Cotalogue_ECTS_DoctoralStudies_20015
Transcription
Cotalogue_ECTS_DoctoralStudies_20015
Doctoral studies – ECTS Automatics and Robotics, Electrical Engineering, Computer Science Full-time third-cycle level studies realization: IIE, IIiE, IME, ISSI Speciality: Third-cycle level studies Lp 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Course name ECTS Modelling and simulation of systems and processes Statistical methods In techniques Experimental design and technique Decision systems Advanced optimisation and adaptation techniques English language I English language II Doctoral seminar I Doctoral seminar II Doctoral seminar III Doctoral seminar IV Doctoral seminar V Doctoral seminar VI Doctoral seminar VII Doctoral seminar VIII 16 Facultative lecture A Facultative lecture 17 B Facultative lecture 18 C Facultative lecture 19 D Course schedule in sem. (week hours) sem. 1 sem. 2 sem. 3 sem. 4 sem. 5 sem. 6 sem. 7 sem. 8 w c L p w c l p w c L p w c l p w c l p w c l p w c l p w c l p Field/research-oriented (compulsory) 2 2 2 2 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 1 1 1 1 1 1 2 1 2 2 2 1 Profesional activities (facultative) 1 1 2 1 2 1 Didactic activities (facultative) Facultative lecture 20 univeristy-wide A Facultative lecture 21 univeristy-wide B 22 Didactic classes Total number of hours / ECTS 3 3 2 45 1 1 Apprenticeship (facultative) 1 1 1 1 5 0 0 0 4 1 0 0 4 0 0 0 4 1 0 0 3 0 0 0 3 1 0 0 1 0 0 0 1 1 0 0 5h / 5p 4h / 8p 4h / 9p 5h / 9p 3h / 4p 4h / 4p 1h / 2p 2h / 4p Third level studies Course name: Modelling and simulation of systems and processes Course code: 06.0-WE-AiRIE-MP-KO_1_S3S Language of instructions: Polish/English Director of studies: prof. dr hab. Roman Gielerak Name of lecturer: prof. dr hab. Roman Gielerak form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 30 2 1 exam 2 full-time compulsory Aim of the course - introduction to general rules of designing mathematical models - introduction to the methods of numerical analysis in the paralel version. - introduction to computer systems supporting modelling and simulation - introduction the the multi-processor processing Entry requirements - numerical methods - essentials of computer-based modeling and simulation Course kontent 1. Introduction: mathemtical model ling as an iterativa process. :PROBLEM--->Simplificatuion->Working model >representation-- > Mathematical model ->translation ->Computational model -->simulation -->Results/Conclusions ->Interpretation -->PROBLEM. Elementary examples: Simple mechanical systems, Simple electrical systems, biological models. 2. Nonlinear bahviour and its modelling: complxity of nonlinear systems. Randomness v.s. deterministic chaos. Examples: 1D logistic image. Fractal structures – generation and role in dynamics non-linear systems – application in computer graphics. Lorenz equations and their visualisations. 3. Computer methods: sequential procedures – nonlinear sets of equations, IVP and BVP problems for ODE. Finite element methods for BVP for PDE (simple examples). 4. Computer methods: parallelisation of linear algebra. Sort and search algorithms. 5. Review of computer tools: computer clasters and MPI language, introduction to graphical card-based computations. Teaching methods lecture: conventional lecture Learning outcomes Skills in designing and testing simple mathematical models: D01, D03, D05 Skills in realizing computer simulations of simple models: D05 Evaluation of computational complexity of the investigated models: D03, D05 Assessment criteria Verification method - lecture: written exam Final mark components = lecture: 100% Student workload Full-time studies (90 h.) Contact hours = 30 h. Preparing for classes= 10 h. Getting familiar with the specified literature = 10 h. Preparation of report = 10 h. Execution of the tasks assigned by the lecturer = 10 h. Classes carried out at the distance = 10 h. Preparing for the exam = 10 h. Recommended Reading 1.G. Dahlquist , A. Bjorck , Numerical Methods in Scientific Computing, vol 1 + vol .2 , SIAM , Philadelphy , 2008. 2.L.R. Scott, T. Clark , B. Bagheri , Scientific Parallel Computing , Princeton University Press, 2005. 3.N. Bellomo . E. de Angelis , M.Delitala , Lecture Notes in Mathematical Modelling in Applied Science , 2007 4.K.T. Alligood , T. D. Spencer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer Verlag, New York , 1996. 5.White, R.E. , Compuational Mathematics:models, methods and analysis with Matlab and MPI, Chapman and Hall , 2004. Course name: Statistical methods in techniques Course code: 06.0-WE-AiRIE-MSwT-KO_2_S3S Language of instructions: polish/english Director of studies: prof. dr hab. inż. Dariusz Uciński Name of lecturer: prof. dr hab. inż. Dariusz Uciński form of instruction number of hours per semester number of hours per week lecture 30 2 semester form of receiving a credit for a course number of ECTS mode of study type of course 1 exam 2 full-time compulsory Aim of the course - introduction to elementary qualitative and quantitative of data analysis - forming the critical view on confidence in engineering statistical analysis - forming the skills of estimating uncertainty in practical engineering experiments Entry requirements Mathemtical analysis, mathematical essentials of techniques, numerical methods Course kontent Measurement uncertainty. Propagation of uncertainty. Random and deterministic errors. Histograms. Measures of concentration, variability, asymmetry. Removing outliers. Probability. Probability definitions: classical, frequency-based and modern. Elementary features of probability. Conditional probability. Independence. Total probability. Bayes equation. Discrete and continuous random variables. Discrete random variables. Distributions: binomial, Bernoulli, Poisson and geometric. Functions of random variables. Expectation and ariance of random variables. Join distribution of two random variables. Independence of random variables. Continuous random variables. Uniform distribution. Exponential distributions. Cumulative distributions. Normal distribution. Essentials of statistical reasoning. Schemes of random selection. Simple trial. Distributions: chi-square, t-Student and Fisher-Snedecor. Point and interval estimation. Unibiasedness, consistency, efficiency. Parametric and nonparametric estimation. Confidence intervals for the expectation. Central limit theorem. Confidence interval for the expectation related to the population of unknown distribution and moments. Testing statistical hypotheses. Parametric significance tests for the expectation, variance and population measures. Nonparametric significance tests. Linear and polynomial regression. Correlation and regression. Least square method. Reasoning in correlation and regression analysis. Linear correlation coefficient. Teaching methods lecture: conventional lecture Learning outcomes Has consciousness of the meaning of data analysis in engineering practice D01, D03 Can calculate and interpreter confidence intervals: D01, D05 Knows and understands assumption underlying statistical tests: D01 Can critically assess credibility of statistical analysis: D01, D05 Assessment criteria Verification method - lecture: written exam Final mark components = lecture: 100% Student workload Full-time studies (90 h.) Contact hours = 30 h. Preparing for classes= 10 h. Getting familiar with the specified literature = 10 h. Preparation of report = 10 h. Execution of the tasks assigned by the lecturer = 10 h. Classes carried out at the distance = 10 h. Preparing for the exam = 10 h. Recommended Reading J. Koronacki, J. Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa, 2000 Sobczyk M.: Statystyka, PWN, Warszawa, 2000 Ostasiewicz S., Rusnak Z., Siedlecka U.: Statystyka: elementy teorii i zadania, Akademia Ekonomiczna, Wrocław, 1999. Course name: Experimental design and technique Course code: 06.0-WE-AiRIE-PiTE-KO_3_S3S Language of instructions: polish/english Director of studies: dr hab. inż. Wiesław Miczulski, prof. UZ Name of lecturer: dr hab. inż. Wiesław Miczulski, prof. UZ form of instruction number of hours per semester number of hours per week lecture 15 1 semester form of receiving a credit for a course number of ECTS mode of study type of course 2 exam 2 full-time compulsory Aim of the course - Introduction to modern methods of experimental design, - Shaping the skills in experimental design and measurement analysis Entry requirements Essential knowledge in mathematics, physics, methods and techniques of measurement as well as computer science. Course kontent Introduction. The role of experiment in knowledge development, experiment as a source of information, steps of experiment, features of systems, general modeling scheme. Experimental design. The goal of experiment, essential groups of experiments, examples of deterministic design. Concept of the modern theory of experimental design. Applied theory of experimental design, poliselective methods. Computer-supported experimental design. Intelligent systems of experimental design. Concept of intelligent design, rules of creating experimental design, algorithm of generating intelligent design, expert system for experimental design. Technique of experiment. Measurement method, structure of the measurement system, selection of equipment, realisation of measurements. Empirical data analysis. Introduction to analysis, approximation, optimization and measurement uncertainty. Selected examples of experimental design. Teaching methods lecture: problem lecture Learning outcomes Understands the need for experimental design: D01, D03 Can characterize the concept o f modern theory of experimental design with respect to the classical ones: D01 Can characterize particular steps of experimental design: D01, D06 Can characterize methods of empirical data analysis: D01, D05 Assessment criteria Verification method - lecture: written exam Final mark components = lecture: 100% Student workload Full-time studies (60 h.) Contact hours = 15 h. Preparing for classes= 8 h. Getting familiar with the specified literature = 8 h. Preparation of report = 8 h. Execution of the tasks assigned by the lecturer = 7 h. Classes carried out at the distance = 7 h. Preparing for the exam = 7 h. Recommended Reading 1. Brandt S.: Analiza danych. PWN, Warszawa 1998. 2. Górecka R.: Teoria i technika eksperymentu. Wyd. Politechniki Krakowskiej. Kraków 1995. 3. Polański Z.: Badania empiryczne – metodyka i wspomaganie komputerowe. WSPÓŁCZESNA METROLOGIA Zagadnienia wybrane. Praca zbiorowa pod red. J. Barzykowskiego. WNT, Warszawa 2004. 4. Sydenham P. H.: Podręcznik metrologii, tom 1 i 2. WKiŁ, Warszawa 1988 (t.1) 1990 (t.2). 5. Turzeniecka D.: Ocena niepewności wyniku pomiarów. Wydawnictwo Politechniki Poznańskiej, Poznań 1997.1. Guide to the expression of uncertainty in measurement, 1993-95 ISO. Wyrażanie niepewności pomiaru. Przewodnik - tłumaczenie i komentarz J. Jaworskiego. Główny Urząd Miar, Warszawa 1999. Optional Reading 1. Guide to the expression of uncertainty in measurement, 1993-95 ISO. Wyrażanie niepewności pomiaru. Przewodnik tłumaczenie i komentarz J. Jaworskiego. Główny Urząd Miar, Warszawa 1999. 2. Guide to the expression of uncertainty in measurement. Supplement 1. Numerical methods for the propagation of distributions-propagation of distributions using Monte Carlo method. Dokument opracowany przez Joint Committee for Guides in Metrology (Working Group 1), 2006. 3. Mańczak K.: Technika planowania eksperymentu. WNT, Warszawa 1976. 4. Tumański S.: Technika pomiarowa. WNT, Warszawa 2007. Course name: Decision systems Course code: 06.0-WE-AiRIE-SD-KO_4_S3S Language of instructions: polish/english Director of studies: prof. dr hab. inż. Marian Adamski Name of lecturer: prof. dr hab. inż. Marian Adamski form of instruction number of hours per semester number of hours per week lecture 15 1 semester form of receiving a credit for a course number of ECTS mode of study type of course 2 exam 2 full-time compulsory Aim of the course - introduction to decision systems and the related mathematical tools - Shaping the skills in specification and analysis of decision systems Entry requirements Knowledge in graphs theory and formal logic Course kontent 1. 2. 3. 4. 5. 6. 7. Representation of declarative knowledge. Specification of decision systems: symbolic rule systems, decision tables, decision graphs. Equilibrium of various specification forms of decision systems. Rule-based systems and their formal representation in the language of mathematical logic. Decision graphs: general form of decision graphs, binary decision graphs. Analysis and size reduction of decision tables. Classical computer methods of size reduction Computer reasoning and its role in analysis of decision tables Practical examples of specification and analysis of simple decision systems Teaching methods lecture: problem lecture, conventional lecture Learning outcomes Has a skill of specifying scientific problems with decision systems as well as efficient search of solutions through the analysis of such systems: D03 Has a skill of appropriate selection and employment of various kinds of decision systems for declarative knowledge representation: D05 Has a skill of gathering information necessary to appropriate representation of scientific problems with rule-based systems: D03 Understands the need of using appropriate mathematic tools for knowledge representation: D01 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (60 h.) Contact hours = 15 h. Preparing for classes= 8 h. Getting familiar with the specified literature = 8 h. Preparation of report = 8 h. Execution of the tasks assigned by the lecturer = 7 h. Classes carried out at the distance = 7 h. Preparing for the exam = 7 h. Recommended Reading Leszek Rutkowski: Metody i techniki sztucznej inteligencji. Wydawnictwo Naukowe PWN, Warszawa 2005 Mordechai Ben-Ari: Logika matematyczna w informatyce. Wydawnictwa naukowo-Techniczne, Warszawa,2005 Antoni Ligęza: Logical Foundations for Rule –Based Systems. Uczelniane Wydawnictwa Naukowo-Dydaktyczne Akademii Górniczo-Hutniczej w Krakowie, Kraków 2006 Zbigniew Pawlak : Rough Sets – Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht 1991. Wiesław Traczyk: Inżynieria Wiedzy. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2010 Course name: Advanced optimisation and adaptation techniques Course code: 06.0-WE-AiRIE-ZTOiA-KO_5_S3S Language of instructions: polish/english Director of studies: dr hab. inż. Andrzej Obuchowicz, prof. UZ Name of lecturer: dr hab. inż. Andrzej Obuchowicz, prof. UZ form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 15 1 2 exam 2 full-time compulsory Aim of the course - introduction to global optimisation - introduction to stochastic optimisation methods - introduction to evolutionary algorithms Entry requirements Mathematical analysis Course kontent Motivation for using global optimisation. Local and global optimisation. Stochastic, adaptive alogorithm v.s. deterministic optimization algorithms. Examples of stochastic algorithms: Adaptive random search. Examples of using global optimisation. Introduction to evolutionary algorithms. Examples of evolutionary algorithms: genetic algorithm, evolutionary programming, genetic programming and evolutionary search with soft selection. Examples of using evolutionary algorithms. Teaching methods lecture: problem lecture, conventional lecture Learning outcomes - understands the need for global optimisation in solving scientific problems: D01 - can formulate research problems in the form of global optimisation: D03 - Has knowledge in aplicability of stochastic, adaptive and evolutionary algorithms: D05 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (60 h.) Contact hours = 15 h. Preparing for classes= 8 h. Getting familiar with the specified literature = 8 h. Preparation of report = 8 h. Execution of the tasks assigned by the lecturer = 7 h. Classes carried out at the distance = 7 h. Preparing for the exam = 7 h. Recommended Reading 1) 2) 3) Rutkowski L., Metody i techniki sztucznej inteligencji, PWN, Warszawa, 2005 Arabas J.: Wykłady z algorytmów ewolucyjnych, WNT Warszawa 2001 Obuchowicz A.: Evolutionary algorithms for global optimization and dynamic systems diagnosis, Wydawnictwo UZ, Zielona Góra, 2003 Course name: English