Nucleon to Pion Transition Distribution Amplitudes in a Light
Transcription
Nucleon to Pion Transition Distribution Amplitudes in a Light
Nucleon to Pion Transition Distribution Amplitudes in a Light-Cone Quark Model Manuel Pincetti Department of Nuclear and Theoretical Physics, University of Pavia and INFN, Section of Pavia work done in collaboration with S. Boffi and B. Pasquini Transversity ’08 — Ferrara, 28-31 may 2008 Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 1 / 29 Outline 1 Motivation 2 Nucleon DAs 3 Meson Cloud 4 Transition Distribution Amplitudes From GPDs to TDAs “Historical path” Interpretation of the TDAs 5 Mesonic TDAs 6 Baryonic TDAs Nucleon to Pion TDAs Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 2 / 29 Motivation Motivation Nucleon to Pion TDAs encoded the non-perturbative transition between two hadronic states that takes place in the processes... Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 3 / 29 Motivation Motivation Nucleon to Pion TDAs encoded the non-perturbative transition between two hadronic states that takes place in the processes... γ ∗ N → N 0 π: pion electroproduction...EXPs: JLab, Hermess & Compass; Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 3 / 29 Motivation Motivation Nucleon to Pion TDAs encoded the non-perturbative transition between two hadronic states that takes place in the processes... γ ∗ N → N 0 π: pion electroproduction...EXPs: JLab, Hermess & Compass; P̄ P → γ ∗ π: proton-antiproton annihilation...EXP: GSI-FAIR. Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 3 / 29 Motivation Motivation Nucleon to Pion TDAs encoded the non-perturbative transition between two hadronic states that takes place in the processes... γ ∗ N → N 0 π: pion electroproduction...EXPs: JLab, Hermess & Compass; P̄ P → γ ∗ π: proton-antiproton annihilation...EXP: GSI-FAIR. ⇒ TDAs represent the most direct source of information about the Pion-Cloud of the Nucleon!!! Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 3 / 29 Nucleon DAs A step backwards...Nucleon DAs Nucleon DAs ⇓ Standard Tool to investigate exclusive processes in QCD... Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 4 / 29 Nucleon DAs A step backwards...Nucleon DAs Within the “Convolution Approach” (Brodsky & Lepage; Efremov & Radyuskin) they encapsulate the bound-state dynamics (process INdep.) factorized from the hard-scattering amplitude (process dep.) 2 Z 1 Z [dx] GM (Q ) = 0 Manuel Pincetti (DFNT and INFN Pavia) 1 ∗ 2 [dy] DA(yi , Q ) h(xi , yi , Q2 )DA(xi , Q2 ) 0 N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 4 / 29 Nucleon DAs A step backwards...Nucleon DAs At leading twist starting from the FT of the matrix element of the trilocal operator 3 DAs appear Braun et al. NPB589 (’00) 4F = h h0|ijk uiα (z1 n)[z1 ; z0 ]i0 i ujβ (z2 n)[z2 ; z0 ]j 0 j dkγ (z3 n)[z3 ; z0 ]k0 k |P (p)i 5 + N 5 + N µ 5 + fN V N (p /C)αβ (γ N )γ + A (p /γ C)αβ (N )γ + T (σpµ C)αβ (γ γ N )γ Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 i 4 / 29 Nucleon DAs A step backwards...Nucleon DAs At leading twist starting from the FT of the matrix element of the trilocal operator 3 DAs appear Braun et al. NPB589 (’00) 4F h0|ijk uiα (z1 n)[z1 ; z0 ]i0 i ujβ (z2 n)[z2 ; z0 ]j 0 j dkγ (z3 n)[z3 ; z0 ]k0 k |P (p)i = h 5 + N 5 + N µ 5 + fN V N (p /C)αβ (γ N )γ + A (p /γ C)αβ (N )γ + T (σpµ C)αβ (γ γ N )γ i In the A+ = 0 gauge can be interpreted as probability amplitude for the nucleon to P consist of valence quarks with longitudinal momentum fraction xi ∈ [0, 1], i xi = 1 Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 4 / 29 Nucleon DAs A step backwards...Nucleon DAs At leading twist starting from the FT of the matrix element of the trilocal operator 3 DAs appear Braun et al. NPB589 (’00) 4F h0|ijk uiα (z1 n)[z1 ; z0 ]i0 i ujβ (z2 n)[z2 ; z0 ]j 0 j dkγ (z3 n)[z3 ; z0 ]k0 k |P (p)i = h 5 + N 5 + N µ 5 + fN V N (p /C)αβ (γ N )γ + A (p /γ C)αβ (N )γ + T (σpµ C)αβ (γ γ N )γ i In the A+ = 0 gauge can be interpreted as probability amplitude for the nucleon to P consist of valence quarks with longitudinal momentum fraction xi ∈ [0, 1], i xi = 1 ⇓ Best way to test the lower Fock state component of the Nucleon state |N i = |qqqi + |qqqq q̄i + · · · Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 