Sara Kherad and Olivier Renaud

Transcription

Sara Kherad and Olivier Renaud
An Exact Permutation Method
for Testing All Effects For Any
Design of ANOVA
Sara Kherad and Olivier Renaud
University of Geneva, Switzerland
Swiss Statistics Meeting, 29 October 2009
Introduction
R.A. Fisher:
ANOVA (1920)
Permutation test (1930)
S. Kherad & O. Renaud
Introduction
R.A. Fisher:
ANOVA (1920)
Permutation test (1930)
What if the parametric conditions do not hold?
parametric ANOVA cannot be used!
S. Kherad & O. Renaud
Permutation Tests
S. Kherad & O. Renaud
Permutation Tests
Permutation test or Randomization test.
S. Kherad & O. Renaud
Permutation Tests
Permutation test or Randomization test.
Weaker assumption than parametric one
S. Kherad & O. Renaud
Permutation Tests
Permutation test or Randomization test.
Weaker assumption than parametric one
Exchangeability of the observations under null hypothesis
S. Kherad & O. Renaud
Permutation Tests
Permutation test or Randomization test.
Weaker assumption than parametric one
Exchangeability of the observations under null hypothesis
f (y1 , y2 , .., yn ) = f (yπ(1) , yπ(2) , ..., yπ(n) )
Exact permutation test
S. Kherad & O. Renaud
Permutation Tests
Permutation test or Randomization test.
Weaker assumption than parametric one
Exchangeability of the observations under null hypothesis
f (y1 , y2 , .., yn ) = f (yπ(1) , yπ(2) , ..., yπ(n) )
Exact permutation test
Some of the parametric tests have the corresponding
Permutation tests, using the same statistic as parametric one
S. Kherad & O. Renaud
Permutation Approach
U1
Original:
S. Kherad & O. Renaud
U2
Permutation Approach
U1
Original:
S. Kherad & O. Renaud
statistics
U2
Analyze
Statorig = Ū1 − Ū2
Permutation Approach
U1
Original:
Perm. 1:
S. Kherad & O. Renaud
statistics
U2
Analyze
Statorig = Ū1 − Ū2
Permutation Approach
U1
Original:
Perm. 1:
S. Kherad & O. Renaud
statistics
U2
Analyze
Statorig = Ū1 − Ū2
Statperm(1) = Ū1∗ − Ū2∗
Permutation Approach
U1
Original:
Perm. 1:
Perm. 2:
S. Kherad & O. Renaud
statistics
U2
Analyze
Statorig = Ū1 − Ū2
Statperm(1) = Ū1∗ − Ū2∗
Permutation Approach
U1
Original:
statistics
U2
Analyze
Statorig = Ū1 − Ū2
Perm. 1:
Statperm(1) = Ū1∗ − Ū2∗
Perm. 2:
Statperm(2) = Ū1∗ − Ū2∗
S. Kherad & O. Renaud
Permutation Approach
U1
Original:
statistics
U2
Analyze
Statorig = Ū1 − Ū2
Perm. 1:
Statperm(1) = Ū1∗ − Ū2∗
Perm. 2:
Statperm(2) = Ū1∗ − Ū2∗
Perm. B:
Statperm(B) = Ū1∗ − Ū2∗
S. Kherad & O. Renaud
Permutation Approach
S. Kherad & O. Renaud
Permutation Approach
histogram of permuted statistic distribution
Statperm(i) = Ū1∗ − Ū2∗
Q0.95
S. Kherad & O. Renaud
Permutation Approach
histogram of permuted statistic distribution
Statperm(i) = Ū1∗ − Ū2∗
Q0.95
p − value = Pr(statperm ≥ statorig )
!
# i : statperm(i) ≥ statorig
=
B
S. Kherad & O. Renaud
"
Two Kinds of Permutation Method in ANOVA
Anderson & Ter Braak:
S. Kherad & O. Renaud
Two Kinds of Permutation Method in ANOVA
Anderson & Ter Braak:
Permutation of raw data or observations
S. Kherad & O. Renaud
Two Kinds of Permutation Method in ANOVA
Anderson & Ter Braak:
Permutation of raw data or observations
Permutation of some form of residuals
[1] M. Anderson & C. Ter Braak, ``Permutation tests for multi-factorial analysis of variance,''
Journal of Statistical Computation and Simulation T-73(2), 2003.
S. Kherad & O. Renaud
Permutation of Raw Data
permutation of raw data or observations.
S. Kherad & O. Renaud
Permutation of Raw Data
permutation of raw data or observations.