language I Course code: 06.0-WE-AiRIE-JA1-KO_13_S3S Language of instructions: English Director of studies: mgr Jolanta Bąk, mgr Wojciech Ciesinski Name of lecturer: mgr Jolanta Bąk, mgr Wojciech Ciesinski form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course Lecture 30 2 5 Grade 2 full-time compulsory Aim of the course - development of students’ awareness related to the importance of linguistic correctness; consolidating students’ knowledge of grammar; shaping the ability to recognize and use appropriate language registers – both in written and spoken English; Entry requirements B1 according to the European Framework of Reference for Languages; Course kontent - grammar (e.g., grammar tenses, passive voice, reported speech, conditionals, definite and indefinite articles); - formal vs informal English; - academic English – ESP; Teaching methods - lecture: brainstorm, work with source document, discussion, consultations, work In groups, practical, classes Teaching methods Listening and speaking skills: a student can give detailed information and determine their needs in work environment, they are able to express their point of view effectively: D07 Reading skills: a student understands texts written both in ESP and general English , they can understand most of the scientific articles related to their specialization: D07; Writing skills: a student is able to make notes both for themselves and for the others, they can write an abstract of an article whereby most of the mistakes made by them do not distract the meaning of the text: D07 Assessment criteria Verification method - lecture: test Final mark components = lecture: 100% Student workload Full-time studies (60 h.) Contact hours = 30 h. Preparing for classes= 6 h. Getting familiar with the specified literature = 6 h. Preparation of report = 6 h. Execution of the tasks assigned by the lecturer = 6 h. Classes carried out at the distance = 6 h. Recommended Reading 1. Headway Academic Skills, Sarah Philpot, Lesley Curnick, Emma Pathare, Gary Pathare & Richard Harrison, OUP 2. FCE Use of English, Virginia Evans, Express Publishing 3. Cambridge Academic English, Craig Thaine , CUP Optional Reading English Grammar In Use, 4th edition, Raymond Murphy, OUP Course name: English language II Course code: 06.0-WE-AiRIE-JA2-KO_14_S3S Language of instructions: English Director of studies: mgr Jolanta Bąk, mgr Wojciech Ciesinski Name of lecturer: mgr Jolanta Bąk, mgr Wojciech Ciesinski form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 30 2 6 Exam 2 full-time compulsory Aim of the course - development of students’ awareness related to the importance of linguistic correctness; - know-how of preparing and running a multimedia scientific presentation; - learning the rules of formal correspondence ; - shaping the ability to recognize and use appropriate language registers – both in written and spoken English; Entry requirements - B1+ according to the European Framework of Reference for Languages; Course kontent - preparation and presentation of a multimedia scientific presentation; - formal vs informal English; - formal letters and e-mails; - academic English – ESP Teaching methods - lecture: brainstorm, work with source document, discussion, consultations, work In groups, practical Learning outcomes Listening and speaking skills: a student can give detailed information and determine their needs in work environment, they are able to express their point of view effectively: D07 Reading skills: a student understands texts written both in ESP and general English , they can understand most of the scientific articles related to their specialization: D07; Writing skills: a student is able to make notes both for themselves and for the others, they can write an academic paper and its abstract, a student is able to write formal e-mails and letters whereby most of the mistakes made by them do not distract the meaning of the text: D07 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (60 h.) Contact hours = 30 h. Preparing for classes= 5 h. Getting familiar with the specified literature = 5 h. Preparation of report = 5 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 5 h. Recommended Reading 1.Headway Academic Skills, Sarah Philpot, Lesley Curnick, Emma Pathare, Gary Pathare & Richard Harrison, OUP 2. FCE Use of English, Virginia Evans, Express Publishing 3. Cambridge Academic English, Craig Thaine , CUP 4. English for Presentations, Marion Grussendorf, OUP Optional Reading 1. English Grammar In Use, 4th edition, Raymond Murphy, OUP Course name: Doctoral seminar I Course code: 06.0-WE-AiRIE-SD1-SO_15_S3S Language of instructions: Polish/English Director of studies: dr hab. inż. Marcin Witczak, prof. UZ Name of lecturer: dr hab. inż. Marcin Witczak, prof. UZ form of instruction number of hours per semester number of hours per week seminar 15 1 semester form of reciving a credit for a course number of ECTS mode of study type of course 1 grade 1 full-time compulsory Aim of the course - shaping skills in preparation and presentation of scientific presentations - shaping knowledge in preparation and publication of scientific works - shaping a habit of reviewing the papers related with particular branch of science Course kontent 1. Rules of preparing a presentation of scientific works 2. Presentation of papers 3. Rules of preparing papers for conferences and journals 4. Finding source works for scientific research Teaching methods - lecture: disscucion, practical, classes, conventional lecture, problem lecture, seminar lecture Learning outcomes Can prepare a scientific presentation in a given subject: D01, D03, D06, D07 Can give a short scientific paper: D03, D06 Knows various mechanisms and procedures of publishing scientific works: D01, D05, D06 Can us database sources in order to direct and compare its own research: D03, D07, D12 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended reading [1] Carmine Gallo, Steve Jobs: Sztuka prezentacji. Jak świetnie wypaść przed każdą publicznością, wyd. Znak, 2012 [2] Janusz Biernat, Profesjonalne przygotowanie publikacji, PW, 2003 [3] Romuald Zabielski Michał M. Godlewski, Przewodnik prezentowania informacji naukowej, SGGW, 2011 Course name: Doctoral seminar II Course code: 06.0-WE-AiRIE-SD2-SO_16_S3S Language of instructions: polish/english Director of studies: dr hab. inż. Zbigniew Fedyczak, prof. UZ Name of lecturer: dr hab. inż. Zbigniew Fedyczak, prof. UZ form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a number of ECTS mode of study type of course course seminar 15 1 2 grade 2 full-time compulsory Aim of the course - shaping skills in preparation and presentation of scientifically orientem works - knowledge in mechinsms of preparation and publication of scientific works - shaping a habit in reviewing the literature related to a given branch of science Course kontent - Continuation of gaining knowledge in formulation, analysis and verification of solutions of scientific problems - Continuation of shaping knowledge in preparation and presentation of scientific problems - Presentation of scientific achievements Teaching methods - lecture: disscucion, practical, classes, conventional lecture, problem lecture, seminar lecture Learning outcomes Understands the need for a wide description of the scientific area and problems (problems, which has to be solved): D04, D05, D06, D12 Can formulate, decribe and conduct presenation of the scientific area and problems: D01, D02, D03 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended Reading [. Ustawa z dnia 27 lipca 2005 r. "Prawo o szkolnictwie wyższym" (Dz.U. 2012, poz. 572 – tekst jednolity z dn. 23.05.2012 r.) 2. Klir G.: Ogólna teoria systemów. Tendencje rozwojowe. WNT, Warszawa, 1975 i wyd. późniejsze . 3. Ditrich J.: System i konstrukcja. WNT, Warszawa 1985 i wyd. późniejsze Course name: Doctoral seminar III Course code: 06.0-WE-AiRIE-SD3-SO_17_S3S Language of instructions: polish/english Director of studies: prof. dr hab. inż. Józef Korbicz Name of lecturer: prof. dr hab. inż. Józef Korbicz form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course seminar 15 1 3 grade 2 full-time compulsory Aim of the course - preparation of students to give scientific papers in English language Course kontent 1. 