Atmospheric Effects on Aircraft Gas Turbine Life Independent Study
Transcription
Atmospheric Effects on Aircraft Gas Turbine Life Independent Study
Atmospheric Effects on Aircraft Gas Turbine Life Independent Study Revised August 15, 2011 Kevin Roberg Table of Contents Table of Figures ............................................................................................................................................. 4 Table of Tables .............................................................................................................................................. 5 1. Abstract ............................................................................................................................................. 6 2. Introduction ...................................................................................................................................... 6 3. Atmospheric Model .......................................................................................................................... 6 3.1. Introduction to Atmospheric Model ............................................................................................. 6 3.2. Basic Atmosphere ......................................................................................................................... 7 3.2.1. Atmospheric Composition .................................................................................................... 7 3.2.2. Atmospheric Structure .......................................................................................................... 8 3.2.3. Standard Model of the Atmosphere ..................................................................................... 8 3.3. Moisture in the Atmosphere....................................................................................................... 14 3.3.1. Measures of Water Content ............................................................................................... 15 3.3.2. Humidity/Altitude Relationship .......................................................................................... 17 3.3.3. Conclusion ........................................................................................................................... 20 3.4. Atmospheric Boundary Layer...................................................................................................... 20 3.4.1. Introduction ........................................................................................................................ 20 3.4.2. ABL Formation and Structure.............................................................................................. 20 3.4.3. Consequences of Mixing ..................................................................................................... 21 3.5. Inversions .................................................................................................................................... 22 3.5.1. Importance of Inversions .................................................................................................... 22 3.5.2. Synoptic Weather................................................................................................................ 23 3.5.3. Boundary Layer Thickness Measurements ......................................................................... 23 3.6. Atmospheric Particulates ............................................................................................................ 24 3.6.1. Introduction ........................................................................................................................ 24 3.6.2. Particulate Size Distributions .............................................................................................. 25 3.6.3. Sources ................................................................................................................................ 27 3.6.4. Concentration ..................................................................................................................... 29 3.6.1. Composition ........................................................................................................................ 30 3.6.2. Transport in Free Troposphere ........................................................................................... 31 3.6.3. 4. Global Distribution .............................................................................................................. 32 Impacts on Mechanical Systems ..................................................................................................... 33 4.1. Wear............................................................................................................................................ 33 4.1.1. Basic Wear Process ............................................................................................................. 33 4.1.2. Areas Most Impacted by Wear ........................................................................................... 34 4.1.3. Nature of Wear Degradation .............................................................................................. 34 4.1.4. Impact of Particulate Concentration on Wear .................................................................... 35 4.1.5. Impact of Humidity on Particulate Wear ............................................................................ 35 4.2. Fouling......................................................................................................................................... 36 4.2.1. Fouling Introduction and Impacts ....................................................................................... 36 4.2.2. Parameters Impacting Fouling ............................................................................................ 37 4.2.3. Impact of Humidity on Fouling............................................................................................ 37 4.3. Consequences to Engine ............................................................................................................. 38 4.4. Conclusion ................................................................................................................................... 39 Works Cited ................................................................................................................................................. 43 Table of Figures Figure 1: Atmospheric Pressure by Altitude ............................................................................................... 12 Figure 2 Atmospheric Pressure Adjusted to Sea Level Actual .................................................................... 13 Figure 3 Temperature and Humidity over Chung-Li Taiwan December 2003 and May 2004 .................... 17 Figure 4 Averaged Relative Humidity Readings Taken at Terra Nova Bay Antarctica ................................ 18 Figure 5 Calculated Mixing Ratio Profile ..................................................................................................... 19 Figure 6: Annual Mean Mixing Ratio in Middle Latitudes (Dutton, p. 87) .................................................. 19 Figure 7: Stull 4.9 ........................................................................................................................................ 22 Figure 8: Temperature profile with altitude showing inversions ............................................................... 