Kasvillisuuden karakterisointi virtausmalleissa laserkeilauksen avulla
Transcription
Kasvillisuuden karakterisointi virtausmalleissa laserkeilauksen avulla
Kasvillisuuden karakterisointi virtausmalleissa laserkeilauksen avulla Johanna Jalonen, Juha Järvelä Mallinnusseminaari 1.4.2015 LUKE How to model depth and velocities in vegetated rivers? • For the purpose of, e.g. – Flood prediction – nutrient and sediment processes – Ecohydraulics and habitat hydraulics Q, v, h ? Modelling problem • Drag of foliated and defoliated trees of different scales – Flume studies usually conducted with twigs or small trees – > direct drag force measurements of trees of H = 1 - 3.5 m • Characterization of herbaceous and woody vegetation from point clouds obtained with terrestrial laser scanning (TLS) Flow resistance caused by vegetation: drag force approach • Drag force F on a rigid object 1 FD ρC D Ac uc2 2 where ρ = fluid density, CD = drag coefficient, Ac = reference area (frontal projected area Ap), uc = approach velocity • For rigid objects AP and CD are constant, but for flexible vegetation streamlining alters CD and AP values • One way to account for the reconfiguration is the Vogel exponent: Modelling of flexible woody vegetation • Järvelä (2004): Determination of flow resistance caused by non-submerged woody vegetation, Int. J. River Basin Manage. ′′ 4 unitgroundarea , The friction factor can be expressed in terms of FD • Jalonen & Järvelä (2014) Estimation of drag forces caused by natural woody vegetation of different scales. Journal of Hydrodynamics 1 2 Where is the characteristic reference area, is drag coefficient, is reconfiguration parameter, is the scaling term, is the mean velocity Measured parameters for trees of H = 1 – 3.5 m Bulk χ ≈ - 0.81 χ = 0 for rigid objects 1 2 0.048 Stem χS ≈ - 0.64 , 0.38 Terrestrial laser scanning of vegetation properties in the field 1 m2 sampling quadrates: • 6 samples • All vegetation harvested • Manually measured Atot • Ground level DTM laser scanned after vegetation removal Different analyzing methods for herbaceous and woody vegetation Highest elevations: 1 cm, 5 cm and 10 cm grid Voxelization of point clouds: 1 cm, 5 cm and 10 cm voxel grid Concluding remarks Implications for modelling: 1) Drag force approach can be used to model resistance of complex vegetation 2) Remote sensing can be used to obtain the parameter -values TLS-based Atot/AB in 30×30 cm grid in a floodplain area with grasses and willows (~1 m tall) Grasses Willows Grasses Thank you! More information: Jalonen, J., Järvelä, J., Virtanen, J.-P., Vaaja, M., Kurkela, M. & Hyyppä, H. 2015. Determining characteristic vegetation areas by terrestrial laser scanning for floodplain flow modeling. Water 7(2): 420-437. DOI: 10.3390/w7020420 Jalonen, J., Järvelä, J. 2014. Estimation of drag forces caused by natural woody vegetation of different scales. Journal of Hydrodynamics 26(4):608-623. Jalonen, J., Järvelä, J., Koivusalo, H. & Hyyppä, H. 2014. Deriving floodplain topography and vegetation characteristics for hydraulic engineering applications by means of terrestrial laser scanning. Journal of Hydraulic Engineering 140(11): 04014056. Jalonen, J., Jarvelä, J., Aberle, J. 2013. Leaf Area Index as Vegetation Density Measure for Hydraulic Analyses. Journal of Hydraulic Engineering, 139(5), 461-469. Funded by: Academy of Finland, Maaja vesitekniikan tuki ry http://youtu.be/QwhKiOGjHs