2. 3. Presentation of short papers in English language Preparation of scientific publications for conferences Preparation methods of scientific projects – financing perspectives Teaching methods - lecture: practical, conventional lecture, cases method Learning outcomes Can give a paper in English language: D01, D03, D06, D07 Can prepare a paper describing research results: D02, D04, D05, D06 Can formulate scientific problems for the purpose of preparing scientific projects: D05, D06 D07, D12 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended reading [1] Carmine Gallo, Steve Jobs: Sztuka prezentacji. Jak świetnie wypaść przed każdą publicznością, wyd. Znak, 2012 [2] Janusz Biernat, Profesjonalne przygotowanie publikacji, PW, 2003 [3] Romuald Zabielski Michał M. Godlewski, Przewodnik prezentowania informacji naukowej, SGGW, 2011 [4] Barbara Gastel, Writing Scientific Papers in English: Tips and Resources, Texas A&M University, 2010 [5] Writing scientific papers using LaTeX, BibTeX, JabRef, workshop materials Course name: Doctoral seminar IV Course code: 06.0-WE-AiRIE-SD4-SO_18_S3S Language of instructions: polish/english Director of studies: dr hab. inż. Andrzej Obuchowicz, prof. UZ Name of lecturer: dr hab. inż. Andrzej Obuchowicz, prof. UZ form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course seminar 15 1 4 grade 2 full-time compulsory Aim of the course - knowledge in mechanisms of group project realization with the fokus of comercialization of the achieved results Course kontent 1. Project realization phases 2. Definition of the project member competences 3. Mechanisms of realizing a research project, resource management, transfer of documents, version control system 4. Cooperation with external enterprises (national and international): other research teams, enterprises 5. Reporting and documentation of work, patent law 6. R+D projects 7. Promotion and dissemination of project results Teaching methods - lecture: disscucion, practical, work in gropus, classes, conventional lecture, problem lecture, seminar lecture Learning outcomes Can work within group r5ealizing a research project: D01, D02, D03, D04, D05 Can document its own results and joint hem with the results of Rother team members: D04, D05, D06, D07 Knows project realization mechanisms: D12 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended reading [1] Carmine Gallo, Steve Jobs: Sztuka prezentacji. Jak świetnie wypaść przed każdą publicznością, wyd. Znak, 2012 [2] Janusz Biernat, Profesjonalne przygotowanie publikacji, PW, 2003 [3] Romuald Zabielski Michał M. Godlewski, Przewodnik prezentowania informacji naukowej, SGGW, 2011 Course name: Doctoral seminar V Course code: 06.0-WE-AiRIE-SD5-SO_19_S3S Language of instructions: Polish/English Director of studies: dr hab. inż. Wiesław Miczulski, prof. UZ Name of lecturer: dr hab. inż. Wiesław Miczulski, prof. UZ form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course seminar 15 1 5 grade 2 full-time compulsory Aim of the course - shaping skills in scientific activities in a given branch of science, i.e. control engineering and robotics, electrical engineering and computer science - shaping skills in preparing scientific publications and their appropriate presentation Entry requirements Knowledge related to the conducted research of the thesis Course kontent Presentation of the motivation of the selected subject of the thesis, objectives and scope of the work. Presentation of the selected research tasks planned for publication in a journal or in a conference proceedings Preparation of scientific projects related with the doctoral thesis Teaching methods - lecture: disscucion Learning outcomes Can specify and clarify a scientific problem: D01, D02, D03 , D05 Can appropriately specify priorities needed for the realization of a give goal: D04, D05, D07 Has a skill of oral presentation of particular scientific problems in control engineering and robotics, electrical engineering and computer science: D06, D12 Has a sill of writing scientific works: D06, D12 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended reading [1] Carmine Gallo, Steve Jobs: Sztuka prezentacji. Jak świetnie wypaść przed każdą publicznością, wyd. Znak, 2012 [2] Janusz Biernat, Profesjonalne przygotowanie publikacji, PW, 2003 [3] Romuald Zabielski Michał M. Godlewski, Przewodnik prezentowania informacji naukowej, SGGW, 2011 Course name: Doctoral seminar VI Course code: 06.0-WE-AiRIE-SD6-SO_20_S3S Language of instructions: polish/english Director of studies: prof. dr hab. inż. Dariusz Uciński Name of lecturer: prof. dr hab. inż. Dariusz Uciński form of instruction number of hours per semester number of hours per week seminar 15 1 semester form of receiving a credit for a course number of ECTS mode of study type of course 6 grade 2 full-time compulsory Aim of the course Improvement of skills in preparation of scientific papers in English and Polish languages Improvement of skills in presentation and discussion of research results in Polish and English languages Course kontent Presentation of draft papers related to the conducted research. Each presentation ends with discussion in which the whole group takes part. As a result, the student can formulate scientific problems, construct the plan of the paper, accurately select the arguments, appropriately select th research method, select appropriate literature use the scientific language. Presentation of the ways of collecting scientific sources (accessibility of sources, use of Internet databases I electronic library sources), work with text in a foreign language, citation, plagiat recognition, graphical shape of the paper. Teaching methods - lecture: disscucion Learning outcomes Can interpret the collected research material: D01, D02, D03, D04, D05 Can use the source literature and literature of the subject: D1, D2, D3, D4, D5 Can develop and present the research results in a form of scientific paper written in a foreign language: D07 Can appropriately prepare a work with respect to the formal way as well as with the language correctness: D07, D12 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended reading 1. Barbara Osuchowska. Poradnik redaktora i autora. Nauki ścisłe i technika. Wydawnictwo Polskiego Towarzystwa Wydawców Książek, Warszawa, 1988. 2. Literatura przedmiotu wynika z tematyki realizowanej pracy dyplomowej. Course name: Doctoral seminar VII Course code: 06.0-WE-AiRIE-SD7-SO_21_S3S Language of instructions: polish/english Director of studies: prof. dr hab. inż. Marian Adamski Name of lecturer: prof. dr hab. inż. Marian Adamski form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course seminar 15 1 7 grade 2 full-time compulsory Aim of the course Knowledge in the possibilities of gaining external financial support oriented towards research Course kontent 1. 2. 3. 4. 5. 6. Rules of applying for research project from NCN and NCBiR Possibilities of funding research projects with the EU sources - FP7 and FP8 grants Operational programme: Human resources and innovative economy Erasmus program International cooperation outsider EU Presentation of publications and scientific achievements Teaching methods - lecture: conventional lecture Learning outcomes Knows the external funding sources for scientific research: D12 Can find an appropriate call for project for a given research area: D12 Knows mechanisms of preparing Project proposals and application, constructing budgets of scientific projects: D12 Can present a research problem and the associated effects: D01, D02, D03, D04, D05, D06, D07 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended Reading [1] Ustawa z dnia 30 kwietnia 2010 r. o zasadach finansowania nauki [2] Ustawa z dnia 14 czerwca 1960 r. – Kodeks Postepowania Administracyjnego [3] Przewodnik po 7. Programie Ramowym [4] Praktyczny przewodnik po funduszach UE na badania i innowacje Course name: Doctoral seminar VIII Course code: 06.0-WE-AiRIE-SD8-SO_22_S3S Language of instructions: Polish/English Director of studies: prof. dr hab. inż. Józef Korbicz Name of lecturer: prof. dr hab. inż. Józef Korbicz form of instruction number of hours per semester number of hours per week seminar 15 1 Semestr form of receiving a credit for a course number of ECTS mode of study type of course 8 grade 2 full-time compulsory Aim of the course - introduction to the preparation of the doctoral thesis as well as presentation during the doctoral defense - introduction to the detailed procedure of awarding a PhD degree Course kontent 1. 