8) _________________________ (–3, –4) and (1, 2) ________________________ (4, 6) and (1, 5) __________________________ _______________________________________ f _______________________________________ (8, 0) and (10, –1) _______________________ _______________________________________ QUESTION 2 Find the gradient of the line between a (5, 6) and (3, 2) _________________________ b _______________________________________ c (–4, 1) and (2, –5) ________________________ _______________________________________ d _______________________________________ e (–2, –1) and (–5, –3) ______________________ (–1, 1) and (2, 5) ________________________ (5, –2) and (2, 12) ________________________ _______________________________________ f _______________________________________ (–2, 4) and (6, 3) ________________________ _______________________________________ QUESTION 3 Find correct to two decimal places, where necessary, the gradient of a line that is inclined to the positive direction of the x-axis at an angle of a d 30° ____________________ b 45° ____________________ c 60° ___________________ ________________________ ________________________ _______________________ ________________________ ________________________ _______________________ 120° ___________________ e 135° ___________________ f 150° __________________ ________________________ ________________________ _______________________ ________________________ ________________________ _______________________ QUESTION 4 Show that (–3, 4), (0, 2) and (6, –2) are collinear. ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ 94 EXCEL ESSENTIAL SKILLS: YEAR 9 MATHEMATICS REVISION AND EXAM WORKBOOK 1 Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 4 Coordinate Geometry Coordinate geometry UNIT 5: Different forms of linear equations EXCEL INTERMEDIATE MATHS YEARS 9–10 page 49 Topic 5: Different forms of linear equations QUESTION 1 Write each of the following equations in the general form. a 3x + 5y = –9 _____________ b ________________________ d 6y + 8 = 5x ______________ y = 32 x – 5 _______________ c ________________________ e ________________________ g x – 2y = 6 _______________ 4x – y = 9 _______________ _______________________ f ________________________ h ________________________ 9x – 6 = 7y ______________ 4x – 5 = 3y _____________ y = 3x – 7 ______________ _______________________ i ________________________ y = – x5 + 2 ______________ _______________________ QUESTION 2 Write each of the following equations in the gradient–intercept form. a 4y = 8x – 12 ____________ b _______________________ d y + 6x = 0 ______________ 5x – 3y = 12 ____________ c ________________________ e _______________________ g 8 + y = 5x _______________ 8x – 3y = 15 _____________ _______________________ f ________________________ h _______________________ 5y = 9x – 12 _____________ 7y – 4x = 11 ____________ 2x + y = 1 ______________ _______________________ i ________________________ y + 3x = 15 _____________ _______________________ QUESTION 3 Write down the gradient (m) and the y-intercept (b) for each of the following. a y = 3x – 1 ______________ b _______________________ d y= 1 x 4 – 3 ______________ y = 9x – 7 _______________ c ________________________ e _______________________ y= 3 x 5 – 6 _______________ y = 25 x – 6 _____________ _______________________ f ________________________ y = x __________________ _______________________ QUESTION 4 Write the equation of the line in the gradient–intercept form for each of the following when the gradient (m) and the y-intercept (b) are given. a m = 3, b = 2 ____________ b _______________________ d m = 12 , b = 7 _____________ _______________________ m = 6, b = – 4 ____________ c ________________________ e m = – 23 , b = – 4 ____________ f ________________________ m = –1, b = –3 __________ _______________________ m = –6, b = 4 ___________ _______________________ QUESTION 5 State whether the point given after each linear equation lies on that line. a x – 2y = 4 (0, –2) _______________________ b _______________________________________ c 2x – 3y = 6 (3, 0) _______________________ _______________________________________ d _______________________________________ e 3y – 4x = 12 (0, 4) ______________________ y = 5x – 6 (–1, 4) _______________________ y = 12 x – 4 (2, –3) _______________________ _______________________________________ f _______________________________________ y = 34 x – 2 (8, 1) ________________________ _______________________________________ 95 Chapter 10: Coordinate Geometry Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 5 Coordinate Geometry Coordinate geometry UNIT 6: Parallel lines EXCEL INTERMEDIATE MATHS YEARS 9–10 pages 53–54 Topic 6: Parallel lines QUESTION 1 State whether or not each pair of lines is parallel. a x + 2y + 7 = 0 and x + 2y – 3 = 0 _________________________________________________________ b 3x – 3y + 5 = 0 and 3x – 2y – 9 = 0 _______________________________________________________ c 4x + y – 6 = 0 and 4x + y + 3 = 0 _________________________________________________________ d x + 3y + 1 = 0 and x – 3y – 2 = 0 _________________________________________________________ e 4y = 3x – 5 and y = 3x + 7 ______________________________________________________________ f y = 2x + 11 and y = 2x – 5 ______________________________________________________________ QUESTION 2 Change each equation to gradient–intercept form and then decide whether or not each pair of lines is parallel. a 2x – 3y = 7 and 3y = 2x + 5 ______________________________________________________________ b –4x + 7 = 5y and 5y + 4x – 9 = 0 _________________________________________________________ c 2x – 8y + 5 = 0 and 8y = 2x + 8 __________________________________________________________ d x – y + 8 = 0 and x + y + 2 = 0 ___________________________________________________________ e 6x – 2y = 9 and 3x = y – 3 _______________________________________________________________ f 2x – 5y = 7 and 5y = 2x – 8 ______________________________________________________________ QUESTION 3 What is the gradient of any line that is parallel to the following lines? a y = – 25 x + 8 _____________________________ b 3x – 4y + 6 = 0 __________________________ _______________________________________ _______________________________________ QUESTION 4 Find the gradient of a straight line parallel to the line joining (2, –3) and (7, 2). _________________________________________________________________________________________ _________________________________________________________________________________________ _________________________________________________________________________________________ QUESTION 5 Show that the line joining (4, –7) and (–2, 5) is parallel to the line 2x + y – 10 = 0. _________________________________________________________________________________________ _________________________________________________________________________________________ QUESTION 6 Only two of the following lines are parallel. Find them. y = 2x + 3, 2x + y = 3, 2x – y = 3, 3x + y = 2, x + 2y = 3. _________________________________________________________________________________________ _________________________________________________________________________________________ 96 EXCEL ESSENTIAL SKILLS: YEAR 9 MATHEMATICS REVISION AND EXAM WORKBOOK 1 Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 6 Maths Revision Yr 9 Part 1.qxd:2717_0108R1_pp01_98.qxd 21/2/08 6:40 PM Page 97 Coordinate geometry TOPICTest TEST Topic PARTAA PART Coordinate Geometry Time allowed: 15 minutes Total marks = 15 Time allowed: 15 minutes 1 The point (6, 2) lies on the line A 2x – 3y = 6 B 2x + 3y = 6 2 1 D –10 1 The midpoint of the interval joining the points (5, 9) and (–7, 1) is A (1, –5) B (–1, –5) C (1, 5) D (–1, 5) 1 Write 2y – 3x = 8 in the gradient–intercept form. A y = 32 x – 4 B y = 32 x + 4 y = – 32 x + 4 D y = – 32 x – 4 1 What is the gradient of a line that is parallel to the line 2y = 6x – 7? A 6 B –6 C 3 D –3 1 The line y = 3x passes through the point A (0, –1) B (0, 0) D (0, 2) 1 D 5 1 D (0, 7) 1 D 13 1 9 8 Find the equation of the line in the gradient–intercept form when the gradient (m) is 12 and the y-intercept (b) is –5. A y = – 12 x + 5 B y = 12 x + 5 C y = 12 x – 5 D y = – 12 x – 5 7 3x + 2y = 6 1 6 D Find the length of the interval AB joining the points A(2, 5) and (8, 13). A 18 B – 18 C 10 5 3x – 2y = 6 1 4 C Marks What is the gradient of the line that passes through the points (1, 3) and (2, –5)? A –1 B 1 C –8 D 8 3 Total marks = 15 C C (0, 1) Find the distance between the origin and the point (3, 4). A 7 B 5 C 7 10 Find the coordinate of the midpoint of (–3, 7) and (3, –7). A (3, 7) B C (–3, –7) (0, 0) 11 A line passes through the points A(–2, 4) and B(3, 9). Find the gradient. A –1 B C 1 –13 12 Find the gradient of a line