23 Figure 9 Average planetary boundary layer height retrieved using Giovanni ............................................ 24 Figure 10: Particle Size Distribution ............................................................................................................ 26 Figure 11: Average particle diameter by height ......................................................................................... 27 Figure 12 Particulate Source Regions ......................................................................................................... 28 Figure 13 Particulate Density by Altitude ................................................................................................... 29 Figure 14: Coarse Particle Distribution at Various Locations in Japan........................................................ 30 Figure 15 Particle contribution from transport by year.............................................................................. 31 Figure 16 Global mean particle density ...................................................................................................... 32 Figure 17: Global AOD Measurements ....................................................................................................... 32 Figure 18: Eroded High Stage Compressor Blades (left) and High Pressure Turbine Blades (Right) (Dunn, p. 341) ......................................................................................................................................................... 34 Figure 19: Wear Rate vs. Partial Pressure of Water Vapor After Fang Figure 7 ......................................... 35 Figure 20: Fang Figure 7 .............................................................................................................................. 36 Figure 21 % Power Loss vs. Absolute Humidity .......................................................................................... 38 Table of Tables Table 1: Composition of the Atmosphere (Stull, p. 8) .................................................................................. 7 Table 2 Cold Temperature Error Table (Federal Aviation Administration, pp. 7-2-4) ................................ 14 Table 3: Standard Particle Size Distribution................................................................................................ 26 1. Abstract This study begins by developing a model of the atmosphere to understand conditions from ground level up to typical aircraft operating altitudes. From there, the importance of boundary layers to the structure of the atmosphere is discussed. The impact of this atmospheric structure on the distribution of atmospheric particulates is then outlined. The impacts of those particles is then examined. Finally, two indices are proposed to compare the impact of the structure and content of the atmosphere in various world cities. 2. Introduction This study examines the impacts of the atmosphere on the life of aircraft gas turbines. Since gas turbines operate from ground level up to approximately 40,000 ft, and throughout the world, it is necessary to understand a large portion of the global atmosphere. This paper begins by developing a model to describe the average atmosphere, with the ability to account for sea level temperature and pressure. The paper then considers the impact of local variations in the atmospheric boundary layer. Once the general structure of the atmosphere is understood particulate distribution and transport within the atmosphere is studied. The important modes of turbine deterioration related to these atmospheric parameters are discussed. The impact of various values of the atmospheric parameters on the rates of degradation are developed. Identification of Relative Severity 3. Atmospheric Model 3.1.Introduction to Atmospheric Model It is said in New England “Don’t like the weather? Wait a minute, it will change.” This is in fact true in the majority of locations on earth. It is also true that change can be found in any direction, including up. This study examines the effect of atmospheric conditions on the life of aircraft gas turbines. It is impractical, if not impossible, to model the instantaneous structure of the atmosphere during every flight in the life of an engine. Fortunately, it is possible to describe an average atmosphere which, over the course of many flights and a long period of time, closely resembles the environment experienced in operation. The relationships developed in this study describe average conditions. They will rarely, if ever, correctly describe instantaneous conditions exactly. Where there structure of the atmosphere can consistently differ from the average, such as a ground level inversion present each morning or evening, these effects are described. 3.2.Basic Atmosphere 3.2.1. Atmospheric Composition The atmosphere is composed of a mixture of gasses. For the purposes of analyzing the atmosphere using the ideal gas law, those gases must be known in order to assign an accurate gas constant. Dry air, that is the atmosphere excluding water vapor is: Table 1: Composition of the Atmosphere (Stull, p. 8) Symbol Name N2 Nitrogen Fractional Molecular Volume Molecular Weight Fraction Weight 28.01 78.08 21.870208 32 20.95 6.704 O2 Oxygen Ar Ne He Argon Neon Helium H2 Hydrogen Xe Xenon Carbon dioxide 131.3 0.000009 44.01 0.035 CH4 Methane 16.04 0.00017 N2O Nitrous Oxide 44.01 0.00003 CO Carbon Monoxide 28.01 0.0035 SO2 Sulfur Dioxide 64.06 0.000014 O3 Ozone CO2 39.95 20.18 4 2.02 0.93 0.371535 0.0018 0.0003632 0.0005 0.00002 0.00005 1.01E-06 48 0.000012 1.182E-05 0.0154035 2.727E-05 1.32E-05 0.0009804 8.968E-06 5.76E-06 NO2 Nitrogen Dioxide Totals 46.01 0.000005 100.00 2.301E-06 28.96 Dividing the Universal Gas Constant by the Molecular weight of dry air: yields the gas constant for dry air: CITATION Stu00 \p 8 \y \l 1033 (Stull, p. 8) 3.2.2. Atmospheric Structure The earth’s atmosphere is divided into distinct layers delineated by temperature extremes. Beginning at the ground where temperatures are warmest, with energy being derived from absorption of visible light. Temperature decreases with distance from the ground until the stratosphere is reached. Temperature increases through the statopause until the level where most ultraviolet light is absorbed, the stratopause. After passing the stratopause temperature again declines through the mesosphere, until entering the troposphere where most other radiation is absorbed. (Stull, p. 13) The troposphere is the portion of the atmosphere nearest the ground in which nearly all clouds and weather occur (Stull, p. 13). The temperature of the troposphere decreases linearly with altitude. The top portion of the troposphere is the tropopause. Within the tropopause temperature is constant. The transition from troposphere nominally occurs at a height of 11 km. The tropopause continues to a height of 20 km. Since aircraft activity using gas turbines is generally confined to altitudes well below 20 km only the tropopause and troposphere will be considered in this study. 3.2.3. Standard Model of the Atmosphere A standard model of the atmosphere exists for the purpose of modeling atmospheric behavior. The 1976 U.S. Standard Atmosphere is widely used for modeling the relationships between temperature, pressure, and height. 