2. 3. 4. Preparation of the doctoral thesis in the Essentials and editorial way: structure of the dissertation Preparation of the abstract and presentation for the doctoral defense as well as various applications Presentation of the procedure of awarding a PhD degree Presentation of achievement related to the doctoral thesis Teaching methods - lecture: conventional lecture, seminar lecture Learning outcomes Knows appropriate structure of the dissertation: D02, D03, D06 Can prepare the abstract and final presentation for the defense: D01, D05, D07, D12 Knows procedure of awarding a PhD degree: D07 Assessment criteria Verification method - oral presentation Final mark components = seminar: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 15 h. Execution of the tasks assigned by the lecturer = 15 h. Classes carried out at the distance = 15 h. Recommended Reading USTAWA z dnia 14 marca 2003 r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki Facultative courses – professional activities A, B, C i D Software specification and modelling Course name: Language of instructions: Polish/English Director of studies: prof. dr hab. inż. Marian Adamski Name of lecturer: prof. dr hab. inż. Marian Adamski form of instruction number of hours per semester number of hours per week lecture 15 1 Semester form of receiving a credit for a course number of ECTS mode of study type of course 3,4 Exam 2 full-time optional Aim of the course Introduction to selected elements of software engineering and examples of software modelling Entry requirements Programming languages Course content Selected elements of software engineering: concept modelling. Role of specification and model ling in software design. Historical overview of modern model ling techniques. Object-oriented programming and UML notation. Unified Modelling Language UML. Genesis of rise. Elementary elements of notation. The role of diagrams in structural and behavioural modelling. Behavioural modelling (system behaviour): case diagrams of use, action diagrams, state diagrams. Examples of software modelling for embedded systems, application in control engineering, electrical engineering and mechatronics. Teaching methods lecture: conventional lecture, problem lecture Learning outcomes Has knowledge in application of UML: D01, D03 Knows the role of diagrams in structural and behavioural modelling: D03 Can indicated possible applications of software modelling: D05 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended Reading Booch G., Rumbaugh J., Jacobson I.: UML: przewodnik użytkownika, WNT, Warszawa 2001 Cheesman J, Daniels J.: Komponenty w UML, WNT, Warszawa, 2004 Muller R.L.: Bazy danyc. Język UML w modelowaniu danych, MIKOM, Warszawa 2000 Course name: Alternative sources of energy and electrical vehicles Language of instructions: Polish/english Director of studies: dr hab. inż. Grzegorz Benysek, prof. UZ Name of lecturer: dr hab. inż. Grzegorz Benysek, prof. UZ form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 15 1 3,4 exam 2 full-time optional Aim of the course - introduction to alternative techniques of electrical energy generation - introduction to the problem of electrical transport - Shaping the understanding of problems related with ecological technologies Entry requirements Knowledge in physics and electrical engineering Course content Wind energy. Wind conditions in Poland and Europe. Ecological, landscape and environmental causes of using wind installations. Design rules and structures of wind installations. Sun energy. Insolation in Poland. Kinds and structure of solar collectors. Solar heating installation – heating rooms and water. Solar tanks of hot water. Control systems. Pump ensembles. Rules of selecting elements of the system. Examples of installations with solar collectors. Application of electrolysis and hydrogen. Methods of hydrogen generation. Advantages and drawbacks of using hydrogen. Water energy. Influence of water power stations to environmental changes. Ways of designing small water power stations. Geothermal energy. Ways and examples of using geothermal energy. Sources of geothermal energy in Poland. Biogas and biomass. Biomass – sources and production for energy. Advantages and drawbacks. Wood as an ecological and renewable souse of energy. Growing energetic plants in Poland. Liquid biomass. Ecological vehicles. Exemplary solutions. Methods and techniques of storing electrical energy: banks of accumulators, supercapasitors, etc. Selection of energy sources for electrical vehicles. Economy of transport of ecological energy. Teaching methods lecture: problem lecture, discussion Learning outcomes Has knowledge in alternative sources of producing and exploting electrical energy: D01, D03 Understands the need for developing ecological technologies: D01,D05 Has knowledge in economical aspects of investing in ecological technologies: D01, D03 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended reading [1] Klugmann E., Klugmann-Radziemska E.: Alternatywne źródła energii. Energetyka fotowoltaiczna, Wydawnictwo Ekonomia i Środowisko, Białystok, 1999. [2] Heier S., Waddington R.: Grid Integration of Wind Energy Conversion Systems, John Wiley & Sons, 2006. [3] Luque A.: Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 2003. [4] O'Hayre R.: Fuel Cell Fundamentals, John Wiley & Sons, 2006. [5] Jastrzębska G.: Odnawialne źródła energii i pojazdy proekologiczne, WNT Warszawa, 2007/2009. Modern control techniques Course name: Language of instructions: Polish/english Director of studies: prof. dr hab. inż. Krzysztof Gałkowski Name of lecturer: prof. dr hab. inż. Krzysztof Gałkowski form of instruction number of hours per semester number of hours per week semester form of reciving a credit for a course number of ECTS mode of study type of course lecture 15 1 3,4 exam 2 full-time optional Aim of the course - Introduction to selected modern control techniques - Review of solutions - Shaping knowledge in the role of modern control techniques and understanding of their purpose - Shaping the skills of analysis and selection of appropriate control techniques Entry requirements Elementary mathematical calculus and linear algebra Course content Repetitive processes, model ling and control.Procesy powtarzalne, modelowanie i sterowanie. Essentials of interative learning control. Repetitive control. Predictive control. Teaching methods lecture: conventional lecture Learning outcomes Knowledge of selected modern control techniqes: D01 Ability of selecting appropriate control techniques among the known variety of strategies: D01, D03, D05. Skills of designing simple control schemes: D03, D05 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended reading Kaczorek T., Dzieliński A., Dąbrowski W., Łopatka R.: Podstawy teorii sterowania, WNT, Warszawa, 2006 Greblicki W.: Podstawy Automatyki, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2006 Dutton K., Thompson S., Barraclough B.: The Art of Control Engineering, Addison-Wersley, Harlow, Essex, 1997. Course name: Invitation to quantum algorithms and computation Language of instructions: Polish/english Director of studies: prof. dr hab. Roman Gielerak prof. dr hab. inż. Roman Gielerak Name of lecturer: form of instruction number of hours per semester number of hours per week lecture 15 1 semester form of receiving a credit for a course number of ECTS mode of study type of course 3,4 exam 2 full-time optional Aim of the course Introduction to intelligent computation and quantum algorithms Entry requirements Course content Introduction. History and perspectives of quantum computer sciences. Schor