that is inclined to the positive direction of the x-axis at an angle of 45°. A –1 B C 1 – 12 D 1 2 13 Find the angle of inclination to the positive direction of the x-axis of a line with gradient 3. A 30° B 45° 14 Write y = 2x – 3 in general form. A y – 2x = 3 B 2x – y = 3 C 60° D 75° 1 C 2x – y – 3 = 0 D y – 2x + 3 = 0 1 D 5 1 15 Find the gradient of a straight line parallel to the line 3x – y + 5 = 0. A 1 3 B 3 C 1 5 Total marks for PART PART A Totalachieved marks for A Chapter Chapter 10: 10: Coordinate Coordinate Geometry Geometry 1 Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 15 15 977 Maths Maths Revision Revision Yr Yr 99 Part Part 1.qxd:2717_0108R1_pp01_98.qxd 1.qxd:2717_0108R1_pp01_98.qxd 21/2/08 21/2/08 6:40 6:40 PM PM Page Page 98 98 Coordinate geometry TOPIC TEST Topic Test PART B PART B Coordinate Geometry Time allowed: 15 minutes Total marks = 15 Time Time allowed: allowed: 15 15 minutes minutes Total Total marks marks == 15 15 Marks Question Question 1 1 aa Use Use Pythagoras’ Pythagoras’ theorem theorem to to find find the the length length of of aa diagonal diagonal of of aa 44 cm cm by by 44 cm cm square square (correct (correct to to one one decimal decimal place). place). ___________________________ ___________________________ 11 bb Find Find the the distance distance between between the the points points A(–2, A(–2, 4) 4) and and B(2, B(2, 7) 7) and and then then square square it. it. ___________________________ ___________________________ 11 cc Find Find the the exact exact distance distance between between the the origin origin and and the the point point (4, (4, –2). –2). ___________________________ ___________________________ 11 dd Prove Prove that that the the midpoint midpoint of of (3, (3, –4) –4) and and (–3, (–3, 4) 4) is is the the origin. origin. ___________________________ ___________________________ 11 ee The The coordinates coordinates of of the the midpoint midpoint of of AB AB are are (2, (2, 3). 3). If If A A is is the the point point (–3, (–3, –5), –5), what what are are the the coordinates coordinates of of B? B? ___________________________ ___________________________ 11 Question Question 2 2 The The equation equation of of aa straight straight line line is is 3x 3x == yy –– 6. 6. aa Write Write the the equation equation in in the the general general form. form. ___________________________ ___________________________ 11 bb Write Write the the equation equation in in the the gradient–intercept gradient–intercept form. form. ___________________________ ___________________________ 11 cc What What is is the the gradient gradient of of this this line? line? ___________________________ ___________________________ 11 dd What What is is the the y-intercept y-intercept of of this this line? line? ___________________________ ___________________________ 11 ee Is Is this this line line parallel parallel to to the the line line 2y 2y == 6x 6x ++ 9? 9? ___________________________ ___________________________ 11 Question Question 3 3 aa Show Show that that (0, (0, –5), –5), (4, (4, 5) 5) and and (–2, (–2, –10) –10) are are collinear. collinear. ___________________________ ___________________________ 11 bb Find the the value value of of x. x. The The gradient gradient of of (3, (3, –1) –1) and and (x, (x, –2) –2) is is ––1616.. Find ___________________________ ___________________________ 11 cc Find Find the the gradient gradient of of aa straight straight line line parallel parallel to to the the line line 4x 4x –– 3y 3y ++ 99 == 0. 0. ___________________________ ___________________________ 11 dd What What is is the the value value of of kk ifif the the lines lines yy == 5x 5x –– 33 and and 2y 2y == kx kx ++ 77 are are parallel? parallel? ___________________________ ___________________________ 11 ee Write Write in in general general form form the the equation equation of of the the line line that that has has aa y-intercept y-intercept of of –3 –3 and and is is parallel parallel to to the the line line yy == 7x 7x ++ 2. 2. ___________________________ ___________________________ 11 Total Total marks marks for for PART PART B B Total marks achieved for PART B 98 98 15 15 15 EXCEL EXCEL ESSENTIAL ESSENTIAL SKILLS: SKILLS: YEAR YEAR 99 MATHEMATICS MATHEMATICS REVISION REVISION AND AND EXAM EXAM WORKBOOK WORKBOOK 11 Coordinate geometry Mathletics Instant Workbooks – Series J Copyright © 3P Learning 8