Unrestricted Permutation of raw data. (Manly 1997)
Approximation test
S. Kherad & O. Renaud
Permutation of Raw Data
permutation of raw data or observations.
Unrestricted Permutation of raw data. (Manly 1997)
Approximation test
Restricted permutation test. (Good, 1994)
is exact for testing some cases of ANOVA.
there are not enough suitable observations to permute when the number of
sample in each cell is small.
S. Kherad & O. Renaud
Permutation of Raw Data
permutation of raw data or observations.
Unrestricted Permutation of raw data. (Manly 1997)
Approximation test
Restricted permutation test. (Good, 1994)
is exact for testing some cases of ANOVA.
there are not enough suitable observations to permute when the number of
sample in each cell is small.
Synchronized permutation test. (Salmaso, 2003)
is exact for some parameter and some designs.
not used for unbalanced designs or small number of observations in each cell.
S. Kherad & O. Renaud
Permutation of Some Forms of Residulas
Permutation of residuals
S. Kherad & O. Renaud
Permutation of Some Forms of Residulas
Permutation of residuals
Residuals under full model. (Ter Braak, 1992)
Approximation test
S. Kherad & O. Renaud
Permutation of Some Forms of Residulas
Permutation of residuals
Residuals under full model. (Ter Braak, 1992)
Approximation test
Residuals under reduced model. (Still and White, 1981)
Approximation test
S. Kherad & O. Renaud
Permutation of Some Forms of Residulas
Permutation of residuals
Residuals under full model. (Ter Braak, 1992)
Approximation test
Residuals under reduced model. (Still and White, 1981)
Approximation test
Anderson and Ter Braak (2003) and our simulations, showed that in most of
the cases is more powerful method.
How to modify this Approximation test to get an Exact one?
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
Consider the general model for regression and ANOVA:
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
Consider the general model for regression and ANOVA:
y = Xβ + ε
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
Consider the general model for regression and ANOVA:
y = Xβ + ε
X = [X1 |X2 ]
S. Kherad & O. Renaud
β=
!
β1
β2
"
ε ∼ (0, σ 2 IN )
Permutation of Residuals Under Reduced Model
Consider the general model for regression and ANOVA:
y = Xβ + ε
X = [X1 |X2 ]
β=
!
β1
β2
"
ε ∼ (0, σ 2 IN )
y = X1 β1 + X2 β2 + ε
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
Consider the general model for regression and ANOVA:
y = Xβ + ε
X = [X1 |X2 ]
β=
!
β1
β2
"
ε ∼ (0, σ 2 IN )
y = X1 β1 + X2 β2 + ε
H0 : β2 = 0 vs.
S. Kherad & O. Renaud
H1 : β2 != 0
Permutation of Residuals Under Reduced Model
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
y = X1 β1 + X2 β2 + ε
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
(I − H1 )
S. Kherad & O. Renaud
y = X1 β1 + X2 β2 + ε
Permutation of Residuals Under Reduced Model
(I − H1 )
y = X1 β1 + X2 β2 + ε
H1 = X1 (X1! X1 )−1 X1!
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
(I − H1 )
y = X1 β1 + X2 β2 + ε
H1 = X1 (X1! X1 )−1 X1!
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
(I − H1 )
y = X1 β1 + X2 β2 + ε
H1 = X1 (X1! X1 )−1 X1!
yrr = (I − H1 )y, Xrr = (I − H1 )X2 , εrr = (I − H1 )ε
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
(I − H1 )
y = X1 β1 + X2 β2 + ε
H1 = X1 (X1! X1 )−1 X1!
yrr = (I − H1 )y, Xrr = (I − H1 )X2 , εrr = (I − H1 )ε
yrr = Xrr β2 + εrr
S. Kherad & O. Renaud
Permutation of Residuals Under Reduced Model
(I − H1 )
y = X1 β1 + X2 β2 + ε
H1 = X1 (X1! X1 )−1 X1!
yrr = (I − H1 )y, Xrr = (I − H1 )X2 , εrr = (I − H1 )ε
yrr = Xrr β2 + εrr
yrr = εrr ∼ (0, σ 2 (I − H1 ))
S. Kherad & O. Renaud
How Can We Have an Exact Permutation?
yrr
S. Kherad & O. Renaud
How Can We Have an Exact Permutation?
The aim is to make yrr exchangeable to obtain an exact
permutation test.
yrr
S. Kherad & O. Renaud
How Can We Have an Exact Permutation?