algorithm: threat for RSA cryptography. Quantum theory: early days history. Duality of microworld. Light particles: photons and their properties, polarisation. General structure of quantum mechanics. Representation of location: wave function, Schrodinger equation. Eigenvalues. Spectral distributions. Unitary operations. Quantum mechanics measurements. Heisenberg rules. Complex systems: tensor product description. Q-bits. Elementary quantum gates. Universality of Gates. Discretisation. Quantum circuits. Jotzs-Deutch problem as an example of quantum computer. Quantum search algorithms: Grover quantum machine. Shora algorithm. RSA cryptography. Theoretical analysis of quantum algorithms. Perspectives: hardware side of the project. Physical representation of quantum gates. Quantum cryptography. Teaching methods lecture: conventional lecture, problem lecture Learning outcomes - Elementary knowledge in mathematical and physical base of quantum computations: D01 - Elementary knowledge in quantum attack on RSA with the quantum Schor algorithm: D01, D05 - Elementary knowledge in quantum protection of information and quantum transfer of information: D03 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended Reading 1.M.A. Nielsen , I.L.Chuang , Quantum Computation and Quantum Information , Cambridge University Press, 2000 2. I. Bengtsson , K.Życz\kowski ,Geometry of Quantum States. An Introduction to Quantum Entanglement. Cambridge University Press, 2006. 3. K. Giaro ,Elementy Kwantowego Modelu Obliczen i Algorytmiki Kwantowej , Wydawnictwo Naukowe OWSLiZ , Olsztyn 2013 4. Nicolas Gisin, Gre´ goire Ribordy, Wolfgang Tittel, and Hugo Zbinden, Quantum cryptography, REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002 Data warehouses Course name: Language of instructions: Polish/english Director of studies: dr hab. inż. Wiesław Miczulski, Prof. UZ Name of lecturer: dr hab. inż. Wiesław Miczulski, Prof. UZ form of instruction number of hours per semester number of hours per week lecture 15 1 semester form of receiving a credit for a course number of ECTS mode of study type of course 3,4 exam 2 full-time optional Aim of the course - intruduction to architectures and structures of data warehouses - introduction to multidimensional data models - introduction to selected methods of exploration in the process of gathering the data from warehouses Entry requirements Elementary knowledge in statistical data analysis, data bases and decision support systems Course content Introduction. Terminology related to data exploration. Methodology of data gathering. Problem analysis. Collection and clearing of the data. Design and validation of a model. Queries with respect to the data contained in the model. Maintenance of the model validity. Architecture and infrastructure data warehouses. General characteristic of data warehouses. Live cycle of decision supporting. Multidimensional data models. OLAP system. ROLAP and MOLAP models. Logical models of multidimensional information. Multi-level dimension. Selected exploration methods. Association Discovery. Clustering. Sequence discovery. Similarity Discovery in time series. Examples of exploration. Teaching methods lecture: conventional lecture Learning outcomes Understands the Reed for designing data warehouses: D01, D03 Recognizes architectures and structures of data warehouses: D01 Can characterize selected methods of knowledge representation: D01 Can characterize selected data exploration methods: D05 Assessment criteria Verification method - lecture: written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended reading 1. Poe Vidette, Klauer Patricia, Brobst Stephen: Tworzenie hurtowni danych. WNT, Warszawa 2000. 2. Jarke Matthias, Lenzerini Maurizio, Vassiliou Yannis, Vassiliadis Panos: Hurtownie danych. Podstawy organizacji i funkcjonowania. WSiP, Warszawa 2003. 3. Ch. Todman, Projektowanie hurtowni danych, WNT, Warszawa, 2003. 4. M. Nycz, Pozyskiwanie wiedzy i zarządzanie wiedzą, Wydawnictwo Akademii Ekonomicznej im. Oskara Langego, Wrocław, 2003. 5. Barbara Smok, Eksploracja danych w procesie pozyskiwania wiedzy z hurtowni danych, Prace naukowe Akademii Ekonomicznej we Wrocławiu, 2003. Intelligent computation Course name: Language of instructions: Polish/English Director of studies: dr hab. inż. Marcin Witczak Name of lecturer: dr hab. inż. Marcin Witczak form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 15 1 3,4 exam 2 full-time optional Aim of the course Introduction to soft computing. Introduction to advantages and applications of artificial neural networks, evolutionary algorithms and fuzzy systems Entry requirements Course content Introduction. Artificial intelligence and its methodology, efficiency of classical computation and its drawbacks. General properties and features of soft computing. Neuaral networks: Neural structures and their training, multi-layer perceptron. Supervised and unsupervised learning. Applications. Evolutionary algorithms: drawbacks of classical optimization techniques, biological inspirations of evolutionary algorithms, general scheme of an evolutionary algorithm, standard evolutionary algorithms, advanced techniques Artificial immune systems: biological inspiration, immune clustering, optimisation, compression, protection against computer viruses. Fuzzy systems: elementary concepts of fuzzy sets and elementary operations. Fuzzy models: structure, main elements and operations. Application of fuzzy logic: fuzzy controllers, fault diagnosis, fuzzy reasoning. Fuzzy neural networks: design rules and applications Teaching methods lecture: conventional lecture, problem lecture Learning outcomes Knows elementary features of soft computing: D01 Can indicate main drawbacks and advantages of soft computing: D05 Can indicate possible applications of soft computing D03 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended Reading Piegat A.: Modelowanie i sterowanie rozmyte. - Akademicka Oficyna Wydawnicza EXIT, Warszawa, 1999. Diagnostyka procesów. Modele, metody sztucznej inteligencji, zastosowania. Red: Korbicz J., Kościelny J.M., Kowalczuk Z., Cholewa W. -Wydawnictwo Naukowo-Techniczne, Warszawa, 2002. Witczak: Modelling and estimation strategies for fault diagnosis of non-linear systems. Process diagnostics Course name: Language of instructions: Polish/english Director of studies: dr hab. inż. Andrzej Pieczyński, prof. UZ Name of lecturer: dr hab. inż. Andrzej Pieczyński, prof. UZ form of instruction number of hours per semester number of hours per week lecture 15 1 semester form of receiving a credit for a course number of ECTS mode of study type of course 3,4 exam 2 full-time optional Aim of the course 1. 2. 3. 4. Introduction to structure and functions of advanced fault diagnosis systems Introduction to fault detection, isolation and identification for industrial processes Shaping skills of designing hybrid fault diagnosis and fault-tolerant systems Skills in applications of soft computing in fault diagnosis Entry requirements Analiza matematyczna, statystyka, algebra, logika rozmyta Course content Introduction. Elementary concepts, objectives and tasks of fault diagnosis, diagnosis specification for industrial systems. Concept of process diagnosis. Diagnostics and safety in control schemes. Fault-tolerant structures. Alarm signalling systems. Realization of fault diagnosis. Methods of fault detection. Control limits and data analysis. Relations between signals. Analitical fault detection methods. Kalman filter in fault detection and isolation. Identification-based residual generation. Residual generation with neural networks. Dynamic neural models with non-linear characteristics. GMDH neural models. Application of fuzzy sets and neuro-fuzzy in fault diagnosis. Application of evolutionary algorithms in fault detection. Integration of various techniques. Fault isolation methods. Classification of fault isolation methods. Analytical methods in fault isolation. Bank of observers and parity relations. Pattern recognition for fault isolation. Diagnostic matrix. Bayes theory. Fuzzy logic in fault isolation. Quality indicators for fault diagnosis. DTS, F-DTS, T-DTS monitoring methods. Decentralised structures of fault diagnosis. Teaching methods lecture: problem lecture, project method Learning outcomes Has knowledge in the functionality of hybrid fault diagnosis: D01 Can prepare a description of diagnostics methods joining elements of soft computing and design a hybryd fault diagnosis:D03 Can design fault diagnosis w neural Network and fuzzy logic and assess its functionality:D05 Is creative in selection of environment for building a complex fault diagnosis system: D01, D03 Can prepare a documentation of the implemented system and takes care about its completness: D05 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended reading 1. 