Boltzmann`s factor --> Heat Capacity
Transcription
Boltzmann`s factor --> Heat Capacity
Heat Capacity- Einstein Model Builds on: Boltzmann's factor Heat Capacity- Debye Model Lecture 02.05.2007 Boltzmann's factor --> Eaverage --> kT Heat Capacity- Einstein Model _______________________________________ http://web.ift.uib.no/AMOS/fys208/debye/einstein-note30.jpg + The meaning of average < n > : what is it when kT >> hbar omega (added later) kT -> Average energy per osc. E0 = hbar omega, Energy quantum; < n > = Average energy / Energy quantum, i.e. < n > = kT/ E0 when kT >> E0 http://web.ift.uib.no/AMOS/fys208/debye/einstein-note30.jpg (lower part) Heat Capacity- Debye Model Old slides - density of modes quadratic in omega - and cut-off: This explains why in three dimensions the "mode density" is different from one dimension case. Today's whiteboard:------------------------------------------------------------------------ Heat Capacity- Debye Model Note: http://web.ift.uib.no/AMOS/fys208/debye/debye30.jpg and one more picture: Debye's model in octave GNU-Octave is a free program, partly compatible with MATLAB The program: % Simple treatment of Debye model % x=0.01:0.01:20; y=(x.^4.*exp(x))./(exp(x)-1).^2; figure(1); plot(x,y) % Showing the integrand of Debye function; % % evaluate the integral by simple summation formula % Iy=y*0; % Fill Iy by zeros for k=2:max(size(y));Iy(k)=Iy(k-1)+y(k);end % perform the summations Iy=Iy*(x(2)-x(1)); % multiply by Delta x % plot Debye integral function figure(2);plot(x,Iy) ipos=0; for tau=0.01:0.01:2; [val,ind]=sort(abs(x-1/tau)); ipos=ipos+1;HeatCap(ipos)=Iy(ind(1))*tau^3; T(ipos)=tau; end figure(3); plot(T,HeatCap);