The aim is to make yrr exchangeable to obtain an exact
permutation test.
yrr
VN ×(N −q)
S. Kherad & O. Renaud
How Can We Have an Exact Permutation?
The aim is to make yrr exchangeable to obtain an exact
permutation test.
yrr
VN ×(N −q)
V V ! = IN − H1
S. Kherad & O. Renaud
and V ! V = IN −q
How Can We Have an Exact Permutation?
The aim is to make yrr exchangeable to obtain an exact
permutation test.
yrr
VN ×(N −q)
V V ! = IN − H1
V!
S. Kherad & O. Renaud
and V ! V = IN −q
yrr = Xrr β2 + εrr
How Can We Have an Exact Permutation?
The aim is to make yrr exchangeable to obtain an exact
permutation test.
yrr
VN ×(N −q)
V V ! = IN − H1
V!
and V ! V = IN −q
yrr = Xrr β2 + εrr
ymr = Xmr β2 + εmr
S. Kherad & O. Renaud
How Can We Have an Exact Permutation?
The aim is to make yrr exchangeable to obtain an exact
permutation test.
yrr
VN ×(N −q)
V V ! = IN − H1
V!
and V ! V = IN −q
yrr = Xrr β2 + εrr
ymr = Xmr β2 + εmr
E[ε2mr ]
=V
!
S. Kherad & O. Renaud
E[ε2rr ]V
= σ IN −q
2
2
y
=
ε
∼
(0,
σ
IN −q )
=⇒ mr
mr
Permutation of Residuals Under Modified Model
εij
iid
or
exchangeable
!
spherical distribution
ymr is weakly exchangeable
ymr is strongly exchangeable
Exact permutation test
S. Kherad & O. Renaud
A Geometric View of Three Methods
For testing β2
Fss =
y
yrr
RSS(β̂1 )
RSS(β̂)
X1
RSSrr (β1 )
SS(X2 )
SS(Xrr )
Frr
(RSS(βˆ1 ) − RSS(β̂))/(p − q)
RSS(β̂)/(N − p)
!
!
!
yrr
(Xrr (Xrr
Xrr )−1 Xrr
)yrr /(p − q)
=
! (I − X(X ! X)X ! )y /(N − p)
yrr
rr
ŷX1 ,X2
X2
ŷrr
Fmr
Xrr
S. Kherad & O. Renaud
!
!
!
ymr
(Xmr (Xmr
Xmr )−1 Xmr
)ymr /(p − q)
= !
! X
−1 X ! )y
ymr (IN −q − Xmr (Xmr
mr )
mr mr /(N − p)
Permutation of Residuals Under Modified Model
S. Kherad & O. Renaud
Permutation of Residuals Under Modified Model
Fmr
S. Kherad & O. Renaud
!
!
!
ymr
(Xmr (Xmr
Xmr )−1 Xmr
)ymr /(p − q)
= !
! X
−1 X ! )y
ymr (IN −q − Xmr (Xmr
mr )
mr mr /(N − p)
Permutation of Residuals Under Modified Model
Fmr
!
!
!
ymr
(Xmr (Xmr
Xmr )−1 Xmr
)ymr /(p − q)
= !
! X
−1 X ! )y
ymr (IN −q − Xmr (Xmr
mr )
mr mr /(N − p)
∗
Fmr
∗ "
"
"
∗
ymr
(Xmr (Xmr
Xmr )−1 Xmr
)ymr
/(p − q)
= ∗ "
" X
−1 X " )y ∗ /(N − p)
ymr (IN −q − Xmr (Xmr
mr )
mr mr
S. Kherad & O. Renaud
Permutation of Residuals Under Modified Model
Fmr
!
!
!
ymr
(Xmr (Xmr
Xmr )−1 Xmr
)ymr /(p − q)
= !
! X
−1 X ! )y
ymr (IN −q − Xmr (Xmr
mr )
mr mr /(N − p)
∗
Fmr
∗ "
"
"
∗
ymr
(Xmr (Xmr
Xmr )−1 Xmr
)ymr
/(p − q)
= ∗ "
" X
−1 X " )y ∗ /(N − p)
ymr (IN −q − Xmr (Xmr
mr )
mr mr
∗
#(Fmr
≥ Fmr )
P − value =
B
S. Kherad & O. Renaud
Simulation Results
S. Kherad & O. Renaud
Simulation Results
Comparing four methods for a balanced two-way ANOVA with a=2, b=2, and
n=2 to test the interaction effect for different values of t.
