SIFT FLOW: Dense Correspondence across Scenes and
Transcription
SIFT FLOW: Dense Correspondence across Scenes and
FACE DETECTION Lab on Project Based Learning May 2011 Xin Huang, Mark Ison, Daniel Martínez Visual Perception Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Contents • Introduction • Exploration into local invariant features • The final method • Results • Conclusions Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Contents • Introduction • Exploration into local invariant features • The final method • Results • Conclusions Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Introduction • Karlos Arguiñano’s TV show. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Introduction Which is our goal? Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Introduction • Which is our goal? -> Detect presence of a face. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Introduction Problem definition Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Introduction • Problem definition: • How can we use local invariant feature descriptors to detect Arguinano’s face. • Use MATLAB programming language. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Introduction • Constraints of the project: • Use local invariant features descriptors. • Use MATLAB programming language. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Contents • Introduction • Exploration into local invariant features • The final method • Results • Conclusions Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features First approaches: 1. 2. 3. 4. 5. SURF matching. Template database SURF matching. Clustering Filtering best features. SIFT matching Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features First approaches: 1. 2. 3. 4. 5. SURF matching. Template database SURF matching. Clustering Filtering best features. SIFT matching Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 1. SURF matching: • Speeded up robust features. • Simplification of SIFT. • Fast. • “Combination of novel detection, description, and matching steps.” [ETH Swiss Federal Institute of Technlogy] Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 1. SURF matching Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 1. SURF matching Result with a rigid feature: Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 1. SURF matching Result (no more fancy glasses): Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features First approaches: 1. 2. 3. 4. 5. SURF matching. Template database SURF matching. Clustering Filtering best features. SIFT matching. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 2. Template database SURF matching. Test image Classifier (NN) Output image with matchings FACE/NON FACE templates (SURF descriptors) Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 2. Template database SURF matching + Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 2. Template database SURF matching Result A Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 2. Template database SURF matching Result B Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features First approaches: 1. 2. 3. 4. 5. SURF matching. Template database SURF matching. Clustering Filtering best features. SIFT matching. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 3. Clustering: Test image Classifier (NN) FACE/NON FACE Clusters of SURF descriptors Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) Output image with matchings Clustering! - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 3. Clustering: Ideal Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) Reality - X.Huang, M.Ison, D.Martínez Exploration into local invariant features First approaches: 1. 2. 3. 4. 5. SURF matching. Template database SURF matching. Clustering Filtering best features. SIFT matching. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 4. Filtering best features: • Find the extreme ratios. • Two separate databases. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 4. Filtering best features: Blue BAD, Orange GOOD Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features SURF FAILS Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features SURF FAILS But...WHY? Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features SURF FAILS [REF] [A Comparison of SIFT, PCA-SIFT and SURF - Luo Juan, Oubong Gwun- International Journal of Image Processing2010] Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features First approaches: 1. 2. 3. 4. 5. SURF matching. Template database SURF matching. Clustering Filtering best features. SIFT matching. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 5. SIFT Matching: Test image Classifier (NN) FACE/NON FACE Clusters of SIFT descriptors Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) Output image with matchings SIFT! - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 5. SIFT Matching: • Bringing in SIFT. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Exploration into local invariant features 5. SIFT Matching: • We should do anything else... Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Contents • Introduction • Exploration into local invariant features • The final method • Results • Conclusions Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez The final method 1. Skin detection: • Help SIFT as much as possible. • Make the ROI of skin color regions. • Methodology: • Extract skin segments: find the mean and covariance between CrCb. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez The final method 1. Skin detection: • Methodology: • Obtain the Gaussian probabilities of skin color pixels for the input image. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez The final method 2. Skin detection: • Methodology: • Apply an adaptive threshold. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez The final method 2. Skin detection: • Methodology: • Avoid region without holes and apply morphological operation over the binary image. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez The final method 3. Face detection: • Filtering best features. • Finding matches between each skin region and each template. • D.Lowe Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez The final method 3. Face detection: • Check if each skin region is a face. • Threshold = Face matches / No face matches Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Contents • Introduction • Exploration into local invariant features • The final method • Results • Conclusions Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Results ans = TestImage_num: 1 Regioin_num: 1 Keypoint_num: 1135 TotalFaceMatch_num: 99 TotalNoFaceMatch_num: 14 TemplateMatchNum: [2x37 double] ans = TestImage_num: 1 Regioin_num: 2 Keypoint_num: 74 TotalFaceMatch_num: 3 TotalNoFaceMatch_num: 2 TemplateMatchNum: [2x37 double] Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Results Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Results Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Results Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Contents • Introduction • Exploration into local invariant features • The final method • Results • Conclusions Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Conclusions • We have implement a face-detection method based on feature descriptors with a lot of help. • SIFT over SURF • QUALITY OF THE FEATURES over QUANTITY Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez Conclusions •How can be improved? • Use shape characteristics. • A larger template database and a more robust classifier. • Use morphology advantages. • Apply other methods instead of feature description (i.e: HAAR). • Use previous frames information. Master Erasmus Mundus of Science in Vision and Robotics (VIBOT) - X.Huang, M.Ison, D.Martínez