MATH 117 Arclength Around the Earth Part 2 Ï R R r Equator
Transcription
MATH 117 Arclength Around the Earth Part 2 Ï R R r Equator
Dr. Neal, WKU MATH 117 Arclength Around the Earth Part 2 The radius of the Earth is about R = 3963.2 miles. Therefore, the circle defined by the equator also has this radius R. But if we go North or South to a particular latitude ! , then we can define a concentric circle, parallel to the equator, that has a smaller radius r . How do we find r ? North Pole r R R ! Equator R ! 3963.2 miles We simply set up a right triangle to solve for r . r r R R ! ! r R cos ! = r R and r = Rcos ! On Earth, r ! 3963.2cos " So now we can find the direct East/West distance between two points at the same latitude using s = ! r = ! " 3963.2cos # , where ! is the radian angle between the points and ! is the common latitude. Dr. Neal, WKU Example. Find the direct East/West distances between the following pairs of points: (a) 38º 15! N, 42º 36! W and (b) 44º 18! S, 32º 12 ! E and 38º 15! N, 22º 30 ! E 44º 18! S, 15º 54! E Solution. (a) The radius of the East/West circle at 38º 15! N latitude is given by # 15 & r ! 3963.2cos(38º 15") = 3963.2cos% 38 + ( = 3963.2 cos(38.25) ! 3112.368 miles $ 60 ' Next, the angle between 42º 36! W and 22º 30 ! E is given by the sum: " 36 % " 30 % 42º 36! + 22º 30! = $ 42 + ' + $ 22 + ' = 65.1º # 60 & # 60 & So the direct East/West distance between the points is given by 65.1º ! " ! 3963.2 cos (38. 25) ≈ 3536.3 miles 180º (b) For a southern latitude, we take the angle to be negative (4th Quadrant), but the cosine will still be positive value. So the radius at 44º 18! S = 44.3º S = –44.3º is given by r ! 3963.2cos("44.3) ! 2836.43344 miles The angle between 32º 12 ! E and 15º 54! E is given by the difference: # 12 & # 54 & 32º 12 ! " 15º 54 ! = % 32 + ( " % 15 + ( = 16.3º $ 60 ' $ 60 ' So the direct East/West distance is given by 16. 3º ! " ! 3963.2 cos( #44.3 ) ≈ 806.933 miles 180º