S. Kherad & O. Renaud
Simulation Results
Comparing four methods for a balanced two-way ANOVA with a=2, b=2, and
n=2 to test the interaction effect for different values of t.
N (0, 1)
√
U (− 3,
√
3)
exp(1) − 1
t(4)
S. Kherad & O. Renaud
stat.
Ymr
Yrr
Y
F-test
Ymr
Yrr
Y
F-test
Ymr
Yrr
Y
F-test
Ymr
Yrr
Y
F-test
t=0
0.0493
0.0318
0.0615
0.0510
0.0500
0.0390
0.0737
0.0537
0.0507
0.0330
0.0647
0.0520
0.0450
0.0254
0.0618
0.0429
t = 0.5
0.1843
0.1373
0.2308
0.1908
0.0800
0.0647
0.1083
0.0870
0.2450
0.2217
0.3347
0.0520
0.1543
0.1170
0.1827
0.1372
t=1
0.5460
0.4590
0.6260
0.5770
0.2867
0.2483
0.3743
0.3160
0.6147
0.5717
0.6897
0.6007
0.7060
0.6080
0.7220
0.6400
t = 1.5
0.8413
0.7857
0.8942
0.8782
0.6623
0.6130
0.7828
0.7337
0.8270
0.5717
0.8870
0.8193
0.8600
0.7830
0.8540
0.8250
t=2
0.9533
0.9460
0.9815
0.9828
0.9060
0.8977
0.9733
0.9737
0.9019
0.9270
0.9573
0.8983
0.8833
0.8460
0.9115
0.8628
t = 2.5
0.9918
0.9910
0.9988
0.9998
0.9969
0.9917
0.9999
0.9902
0.9928
0.9910
0.9912
0.9902
0.9440
0.9050
0.9460
0.9390
Simulation Results
Comparing four methods for a balanced two-way ANOVA with a=2, b=2, and
n=2 to test the interaction effect for different values of t.
N (0, 1)
√
U (− 3,
√
3)
exp(1) − 1
t(4)
S. Kherad & O. Renaud
stat.
Ymr
Yrr
Y
F-test
Ymr
Yrr
Y
F-test
Ymr
Yrr
Y
F-test
Ymr
Yrr
Y
F-test
t=0
0.0493
0.0318
0.0615
0.0510
0.0500
0.0390
0.0737
0.0537
0.0507
0.0330
0.0647
0.0520
0.0450
0.0254
0.0618
0.0429
t = 0.5
0.1843
0.1373
0.2308
0.1908
0.0800
0.0647
0.1083
0.0870
0.2450
0.2217
0.3347
0.0520
0.1543
0.1170
0.1827
0.1372
t=1
0.5460
0.4590
0.6260
0.5770
0.2867
0.2483
0.3743
0.3160
0.6147
0.5717
0.6897
0.6007
0.7060
0.6080
0.7220
0.6400
t = 1.5
0.8413
0.7857
0.8942
0.8782
0.6623
0.6130
0.7828
0.7337
0.8270
0.5717
0.8870
0.8193
0.8600
0.7830
0.8540
0.8250
t=2
0.9533
0.9460
0.9815
0.9828
0.9060
0.8977
0.9733
0.9737
0.9019
0.9270
0.9573
0.8983
0.8833
0.8460
0.9115
0.8628
t = 2.5
0.9918
0.9910
0.9988
0.9998
0.9969
0.9917
0.9999
0.9902
0.9928
0.9910
0.9912
0.9902
0.9440
0.9050
0.9460
0.9390
Application in Analysis of Psychological Data
age<45
age>45
Postman
Prison Guard
Secretary
7
7
5
7
7
7
Ambiguity
Application in Analysis of Psychological Data
Postman
Prison Guard
Secretary
7
7
5
7
7
age<45
7
age>45
Ambiguity
p-value
age
career
Ymr
Yrr
0.089
0.300
0.298
0.198
0.002
0.025
0.028
0.012
Y
F − test
Application in Analysis of Psychological Data
Postman
Prison Guard
Secretary
7
7
5
7
7
age<45
7
age>45
Ambiguity
p-value
age
career
Ymr
Yrr
0.089
0.300
0.298
0.198
0.002
0.025
0.028
0.012
Y
F − test
* Thanks to Katia Iglesias for providing the data used in this analysis,
Summary
Advantages of the method:
An exact permutation test
Could be applied to all ANOVA designs
Suitable for unbalanced designs
Can be used to test all the factors in ANOVA
S. Kherad & O. Renaud
Thank you!
S. Kherad & O. Renaud