3.2.3.1. Geopotential Height In modeling the atmosphere meteorologists apply adjustments to account for the variation in acceleration due to gravity (Stull, p. 12) and centrifugal force (Dutton, p. 65) due to differences in distance from the center of the earth. The adjustment for geopotential height is given by: CITATION Dut86 \p 65 \y \l 1033 (Dutton, p. 65) Where is equal to the average radius of the earth, 6356.766 km, represents latitude, and is altitude above sea level. Using the above equation shows the difference between 0 and 90 degrees latitude is 0.53%. Similarly, the difference between true height and geopotential height at 15 km is 0.24%. 3.2.3.2. Temperature The 1976 Standard Atmosphere provides equations defining temperature curves for standard atmospheric temperature at altitudes up to 51 km. The vast majority of aircraft activity takes place below 15 km, so two of these equations are of interest. First, for altitudes less than 11 km, i.e. within the troposphere: (Stull, p. 13) Note that 288.15K is equal to 15°C, which is standard sea level temperature. (Stull, p. 7). The value is the temperature lapse rate, which is fairly constant regardless of location and season (Dutton, p. 83). For altitudes between 11 km and 20 km in the standard atmosphere, and area of atmosphere known as the tropopause, temperature is constant: (Stull, p. 13) The tropopause begins when the temperature reaches 216.65K, so it is evident considering the constant lapse rate that the tropopause will begin lower than 11 km when sea level temperatures are below 15°C, and higher than 11 km when sea level temperatures are above 15°C (Dutton, p. 83). Thus the equations for standard atmosphere can be easily adapted to any atmosphere by adjusting the ground level temperature: The maximum altitude for which the above is valid is: Beyond this altitude the remainder of the atmosphere of interest to this paper will be at 216.65K. These equations are applicable for most day and night conditions but at night, in cases where the surface is cooler than that atmosphere, such as winter or marine conditions temperature may increase with altitude briefly before resuming the normal stratospheric pattern. This condition is called an inversion and should be accounted for if examining winter conditions or low level marine areas. (Dutton, p. 67) 3.2.3.3. Pressure The pressure of the Standard Atmosphere is described by equations dependent on the temperatures calculated above. The equation for pressure in the troposphere is: P= CITATION Stu00 \p 13 \y \l 1033 (Stull, p. 13) And the pressure in the tropopause is given by: P= Again, it is desirable to generalize these equations for an atmosphere with arbitrary sea level temperature. This has already been accomplished for the stratospheric pressure equation by generalizing its temperature equation. The pressure equation for the tropopause must be modified by replacing the constant 11 km with the maximum troposphereic altitude calculated above. P= 3.2.3.4. Pressure Altitude Ambient pressure is used to determine altitude in aircraft. Different methods are used depending on intended altitude. In all jurisdictions there exists a pressure altitude above which standard atmospheric pressure is used as a baseline for determining altitude. In the United States that altitude is 18,000 ft above mean sea level (MSL) Below 18,000 ft MSL altitude is adjusted to actual pressure at a station within 100 nautical miles of aircraft position. (Federal Aviation Administration, pp. 7-2-1) Since this paper is primarily concerned with the local atmosphere an aircraft experiences, altitude will be normalized to local conditions. The formula used for calibrating altimeters is: CITATION Lei06 \p 213 \y \l 1033 (Leishman, p. 213) This is simply the standard atmosphere equation from above re-arranged and using English units with the exception that true height, not geopotential height, is used. Given this, and the minimal differences between geopotential and true height within altitudes of interest, true height will be used in this paper. It should be noted that the above equation does not compensate for temperature. If the temperature is above standard for the indicated altitude an aircraft is higher than the altimeter indicates. Alternately an aircraft is lower than indicated if the outside temperature is lower than standard. (Federal Aviation Administration, pp. 7-2-3) This effect is illustrated in Figure 1 below. Figure 1: Atmospheric Pressure by Altitude The discussion thus far has not considered the effect of density. Though in any column of air pressure will decrease with temperature as altitude increases, a low temperature column of air will tend to have a higher than standard sea level pressure as a result of higher air density. The converse is true of warm air. As a result Figure 1 shows impossibly small atmospheric pressures at sea level. To achieve a more accurate result actual, rather than calculated, sea level pressure must be used as a starting point. This is done by replacing 101.325 kPa in the pressure equation with an appropriate value to yield the actual sea level atmospheric pressure. For example, to achieve a more realistic sea level pressure of 101.327 kPa at 0°C the equation becomes: P= The resulting curve is shown against the standard curve in Figure 2. Figure 2 Atmospheric Pressure Adjusted to Sea Level Actual This adjustment, equivalent to setting an altimeter to an airfield barometer measurement produces a slow deviation from the correct value as altitude increases which is in line with cold temperature error data supplied to pilots as shown in Table 2. Table 2 Cold Temperature Error Table (Federal Aviation Administration, pp. 7-2-4) 3.2.3.5. Density Altitude Though density altitude will not be used extensively in this paper it is an important value in aviation and is helpful to clarify the discussion above. Warm air is generally less dense than cold air, consequently warm air usually has a higher pressure than cold air. Confusion can arise since this is the opposite of the altitude relationship. It must be recalled that the temperature altitude relationships described above only hold within a column of air with constant sea level pressure. Altitude calculations must be continually corrected to sea level pressure. Density altitude refers to an alternate method of computing altitude using air density rather than pressure. This method is generally used on the ground for the purpose of calculating required take off distance. As temperature rises, density altitude increases. Density is important to flight dynamics, but is less important to the concerns of this paper. 3.3.Moisture in the Atmosphere Water vapor can make up from 0 to 4% of air by volume. The amount of water in the air affects the atmosphere in diverse ways. As a result there are diverse measures of the quantity used to examine various effects. For the purposes of this paper certain measures are of more utility than others. In this section the measures will be examined and their respective advantages discussed. 3.3.1. Measures of Water Content 3.3.1.1. Relative Humidity Perhaps the most commonly heard measure of water content in the atmosphere is Relative Humidity. Relative humidity is a comparison of the amount of water in the air to the amount that can remain in vapor form under present conditions. That is: Where e represents partial pressure, represents absolute humidity, and r represents mixing ratio. Each of these measures will be discussed in more detail. The subscript s represents saturation. This is the maximum amount of water that can remain in vapor form the present temperature. So as temperature varies, the same absolute amount of water vapor will result in different relative humidities. Relative humidity provides a measure of how easily water, or perspiration will evaporate so it is a useful measure of comfort to include in weather reports. However, if the actual amount of water in the atmosphere is of primary concern, relative humidity is a cumbersome measurement because temperature must also be specified to determine the absolute quantity of water. 