2. 3. 4. 5. Diagnostyka procesów. Modele, metody sztucznej inteligencji, zastosowania. Red: Korbicz J., Kościelny J.M., Kowalczuk Z., Cholewa W. -Wydawnictwo Naukowo-Techniczne, Warszawa, 2002. Kościelny J.M.: Diagnostyka zautomatyzowanych procesów przemysłowych. - Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2001. Łęski J.: Systemy neuronowo-rozmyte, - WNT, Warszawa. 2008, Nowicki R.K.: Rozmyte systemy decyzyjne w zadaniach z ograniczona˛ wiedza˛. - Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2009. Pieczyński A.: Komputerowe systemy diagnostyczne procesów przemysłowych. - Wydawnictwo Politechniki Zielonogórskiej, Zielona Góra, 1999. Fault-tolerant control Course name: Language of instructions: Polish/english Director of studies: dr hab. inż. Marcin Witczak, prof. UZ Name of lecturer: dr hab. inż. Marcin Witczak, prof. UZ form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 15 1 3,4 exam 2 full-time optional Aim of the course Introduction to modern control systems with the disturbance and possibile faults Entry requirements Elementary mathematical calculus and linear algebra Course content Elementary concepts of fault diagnosis: hardware and analitical redundancy, detection, isolation and identification of faults. Classical schemes for fault detection: parameter estimation, parity relation, observers. Control: state feedback control, output feedback control. Control with predefined quality. Fault-tolerant control = fusion of control and fault diagnosis: passive and active schemes. Elementary solutions for fault-tolerant control. Exemplary applications. Teaching methods lecture: conventional lecture, problem lecture Learning outcomes Knowledge about elementary features of fault diagnosis: D01, D03 Knowledge about elementary control systems: D01, D03 Knowledge about possibilities of joining control and diagnosis systems: D01, D03 Ability of indicating advantages of fault-tolerant systems: D05 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended reading 1. 2. 3. 4. Diagnostyka procesów. Modele, metody sztucznej inteligencji, zastosowania. Red: Korbicz J., Kościelny J.M., Kowalczuk Z., Cholewa W. -Wydawnictwo Naukowo-Techniczne, Warszawa, 2002. Kościelny J.M.: Diagnostyka zautomatyzowanych procesów przemysłowych. - Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2001. Witczak M.: Modelling and estimation strategies for fault diagnosis of non-linear systems. – Berlin: Springer, 2007 Witczak M.: Fault diagnosis and fault-tolerant control strategies for non-linear systems. – Berlin: Springer, 2013 Intelligent diagnostics systems Course name: Language of instructions: Polish/English Director of studies: dr hab. inż. Krzysztof Patan, prof. UZ Name of lecturer: dr hab. inż. Krzysztof Patan, prof. UZ form of instruction number of hours per semester number of hours per week semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 15 1 3,4 exam 2 full-time optional Aim of the course Introduction to the concept of fault diagnosis with neural networks Entry requirements Elementary knowledge in soft computing Course content Structure of neural networks. Neural model ling and the associated optimisation processes. Modelling dynamic systems with neural networks. Uncertainty problem in neural modelling. Design of fault detection and isolation, robust methods. Sensor and actuator fault diagnosis. Applications of neural networks in fault diagnosis. Teaching methods lecture: conventional lecture, problem lecture Learning outcomes Knows abilities, advantages and drawbacks of artificial neural networks: D01 Knows how to design fault diagnosis with artificial neural networks: D03 Has knowledge in achieving robustness of fault diagnosis: D05 Assessment criteria Verification method - lecture: test, written exam Final mark components = lecture: 100% Student workload Full-time studies (120 h.) Contact hours = 15 h. Preparing for classes= 30 h. Getting familiar with the specified literature = 30 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended reading 1. 2. 3. 4. Diagnostyka procesów. Modele, metody sztucznej inteligencji, zastosowania. Red: Korbicz J., Kościelny J.M., Kowalczuk Z., Cholewa W. -Wydawnictwo Naukowo-Techniczne, Warszawa, 2002. Kościelny J.M.: Diagnostyka zautomatyzowanych procesów przemysłowych. - Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2001. Witczak M.: Modelling and estimation strategies for fault diagnosis of non-linear systems. – Berlin: Springer, 2007 Patan K.: Artificial neural networks for the modelling and fault diagnosis of technical processes. – Berlin: Springer, 2008 Facultative lectures – didactic activities A, B Course name: Methodology of didactic activities Course code: 06.0-WE-AiRIE-MZD-KO_6_S3S Language of instructions: Polish/English dr inż. Elżbieta Kołodziejska Director of studies: Name of lecturer: form of instruction number of hours per semester number of hours per week lecture 15 1 Semestr form of receiving a credit for a course number of ECTS mode of study type of course 3 Grade 3 full-time other Aim of the course The objective of the course is to prepare the students to the role of an academic teacher. In particular, the goal is to train how to manage the tasks related with planning, organization and realization of the education of students. The detailed objectives are: introduction to selected problems of didactics, elementary practical skills necessary for leading the activities with students. Course kontent Introduction: elementary concepts of didactics, education objective in higher education, teacher development models. Styles and strategies of teaching adults. Teaching legal basis in higher educations. Academic education as a communication process. Education methods: classification, required methods in higher education: discussion, activation methods, stand-alone work of students. Selection of education methods with respect to objectives and effects of education. New media in academic education. Assessment and verification methods of the student achievements. Design and documentation of courses (exercises, labs, e-learning courses). Reflective academic teacher – evaluation of activities. Teaching methods lecture: classes Learning outcomes Explains elementary concepts and problems related with didactics in higher education: D11 Distinguishes the education methods and selects them for the conducted activities: D11 Can plan the didactic activities and prepare a documentation for them: D11 Critically assess the application of modern educational tools, their advantages and drawbacks with respect to the education efficiency: D11 Can assess its own pedagogical preparation, tie it with the evaluation of activities and the need for self-improvement: D11 Assessment criteria Verification method - lecture: test Final mark components = lecture: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended Reading 1. Bereźnicki F., Zagadnienia dydaktyki szkoły wyższej, Szczecin 2009, Rozdział 2. Metody i formy kształcenia s.61-112, Rozdział 3. Przygotowanie pedagogiczne nauczycieli akademickich, s.121-128 2. Edukacja dorosłych, red M.S. Knowles i inni, PWN, Warszawa 2009, Rozdział 10. Poza andragogikę, s. 186-208 3. Media w edukacji - poglądy, zastosowania, społeczne spostrzeganie, red. B. Siemieniecki, T. Lewowicki, Toruń 2010 4. Okraj Zofia, Wspólne nauczanie – uczenie się studenta i nauczyciela akademickiego w dyskusji, [w:] Proces kształcenia akademickiego studenta, red. D. Ciechanowska, Szczecin 