Kasvillisuuden karakterisointi virtausmalleissa laserkeilauksen avulla

Transcription

Kasvillisuuden karakterisointi virtausmalleissa laserkeilauksen avulla
Kasvillisuuden karakterisointi
virtausmalleissa laserkeilauksen
avulla
Johanna Jalonen, Juha Järvelä
Mallinnusseminaari 1.4.2015
LUKE
How to model depth and velocities in
vegetated rivers?
•
For the purpose of, e.g.
– Flood prediction
– nutrient and sediment processes
– Ecohydraulics and habitat hydraulics
Q, v, h ?
Modelling problem
• Drag of foliated and defoliated trees of different scales
– Flume studies usually conducted with twigs or small trees
– > direct drag force measurements of trees of H = 1 - 3.5 m
• Characterization of herbaceous and woody vegetation
from point clouds obtained with terrestrial laser scanning
(TLS)
Flow resistance caused by vegetation:
drag force approach
• Drag force F on a rigid object
1
FD  ρC D Ac uc2
2
where ρ = fluid density, CD = drag coefficient,
Ac = reference area (frontal projected area Ap), uc = approach velocity
• For rigid objects AP and CD are constant, but for flexible
vegetation streamlining alters CD and AP values
• One way to account for the reconfiguration is the Vogel
exponent:
Modelling of flexible woody vegetation
• Järvelä (2004):
Determination of flow resistance caused
by non-submerged woody vegetation,
Int. J. River Basin Manage.
′′
4
unitgroundarea
,
The friction factor can be
expressed in terms of FD
• Jalonen & Järvelä (2014)
Estimation of drag forces caused by natural
woody vegetation of different scales.
Journal of Hydrodynamics
1
2
Where
is the characteristic
reference area,
is drag
coefficient, is reconfiguration
parameter,
is the scaling term,
is the mean velocity
Measured parameters for trees of H = 1 – 3.5 m
Bulk χ ≈ - 0.81
χ = 0 for
rigid objects
1
2
0.048
Stem χS ≈ - 0.64
,
0.38
Terrestrial laser scanning of vegetation
properties in the field
1 m2 sampling quadrates:
• 6 samples
• All vegetation harvested
• Manually measured Atot
• Ground level DTM laser scanned after
vegetation removal
Different analyzing methods for
herbaceous and woody vegetation
Highest elevations:
1 cm, 5 cm and 10 cm grid
Voxelization of point clouds:
1 cm, 5 cm and 10 cm voxel grid
Concluding remarks
Implications for modelling:
1) Drag force approach can be
used to model resistance of
complex vegetation
2) Remote sensing can be used
to obtain the parameter -values
TLS-based Atot/AB in 30×30 cm
grid in a floodplain area with
grasses and willows (~1 m tall)
Grasses
Willows
Grasses
Thank you!
More information:
Jalonen, J., Järvelä, J., Virtanen, J.-P., Vaaja, M., Kurkela, M. & Hyyppä, H. 2015.
Determining characteristic vegetation areas by terrestrial laser scanning for
floodplain flow modeling. Water 7(2): 420-437. DOI: 10.3390/w7020420
Jalonen, J., Järvelä, J. 2014. Estimation of drag forces caused by natural woody
vegetation of different scales. Journal of Hydrodynamics 26(4):608-623.
Jalonen, J., Järvelä, J., Koivusalo, H. & Hyyppä, H. 2014. Deriving floodplain
topography and vegetation characteristics for hydraulic engineering applications by
means of terrestrial laser scanning. Journal of Hydraulic Engineering 140(11):
04014056.
Jalonen, J., Jarvelä, J., Aberle, J. 2013. Leaf Area Index as Vegetation Density
Measure for Hydraulic Analyses. Journal of Hydraulic Engineering, 139(5), 461-469.
Funded by: Academy of Finland, Maaja vesitekniikan tuki ry
http://youtu.be/QwhKiOGjHs