3.3.1.2. Dew Point If relative humidity measures the amount of water vapor relative to the maximum amount that can exist at the current temperature, then there must be a temperature at which that same amount of water can no longer be held as vapor. This temperature is the dew point. The dew point is 100% relative humidity for a given quantity of air. Dew point is easily measured by chilling a mirror until dew forms, and provides a value that can be converted into the amount of water in the atmosphere without having to know temperature. (Stull, p. 102) If current temperature is known, dew point provides a measure of relative humidity either own its own or by calculating saturation for that temperature. While dew point is a useful measurement technique, it can be converted into values that are more useful for computation. 3.3.1.3. Partial Pressure Partial pressure is the portion of atmospheric pressure contributed by water vapor. It is independent of the other gasses in the air. The maximum partial pressure, saturation pressure, is determined by: CITATION Stu00 \p 98 \y \l 1033 (Stull, p. 98) The dew point temperature can be entered to determine the partial pressure of water vapor in the atmosphere. If current temperature is entered the formula yields the saturation partial pressure. These values can be used to determine relative humidity. Partial pressure is a convenient measure because it includes both water vapor quantity information and temperature information. It can also be used to calculate several other values. 3.3.1.4. Absolute Humidity Absolute humidity is a measure of the quantity of water vapor in a given volume. It can be calculated from partial pressure as follows: CITATION Stu00 \p 99 \y \l 1033 (Stull, p. 99) Where is the water vapor gas constant, (Stull, p. 446) 3.3.1.5. Water Vapor Mixing Ratio Water vapor mixing ratio is the ratio of the mass of water vapor to the mass of dry air. This makes it useful for performing calculations within the ideal gas equation. The water vapor mixing ratio is given by: CITATION Stu00 \p 99 \y \l 1033 (Stull, p. 99) Where: CITATION Stu00 \p 99 \y \l 1033 (Stull, p. 99) 3.3.1.6. Virtual Temperature Virtual temperature is a modification to the ideal gas law used by meteorologists to account for reduced density due to water vapor in air. (Dutton, p. 258) Virtual temperature is defined by: CITATION Stu00 \p 8 \y \l 1033 (Stull, p. 8) The total mass of water in a column of air can be represented in the same was as the mass of a column of air was treated in developing the Standard Model of the Atmosphere (Dutton, p. 258). As such, water vapor pressure i.e. partial pressure, will vary according to the same rules as air pressure, and it is appropriate to substitute into the generalized tropospheric temperature equations developed above. By using this temperature a slightly different pressure altitude relationship is obtained. Humidity is not taken into account in altimeter calibration, this is a minor source of error. Care must be taken to remember that virtual temperature is not actual temperature. It is a construct to be used in conjunction with the ideal gas law to adjust for water in the gas mixture. 3.3.2. Humidity/Altitude Relationship Published data shows that the humidity altitude relationship depends on weather conditions and does not follow a general equation. Such data is shown in Figure 3 (Chiang & Subrata Kumar Das, 2009). Figure 3 Temperature and Humidity over Chung-Li Taiwan December 2003 and May 2004 However, is data is averaged over a longer period of time relative humidity begins to appear more constant from the surface up to the tropopause. Figure 4 shows the average of data collected over a 12 year period (Tomasi et al, 2004) . Figure 4 Averaged Relative Humidity Readings Taken at Terra Nova Bay Antarctica For the purpose of an average analysis, if we assume relative humidity remains constant as altitude increases then: The resulting mixing ratio profile appears as shown in Figure 5. Figure 5 Calculated Mixing Ratio Profile Comparison with the averaged measured profile shown in Figure 4 demonstrates reasonable correspondence in overall shape and magnitude allowing for some smoothing across the tropopause. Figure 6: Annual Mean Mixing Ratio in Middle Latitudes (Dutton, p. 87) If the humidity profile for the atmosphere at a specific time is desired then actual atmospheric soundings are required. If averaged are to be used assuming a constant relative humidity up to the tropopause appears to be a reasonable assumption. In a still atmosphere with no precipitation the amount of water, measured either by absolute humidity or mixing ratio, will remain stable throughout daily temperature variations. If local temperature drops below the dew point, dew will form. In cases when inversions occur due to a relatively cool surface, low lying fog may form though moisture remains in vapor form at higher elevations. As discussed above, when analyzing winter conditions or low lying marine areas it must be recalled that such a situation can occur. 3.3.3. Conclusion Thus far a model has been developed that can be adjusted for average local temperature, pressure and humidity. At this point in our study we are able to replicate with reasonable accuracy ambient temperature, pressure, and water vapor content from sea level to 15 km. 3.4.Atmospheric Boundary Layer 3.4.1. Introduction The atmospheric boundary layer (ABL) is the portion of the atmosphere that is affected by the turbulence generated by heating of the earth’s surface by solar radiation (Stull, p. 65). Understanding of the ABL is important because it strongly influences the distribution of moisture in the lower troposphere and the ground level concentration of atmospheric particulates. 3.4.2. ABL Formation and Structure The ABL forms within the context of the standard atmosphere (Stull 66). Recalling the discussion of density above, consider a parcel of air near the surface which is warmed by the sun. Warming the air decreases its density which causes it to buoyantly rise. This tendency of the air to move from its original altitude is referred to as instability (Stull, p. 66). As the air rises, it will encounter an altitude at which it is stable. Surface air will continue to be heated by solar radiation, resulting in a continuous circulation from the surface to this stable level. This constant churning results in homogeneous atmospheric properties in the first one to four kilometers of the troposphere (Stull, p. 66). That is, if air from various altitudes is normalized to the same pressure it will have the same virtual temperature. Above this mixed layer the troposphere has the same temperature, on average, as predicted by the standard atmosphere model (Stull, p. 67). Clearly, this will result in a sharp temperature shift at the top of the mixed layer. This creates a stable layer which is often referred to as the capping layer. The area above is called the free troposphere (Stull, p. 67). The capping layer prevents air exchange from the lower troposphere to the free troposphere. The extent to which the boundary layer follows this pattern with vary with the degree of solar heating. In the case that the surface temperature is similar to air temperature, often associated with overcast daytime conditions, there will be minimal circulation, and a weak capping layer. Under these conditions the atmosphere will closely resemble the standard atmosphere with little evidence of a boundary layer. Finally, the surface may be cooler than the atmosphere. A thin, 20-500m (Stull, p. 66), layer of stable air will form. As circulation ceases, the air between the stable layer and capping inversion will become stable. This area becomes known as the residual layer (Stull, p. 69). It continues to contains humidity and pollutant contents similar to the boundary layer that existed previously (Stull, p. 69). 