2009, s.129-142 5. Pedagogika 2, red. Z. Kwieciński, B. Śliwerski, PWN, Warszawa 2003 Optional Reading 1. Arends R., Uczymy się nauczać, WSiP, Warszawa 1994, 2. Pausch R., Zaslow J., Ostatni wykład, tłum. Jan Kabat, Warszawa 2008, 3. Marciszewski W., Sztuka dyskutowania, Warszawa 1996 Group work methodology Course name: Language of instructions: Polish/English Director of studies: dr Ewa Szumigraj Name of lecturer: dr Ewa Szumigraj form of instruction number of hours per semester number of hours per week Semestr form of receiving a credit for a course number of ECTS mode of study type of course lecture 15 1 3 Grade 3 full-time other Aim of the course Student can: lead group educational and general-development activities with active methods, recognize and name fundamental mechanisms ruling group dynamics, roles of group members, using sources about group leading methods and techniques, work actively towards new tools supporting group activities. Initial requirements Course content Building confidence in a group. Contract in helping relation. Group integrating tasks. Contact and communication in helping relation. Motivation for helping. Terapeutic listening. Psychological border and territory. Elements of assertiveness training. Work on stress. Relaxation methods. Addiction therapy. Relation and bonding in a group. Closing group process. Teaching methods lecture: classes Learning outcomes Explains elementary concepts and problems related with didactics in higher education: D11 Distinguishes the education methods and selects them for the conducted activities: D11 Can plan the didactic activities and prepare a documentation for them: D11 Critically assess the application of modern educational tools, their advantages and drawbacks with respect to the education efficiency: D11 Can assess its own pedagogical preparation, tie it with the evaluation of activities and the need for self-improvement: D11 Assessment criteria Verification method - lecture: test Final mark components = lecture: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended Reading 1. 2. 3. Egan, G. (2002), Kompetentne pomaganie. Poznań: Zysk i S-ka. Enright, J. (1993), Poradnictwo i terapia bez oporu. (red) Santorski, J. ABC pomocy psychologicznej, Warszawa Tokarczuk, O. red. Grupa bawi się i pracuje cz. 1 i 2. Interpersonal Communications Course name: Language of instructions: Polish/English Director of studies: polski/angielski Dr inż. Anna Pławiak Mowna, dr inż. Jacek Bieganowski Name of lecturer: form of instruction number of hours per semester number of hours per week lecture 15 1 Semestr form of receiving a credit for a course number of ECTS mode of study type of course 4 Grade 3 full-time other Aim of the course Development of skills and competences with respect to interpersonal communication in the work group. Initial requirements Course kontent Communication. Verbal, non-verbal and written communication, communication barriers. Social communication conditions. Mistakes in communication with a client. Autopresentation in the work place. Assertiveness and its practical applications. Team. Teams in a work place. Roles in a team. Team development steps. Communication in a team. Team problems. Effective and ineffective behaviour templates. Heuristic techniques for solving team problems. Sources and kinds of conflicts. Role of conflicts. Negotiation. Teaching methods lecture: classes Learning outcomes Explains elementary concepts and problems related with didactics in higher education: D11 Distinguishes the education methods and selects them for the conducted activities: D11 Can plan the didactic activities and prepare a documentation for them: D11 Critically assess the application of modern educational tools, their advantages and drawbacks with respect to the education efficiency: D11 Can assess its own pedagogical preparation, tie it with the evaluation of activities and the need for self-improvement: D11 Assessment criteria Verification method - lecture: test Final mark components = lecture: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 9 h. Getting familiar with the specified literature = 9 h. Preparation of report = 9 h. Execution of the tasks assigned by the lecturer = 9 h. Classes carried out at the distance = 9 h. Recommended Reading 1. Balbin R. M.: Twoja rola w zespole, GWP, Gdańsk, 2003. 2. Edelman R. J.: Konflikty w pracy, GWP, Gdańsk, 2005. 3. Fisher R., Ury W.: Dochodząc do tak. Negocjowanie bez poddawania się, PWE, Warszawa, 1992. 4. Gerrig R. J., Zimbardo P.: Psychologia i życie, Wydawnictwo PWN, Warszawa, 2006. 5. Kamiński J.: Negocjowanie. Techniki rozwiązywania konfliktów, POLTEXT, Warszawa, 2003. 6. Leary M.: Wywieranie wrażenia na innych. O sztuce autoprezentacji, GWP, Gdańsk, 2003. 7. Nęcki Z.: Komunikacja międzyludzka, Antykwa, Kraków, 2000 Managing human teams Course name: Language of instructions: Polish/English Director of studies: Daria Zielińska-Pękał Name of lecturer: Daria Zielińska-Pękał form of instruction number of hours per semester number of hours per week lecture 15 1 Semestr form of receiving a credit for a course number of ECTS mode of study type of course 3 Grade 3 full-time other Aim of the course Developing knowledge about social links and the associated governing rules. Animation towards self-development and development of members of educational processes. Rules and recipes in work group. Essential skills in leading a group. Wymagania wstępne Umiejętności interpersonalne, superwizja, znajomość zasad pracy grupy Course kontent Managing and leading a group (managing styles). Decision ma king process (decision ma king models, kinds of decisions, decision supporting techniques). Resolving conflicts. Motivation (motivation models, motivation theory, motivation tools). Managing theory (modification of Skinner behaviour, Lee Canter assertive discipline, Jones model) Teaching methods lecture: classes Learning outcomes Explains elementary concepts and problems related with didactics in higher education: D11 Distinguishes the education methods and selects them for the conducted activities: D11 Can plan the didactic activities and prepare a documentation for them: D11 Critically assess the application of modern educational tools, their advantages and drawbacks with respect to the education efficiency: D11 Can assess its own pedagogical preparation, tie it with the evaluation of activities and the need for self-improvement: D11 Assessment criteria Verification method - lecture: test Final mark components = lecture: 100% Student workload Full-time studies (90 h.) Contact hours = 15 h. Preparing for classes= 15 h. Getting familiar with the specified literature = 15 h. Preparation of report = 20 h. Execution of the tasks assigned by the lecturer = 5 h. Classes carried out at the distance = 5 h. Preparing for the exam = 15 h. Recommended Reading 1. 2. 3. 4. Wyrzykowska, B. Karbowiak, K. Kierowanie zasobami ludzkimi w organizacji Piotrkowski, K., Światkowski, M.: Kierowanie zespołami ludzi Fullan, M.:Odpowiedzialne i skuteczne kierowanie szkołą Clifford, E.: Dyscyplina i kierowanie klasą Didactic classes Course name: Language of instructions: 06.0-WE-AiRIE-WFOA-D1_9_S3S Director of studies: Polish/English Name of lecturer: UZ staff form of instruction number of hours per semester number of hours per week Semester form of receiving a credit for a course number of ECTS mode of study type of course lecture 15 1 2,4,6,8 Test 2 (in 8 sem.) Fulltime Other Aim of the course Development of skills, knowledge and competences in knowledge dissemination and organization of didactic activities. Entry requirements Course content Subject Dependent Teaching methods Excercises, Labs Learning outcomes Is able to lead didactic activities with students: D11 Assessment criteria 15 hours of Excercises or Labs Student workload Full-time studies (60 h.) Contact hours = 60 h. Preparing for classes= 0 h. Getting familiar with the specified literature = 0 h. Preparation of report = 0 h. Execution of the tasks assigned by the lecturer = 0 h. Classes carried out at the distance = 0 h. Preparing for the exam = 0 h. Literature Subject dependent