3.4.3. Consequences of Mixing The mixing within the ABL results in a uniform mixing ratio up to the capping inversion. Stull Figure 4.9 Figure 7: Schematic Diagrams of Diurnal ABL Changes (Stull 4.9) The impact of ABL mixing on particulate concentration will be considered later in this study. 3.5.Inversions 3.5.1. Importance of Inversions Though it is desirable to understand the thermal and humidity profiles resulting from the ABL, especially for aircraft that operate primarily below 2km, the most important aspect of the ABL is its capping inversion. Strong inversions prevent the exchange of air and its contents, such as particulates and humidity, between the boundary layer and the free atmosphere. This can result in high concentrations of particulates at ground level. Thus it is important to understand when inversions will be present, and at what altitudes. 3.5.2. Synoptic Weather Inversion strength is influenced by both the conditions in the ABL, and the interactions of air masses at frontal boundaries, synoptic weather (Stull, p. 68). Strong inversions will occur at boundaries between warm and cold air masses (Stull, p. 263). These tend to be low altitude inversions which result in shallow mixing regions (Zhang, p. 5529). The nature of the air mass also affects the strength of the inversion. Within a high pressure mass the inversion is strong (Stull, p. 68) as is the tendency for mixing resulting in highly homogeneous properties up to a relatively high altitude inversion (Zhang, 5530). Within a low pressure system there will be a weak, if any, capping inversion (Stull, 68). Under these conditions there will be constant gradients from the surface up to the tropopause, as in the standard atmosphere. Figure 8: Temperature profile with altitude showing inversions 3.5.3. Boundary Layer Thickness Measurements NASA GEOS data is widely used as source data for Boundary Layer Thickness in atmospheric modeling (Lin, p. 1726). GEOS data is available from NASA through the MERRA data set. Planetary Boundary Layer Thickness is contained in the 2 dimensional turbulence data set: tavg1_2d_flx_Nx. The Giovanni tool is available for plotting desired parameters over any time scale from 1974 through approximately 2 months preceding the current date. An example of Giovanni output is shown below. Figure 9 Average planetary boundary layer height retrieved using Giovanni This information will be used to obtain the crucial boundary layer height parameter when modeling atmospheric structure. 3.6.Atmospheric Particulates 3.6.1. Introduction Particulates of a variety of sizes are suspended in the atmosphere. These particles come from a variety of natural and anthropogenic sources. These particulates are of importance because they can result in fouling of aircraft gas turbine aerodynamic surfaces (Stalder, p. 364), and can cause wear to those same surfaces (Warren, 2008, p. B1). This study will examine the sources of contamination with the aim of understanding variation by region. Vertical concentration profiles will also be examined. This study will not include events which result in extreme conditions typically avoided by aircraft, such as volcanic eruption and catastrophic forest fires. Conditions resulting from operations on unimproved surfaces, e.g. helicopter landings on loose soil, will also not be considered. 3.6.2. Particulate Size Distributions For air quality measurements particle sizes are usually reported in terms of PM-10 and PM-2.5. PM-10 refers to the quantity of particles 10 micrometers in diameter or less. Likewise, PM-2.5 refers the particles 2.5 micrometers or less. Thus, PM-2.5 is a subset of PM-10. PM-2.5 is often referred to a fine particles, while PM-10 may be referred to as a coarse particle measurement (Environmental Protection Agency, 2010, p. 20) PM-10 was the dominant measurement until the mid 1990’s when evidence increasingly showed that PM-2.5 was a more important measure of the human health impact of particles (Environmental Protection Agency, 1995, p. 26). In recent literature PM-2.5 is more commonly reported. Neither PM-2.5 nor PM-10 provides a complete profile of particles in the air. Average atmospheric particulate profiles have been reported for the purposes of aircraft contamination exposure estimation (SAE, 2007, p. 5). Figure 10: Particle Size Distribution This figure agrees well with the recommended particulate distribution given in SAE ARP986 (SAE, 2008) which is shown below. This particle distribution will be used for scaling reported PM-2.5 and PM-10 particulate to obtain a complete ground level particle distribution. Table 3: Standard Particle Size Distribution The mean particle size, and thus the particle distribution, remains remarkably constant with respect to altitude (Zhang, 5530), so the same distribution will be used for all altitudes. Figure 11: Average particle diameter by height 3.6.3. Sources 3.6.3.1. Natural Naturally occurring atmospheric particulates originate from regions with loose soil and sufficient winds to lift those particulates from the surface (Engelstaedter, p. 76). The largest emitter is Saharan Africa, which accounts for the majority of global dust emissions (Engelstaedter, 75). The below figure shows measurement of dust concentration in terms of an aerosol index (Engelstaedter, 73) and highlights the importance of Saharan Africa as an emitter of natural particulates. Figure 12 Particulate Source Regions It should be noted that the data source used tends to exclude results less than 1 km from the surface which means anthropogenic high concentration events will not be shown (Englestaedter, 77). This is because, as discussed above, high concentration anthropogenic events are associated with a shallow boundary layer, usually much less than 1 km. 3.6.3.2. Anthropogenic Anthropogenic sources of atmospheric particulates are primarily related to combustion. These include burning of fossil fuels and biomass for energy and transportation, as well as burning of biomass. Human activities can also exacerbate the natural emissions discussed above through improper land use. Anthropogenic sources can account for nearly 75% of measureable particulates in urban areas (Baek, p. 211), and about 65% in suburban areas (Baek, 210) . The anthropogenic portion of measure particulates represents an increase over the natural background quantity of particulate (Jones, p. 4467). The amount of particulate in the atmosphere due to anthropogenic sources is sensitive to the level of human activity, even varying noticeably between weekday and weekend automotive traffic levels (Jones, 4467). Given the variability and significance of anthropogenic sources it is clear that this study will require local average particulate levels to develop an understanding of particulate impacts at any given location. 3.6.4. Concentration Particulate concentration at ground level is heavily dependent upon boundary layer thickness (Zhang, 5529). Conditions within the boundary layer also strongly affect the variation in particulate distribution with respect to altitude due to the variations in mixing discussed above. This variation will strongly impact the dust conditions at any given moment, however, average conditions will give a reasonable representation of long term operation within a specific area. Average concentrations will be considered in two regions: the boundary layer and the free troposphere. Within an average boundary layer the air may be considered to be well mixed. Likewise, the residual layer under night time conditions will remain well mixed. For this reason, concentration within the boundary layer will be considered constant up to the top of the boundary layer. Since the boundary layer is topped by a capping inversion particulates have difficulty ascending above the boundary layer, and therefore generally have low concentrations above that height. This atmospheric structure is clearly shown for several inversion heights (Type 1~ 3 km, Type 2~ 2 km, Type 3~ 1 km) in the figure below. The different colors in the plot represent different dates and slightly different inversion heights. Figure 13 Particulate Density by Altitude 3.6.1. Composition Solid particles suspended in the atmosphere are composed of more than 50% dust which is composed of minerals including silica (Jones, 4470-4472) (Kojima, 701). Other significant contributors are sea salt (depending on location); soot, flyash, and naturally occurring carbon; and (NH4)2SO4 [ammonium sulfate] (Kojima, 703) (Jones, 4470-4472). Kojima’s measurements, which were not controlled for atmospheric boundary layer conditions, show that proportions of each particle type can vary significantly with time and location. Figure 14: Coarse Particle Distribution at Various Locations in Japan Interestingly, the above July data taken over an urban area shows the particulate concentration drops to 1/3 of its ground level value in 5.2-5.4 kilometer measurement, which would be expected to be above the atmospheric boundary layer. The concentration of ammonium sulfate, a primarily anthropogenic particulate, also drops markedly in the same measurement. These observations suggest a mixed boundary layer containing anthropogenic pollutants with a capping inversion containing much lower concentrations of pollutants possibly involved in long distance transport. This data supports the earlier discussion indicating that concentrations will tend to remain constant within the atmospheric boundary layer, and diminish above the capping inversion. Another item of note is that sulfur compounds are reactive, and in the past have been involved in the hot corrosion of turbine components. In addition to being present in ammonium sulfate, sulfur can also be found in sea salt, and soot (Eliaz, 33). It is apparent, however, from the chart above that sulfur compounds are available in all environments to cause hot corrosion, though marine environments may be somewhat more severe. 3.6.2. Transport in Free Troposphere Atmospheric particulates are known to be transported between regions. Dust from Asian sources contributes to 41% of major dust events in the Western United States (Fairlie, p. 1251). Dust originating in Saharan Africa can be transported across the Atlantic Ocean to North and South America, north to Europe, and east to the Middle East Region and Asia (Engelstaedter, 80). While seasonably variable, these particulate transport paths follow a predictable annual cycle. Years with El Nino events show increased dust transport, and there may be an increasing in the trend due to climate change. The cycle is sufficiently consistent, however, that the effect of transport can be considered to be accounted for in local averages (Engelstaedter, 91). Figure 15 Particle contribution from transport by year It must be considered whether aircraft operating within the particle transport paths will be exposed to higher concentrations of particles. The particles involved in transport are at the level of the top of the boundary layer. Concentrations closely resemble the concentration in the originating region (Colette, p. 393). Therefore the model discussed above will be appropriate for an aircraft encountering a transport layer on departure. Air aircraft at cruise will be operating well above the top of the boundary layer so this contamination is not of concern. Therefore the model developed above is adequate. 3.6.3. Global Distribution The global distribution of dust type particulate contaminants is available from satellite measurements (van Donkelaar, 849). The figure below shows global averages for 2001 through 2006. Figure 16 Global mean particle density As discussed above, dust is not the only particulate in the atmosphere. A more general measurement can be obtained using Aerosol Optical Depth (AOD) this measurement includes all particles in the atmosphere. Global AOD measurements have been reported based on satellite data (Bevan, 4). Figure 17: Global AOD Measurements Comparison of the two datasets shows agreement between the satellite derived PM2.5 and AOD which is not surprising because the PM2.5 measurement is derived from AOD data, with a scaling applied to attempt to estimate the amount attributable to dust (van Donkelaar, 847). For this reason the van Donkelaar data will be used in this study as a proxy for overall solid particle concentration. 4. Impacts on Mechanical Systems Aircraft gas turbine engines are designed to accommodate variation of the parameters discussed in the atmospheric model: pressure, temperature, humidity. While the variation of these parameters affects the thermodynamics of the engine, possibly demanding operation at modified power settings in certain environmental conditions, such impacts would be highly specific to individual designs and will not be considered in this study. Particulate exposure affects all turbine engines. As has been introduced above, atmospheric conditions can greatly influence the quantity of particulate exposure an engine experiences. This section will discuss how atmospheric conditions also affect the impact of particulate exposure. In the following sections particles will be discussed generally, without regard to their composition. With regard to the mechanisms discussed the composition of the solid particle does not alter its impact; in the case of wear all solid particle types discussed above result in removal of the oxide layer contributing to erosion (Restall, 274), and with respect to fouling all of the major particle types discussed above are hygroscopic and will therefore adhere to a moist surface. This includes the water soluble contaminants such as sea salt and ammonium sulfate (Stephenson, 757). 4.1.Wear 4.1.1. Basic Wear Process The primary factors that impact particulate wear are (Finne, p. 81): 1) 2) 3) 4) 5) 6) 7) 8) Angle of Impingement Particle Rotation at Impingement Particle Velocity Impingement Particle Size Surface Properties Shape of the Surface Stress Level at the Surface Particle Shape and Strength 9) Particle Concentration in the Fluid Stream 10) Nature of the Carrier Gas and its Temperature Clearly, many of these factors are a function of the particular area, not the environment in which it operates. Of this list, Particle Concentration is the sole factor which may be expected to vary with environment based on what has been learned above. 4.1.2. Areas Most Impacted by Wear Foreign Object Debris (or Damage), without denying that local atmospheric conditions may affect the local concentration of birds and rain-hoods, is outside the scope of this study. Particles discussed will be limited to the size range outlined in Table 3. Within a gas turbine engine the severity of particulate wear increases with material temperature (Tabakoff, p. 543) , that is, wear is most severe on either side of the combustor (Ogaji, p. 28) (Sunderarajan, p. 346). So while all areas of the engine will eventually succumb to particulate wear, the impacts will first be seen in the high compressor, high turbine or combustor. Figure 18: Eroded High Stage Compressor Blades (left) and High Pressure Turbine Blades (Right) (Dunn, p. 341) 4.1.3. Nature of Wear Degradation Particle size has a limited impact upon wear. For particle sizes greater than 50-100µm erosion rates do not vary with respect to particle size (Finne, p. 87) (Sunderarajan, p. 340). As discussed above, the distribution of particles less than 100µm is suitably constant with respect to elevation and region. Therefore, for global averages, it is sufficient to understand the average particle distribution, but it is also critical to remember that if local pollution conditions skew the particle size distribution towards 100µm wear rates can be severely affected. 4.1.4. Impact of Particulate Concentration on Wear For the most part, wear rate is simply related to the number of particle impacts (Sunderarajan, p. 340). Therefore, in an increased particulate concentration the number of impacts will predictably increase, and the wear rate will increase commensurately. At extreme particle flux rates, which are outside the scope of this study, particle interference may affect wear rates (Sunderarajan, p. 342). For the purposes of this study wear rate will increase linearly with particulate exposure. 4.1.5. Impact of Humidity on Particulate Wear Humidity can have an effect on the wear rate of materials (Fang, p. 144) (Lancaster, p. 371). At or near room temperature the effect can be pronounced as the wear rate varies approximately in relation to the partial pressure of water vapor: Figure 19: Wear Rate vs. Partial Pressure of Water Vapor After Fang Figure 7 Much more clearly than the presentation in Fang (Fang, p. 149): Figure 20: Fang Figure 7 This effect is likely important in external components and associated systems. However, since the most crucial wear occurs in the hot section of the gas turbine where variations in water vapor pressure are insignificant this effect has little bearing on this study. 4.2.Fouling 4.2.1. Fouling Introduction and Impacts Fouling is the degradation in performance of a turbine engine due to the build-up of contaminants on the various aerodynamic surfaces. Though fouling of the hot section can occur as a result of dirty fuel (Stalder, p. 363), this study will focus solely on fouling due to atmospheric contaminants. This type of fouling is primarily limited the compressor section (Naeem, p. 248) (Stalder, p. 363). Compressor section fouling accounts for 70-85% of gas turbine engine performance deterioration (Naeem, p. 248). 4.2.2. Parameters Impacting Fouling Naeem lists several factors affecting fouling (Naeem, p. 248) : compressor’s design, compressor’s airfoil-loading, aerofoil’s incidence, aerofoil’s surface-smoothness and coating-material, type and condition of airborne pollutant, and operational environment (e.g. a high humidity increases the rate of fouling). The engine design factors are mostly outside the scope of this paper. Obviously, exact rate impacts for any engine will depend upon these parameters, but a general discussion of the environmental influences upon fouling can be made. Fouling is caused by particles smaller than 2-10µm (Kurz et al, p. 95). The quantity of those particles in a local atmosphere will vary as discussed above. These local variations have a major impact on the rate of fouling deterioration an engine experiences (Stalder, p. 365). Since particles measured by PM2.5 are in the range most likely to cause fouling the particle measurements this study will use for determining particulate severity are directly applicable to fouling and local discrepancies from the average distribution will not have as severe an impact as in the discussion of erosion. 4.2.3. Impact of Humidity on Fouling Fouling results from particles adhering to water and oil, if present, on surfaces within the engine (Stalder, p. 365) (Kurz et al, p. 95). Water is present due to the pressure drop experienced at the inlet to the engine (Stalder, p. 365). The rate of fouling is related to the total humidity, which as discussed above is directly related to the partial pressure of water vapor in the surrounding atmosphere. Stalder presents data showing that the rate of power loss will peak for a certain level of atmospheric humidity. The x-axis in the figure below shows tons of water passing through the engine in 70 hours. Figure 21 % Power Loss vs. Absolute Humidity As humidity increases some amount of the water present will flow off the aerodynamic surfaces rather than adhere, resulting in some particulates being washed away thus reducing the fouling rate (Stalder, p. 366). The inlet pressure drop leading to droplet formation will vary even between aircraft using the same engine so the rate of increase in fouling and peak humidity for fouling cannot be generalized. In the event that hydrocarbons are present, the water will have very little ability to wash contaminants away and contamination will continue at a high rate until reaching an equilibrium point (Stalder, p. 366). This is typically the case in aircraft jet engines (Naeem, p. 248). 4.3.Consequences to Engine The discussion above shows particulates can adhere to gas turbine airfoils, primarily in the compressor thought the fouling process. Erosion changes the shape of airfoils, primarily in the hot section, by wearing away portions of the blade. Both processes have similar impacts because both have then end result of modifying the aerodynamic properties of the blades. These changes manifest themselves through changes in the speed of the low and high compressor due to turbine deterioration, and decreased air flow rate and engine pressure ratio due to compressor deterioration (Dunn, 340,343). The compressor deterioration is also primarily responsible for decreased engine surge margin, and increased likelihood of compressor stall (Dunn, 343). All of these impacts combine to produce an engine produces less thrust, is less efficient, and may become inoperable due to excessive stalls or surges. 4.4.Conclusion This section has shown that the exact impact on a specific engine of operating in various levels of particulates and humidity depends upon design factors specific to that engine so a generic plot of increased erosion or fouling is not possible. It is possible, however, to state that increased particle concentrations will resulted in increased erosion and fouling for any engine, and the fouling will be more severe at higher levels of humidity. The next section will examine, based on the model developed in the previous section, which regions of the world have the worst combined particle concentrations, atmospheric boundary layer depth, and humidity levels for aircraft gas turbine operation. 5. Comparison of World Cities A simple index is created by multiplying the boundary layer thickness by the average PM2.5 measurement. Indexed in this fashion it becomes clear that the thickness of the boundary layer is an important factor in addition to the particle density. For instance, Beijing has the highest particle concentration of any selected city, but among the thinnest boundary layers (as discussed above, the high particle concentration may be a consequence of the thin boundary layer); four cities have a higher index despite lower particle concentrations. It is interesting to note that these cities have a reputation, in the authors experience, have a reputation for being an extremely difficult operating environment. This index is applicable to damage resulting from particulate wear. Table 4 Engine Damage Index for Selected World Cities Bagram AB Dubai Bagdhad Beijing Mexico City Los Angeles Singapore Frankfurt Paris London Moscow New York Rio de Janeiro Engine Boundary Damage Layer Particles Index 800 60 48000 950 50 47500 800 40 32000 300 80 24000 600 20 12000 700 16 11200 300 30 9000 400 18 7200 700 10 7000 400 17 6800 350 16 5600 400 9 3600 800 3 2400 For fouling, the effect of humidity must be considered. Dew points are obtained from annual averages available from The Weather Underground. The dew points are then converted to partial pressures as described above. Comparison with the table above will reveal that Singapore has moved near the top of the list due to its high humidity levels. Table 5: Engine Fouling Index for Selected World Cities Dubai Singapore Baghdad Los Angeles Mexico City Beijing Paris Rio de Janeiro Frankfurt London New York Moscow Bagram Dew Dew Water Boundary Point Point Vapor Layer Particles degF degK Pressure-1 950 50 63 290.3722 0.098568 300 30 75 297.0389 0.138642 800 40 42 278.7056 0.030596 700 16 51 283.7056 0.059396 600 20 42 278.7056 0.030596 300 80 37 275.9278 0.014807 700 10 46 280.9278 0.043336 800 3 69 293.7056 0.118491 400 18 44 279.8167 0.036954 400 17 43 279.2611 0.033772 400 9 43 279.2611 0.033772 350 16 32 273.15 -0.00083 800 60 30 272.0389 -0.00705 Engine Fouling Index 4681.9953 1247.7764 979.08339 665.23828 367.15627 355.37565 303.34995 284.37859 266.06854 229.65061 121.57974 -4.664235 -338.2866 6. Conclusion This study began by developing a model of the atmosphere to understand conditions from ground level up to typical aircraft operating altitudes. From there, the importance of boundary layers to the structure of the atmosphere was discussed. The impact of this atmospheric structure on the distribution of atmospheric particulates was then outlined. The impacts of those particles was then examined. Finally, two indices are proposed to compare the impact of the structure and content of the atmosphere in various world cities. Works Cited Baek et. al. A Quantitative Estimation of Source Contributions to the Concentrations of Atmospheric Suspended Particulate Matter in Urban, Suburban, and Industrial Areas of Korea [Journal] // Environment International Vol. 23. - 1997. - pp. 205-213. Bevan S et all A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR. [Journal] // Remote Sensing of Environment. - In Press. - p. n/a. Colette et. al. Impact of the transport of aerosols from the free troposphere towards the boundary layer on the air quality in the Paris area [Journal] // Atmospheric Environment Vol 42. - 2008. - pp. 390-402. Dunn M. G. et al Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment [Journal] // Journal of Engineering for Gas Turbines and Power. Vol. 109. - 1987. - pp. 336-343. Eliaz N. et al Hot corrosion in gas turbine components [Journal] // Engineering Failure Analysis. Vol. 9. 2002. - pp. 31-43. Engelstaedter et. al. North African dust emissions and transport [Journal] // Earth-Science Reviews. Vol. 79. - 2006. - 79. - pp. 73-100. Environmental Protection Agency 1995 National Air Quality: Status and Trends [Report]. - Research Triangle Park : Office of Air Quality Planning and Standards, 1995. Environmental Protection Agency Our Nations Air - Status and Trends through 2008 [Report]. Research Triangle Park : Office of Air Quality Planning and Standards, 2010. Fairlie et. al. The impact of transpacific transport of mineral dust in the United States [Journal] // Atmospheric Environment. Vol 41. - 2007. - pp. 1251-1266. Fang C.K et. al. The effect of Humidity on the Erosive Wear of 6063 Al Alloy [Journal] // Wear. Vol 236. 1999. - pp. 144-152. Finne I. Some Observations on the Erosion of Ductile Materials [Journal] // Wear. Vol 19. - 1972. - pp. 81-90. Jones et. al. The weekday-weekend difference and the estimation of the non-vehicle contributions to the urban increment of airborne particulate matter [Journal] // Atmospheric Environment. Vol 42. 2008. - pp. 4467-4479. Kojima T et al Sulfate coated dust particles in the free troposphere over Japan [Journal] // Atmospheric Research. Vol 82. . - 2006. - pp. 698-708. Kurz et al Ranier Degradation of Gas Turbine Performance in Natural Gas Service [Journal] // Journal of Natural Gas Science and Engineering. Vol 1. - 2009. - pp. 95-102. Lancaster J.K. A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication, and Wear [Journal] // Tribology International. Vol 23. - 1990. - pp. 371-389. Lin et. al. Impacts of boundary layer mixing on pollution vertical profiles in the lower troposphere: Implications to satellite remote sensing [Journal] // Atmospheric Environment. - 2000. - Vol. 44. - pp. 1726-1739. Naeem M Impacts of low-pressure (LP) compressors’ fouling of a turbofan upon operationaleffectiveness of a military aircraft [Journal] // Applied Energy. Vol. 85. - 2008. - pp. 243-270. Ogaji S.O.T. et. al. Parameter Selection for Diagnosing a Gas-Turbine's Performance-Deterioration [Journal] // Applied Energy. Vol 73. - 2002. - pp. 25-46. Restall J.E. et. al. High Temperature Erosion of Coated Superalloys for Gas Turbines [Journal] // Materials Science and Engineering. Vol 88. - 1987. - pp. 272-282. SAE Aerospace Information Report: Environmental Control System Contamination [Report]. - New York : SAE International, 2007. SAE Aerospace Recommended Practice [Report]. - New York : SAE International, 2008. Stalder et. al. Gas Turbine Compressor Washing State of the Art: Field Experience [Journal] // Journal of Engineering for Gas Turbines and Pwer Generation. - 2001. - Vol. 123. - pp. 363-370. Stephenson D.J. et al The interaction between corrosion and erosion during simulated sea salt compressor shedding in marine gas turbines. [Journal] // Corrosion Science. Vol 26. - 1986. - pp. 757767. Stull R. B. Meteorology for Scientists and Engineers [Book]. - Belmont : Brooks/Cole, 2000. - 2nd. Sunderarajan G. et. al. Solid Particle Erosion Behaviour of Metallic Materials at Room Temperature and Elevated Temperatures [Journal] // Tribology International. Vol 30. - 1997. - pp. 339-359. Tabakoff W. Erosion Resistance of Superalloys and Different Coatings Exposed to Particulate Flows at High Temperature [Journal] // Surface Coatings Technology. Vol. 120-121. - 1999. - pp. 543-547. van Donkelaar et. al. Global Estimate of Ambient Fine Particulate Matter Concentrations from SatelliteBased Aerosol Optical Depth: Development and Application [Journal] // Environmental Health Perspectives. Vol 118.. - 2010. - pp. 847-855. Warren J RTO-TR-AVT-094: Annex B Air, Land, Sea, and Space FOD Issues [Report]. - [s.l.] : NATO, 2008. Zhang et al Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China [Journal] // Atmospheric Environment. - 2009. - Vol. 43. - pp. 5526-5535.