4 / 29 Nucleon DAs A step backwards...Nucleon DAs At leading twist starting from the FT of the matrix element of the trilocal operator 3 DAs appear Braun et al. NPB589 (’00) 4F h0|ijk uiα (z1 n)[z1 ; z0 ]i0 i ujβ (z2 n)[z2 ; z0 ]j 0 j dkγ (z3 n)[z3 ; z0 ]k0 k |P (p)i = h 5 + N 5 + N µ 5 + fN V N (p /C)αβ (γ N )γ + A (p /γ C)αβ (N )γ + T (σpµ C)αβ (γ γ N )γ i In the A+ = 0 gauge can be interpreted as probability amplitude for the nucleon to P consist of valence quarks with longitudinal momentum fraction xi ∈ [0, 1], i xi = 1 ⇓ Best way to test the lower Fock state component of the Nucleon state |N i = |qqqi + |qqqq q̄i + · · · A lot of theoretical work has been done... Chernyak & Zhitnitsky(’84), King & Sachrajda (’87), CZ+Oglobin (’88), Dziembowski (’88), Dziembowski & Franklin (’90), Stefanis & Bergmann (’93), Bolz & Kroll (’96), Braun et et al. (’99) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 4 / 29 Nucleon DAs A step backwards...Nucleon DAs At leading twist starting from the FT of the matrix element of the trilocal operator 3 DAs appear Braun et al. NPB589 (’00) 4F h0|ijk uiα (z1 n)[z1 ; z0 ]i0 i ujβ (z2 n)[z2 ; z0 ]j 0 j dkγ (z3 n)[z3 ; z0 ]k0 k |P (p)i = h 5 + N 5 + N µ 5 + fN V N (p /C)αβ (γ N )γ + A (p /γ C)αβ (N )γ + T (σpµ C)αβ (γ γ N )γ i In the A+ = 0 gauge can be interpreted as probability amplitude for the nucleon to P consist of valence quarks with longitudinal momentum fraction xi ∈ [0, 1], i xi = 1 ⇓ Best way to test the lower Fock state component of the Nucleon state |N i = |qqqi + |qqqq q̄i + · · · A lot of theoretical work has been done... Chernyak & Zhitnitsky(’84), King & Sachrajda (’87), CZ+Oglobin (’88), Dziembowski (’88), Dziembowski & Franklin (’90), Stefanis & Bergmann (’93), Bolz & Kroll (’96), Braun et et al. (’99)... ...nevertheless (so far) moderate success in phenomenology. Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 4 / 29 Nucleon DAs A step backwards...Nucleon DAs At leading twist starting from the FT of the matrix element of the trilocal operator 3 DAs appear Braun et al. NPB589 (’00) 4F h0|ijk uiα (z1 n)[z1 ; z0 ]i0 i ujβ (z2 n)[z2 ; z0 ]j 0 j dkγ (z3 n)[z3 ; z0 ]k0 k |P (p)i = h 5 + N 5 + N µ 5 + fN V N (p /C)αβ (γ N )γ + A (p /γ C)αβ (N )γ + T (σpµ C)αβ (γ γ N )γ i to In the A+ = 0 gauge can be interpreted as probability amplitude for the nucleon P consist of valence quarks with longitudinal momentum fraction xi ∈ [0, 1], i xi = 1 ⇓ Best way to test the lower Fock state component of the Nucleon state |N i = |qqqi + |qqqq q̄i + · · · A lot of theoretical work has been done... ...nevertheless (so far) moderate success in phenomenology. Last month → QCDSF/UKQCD coll., 0804.1877 [hep-lat] “Nucleon distribution amplitudes from lattice QCD”... Lattice predictions for the moments of the Nucleon DAs. Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 4 / 29 Nucleon DAs Nucleon DAs are based on the assumption that the Fock states with more than a minimum number of costituents play no significant role... Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 5 / 29 Nucleon DAs Nucleon DAs are based on the assumption that the Fock states with more than a minimum number of costituents play no significant role... ⇒ NO need of higher Fock states component in a model calculation! Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 5 / 29 Nucleon DAs Nucleon DAs are based on the assumption that the Fock states with more than a minimum number of costituents play no significant role... ⇒ NO need of higher Fock states component in a model calculation! In our Light-Cone approach we truncate the expansion of the Nucleon state at first order... |N i = Ψ(3q) |N (qqq)i + · · · Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 5 / 29 Nucleon DAs Nucleon DAs are based on the assumption that the Fock states with more than a minimum number of costituents play no significant role... ⇒ NO need of higher Fock states component in a model calculation! In our Light-Cone approach we truncate the expansion of the Nucleon state at first order... |N i = Ψ(3q) |N (qqq)i + · · · We describe the nucleon by means of the LCWFs Ψf3q expressed in terms of the canonical WFs Ψc3q , solutions of the instant-form Hamiltonian, through the relation p P ⇒ Ψf3q = ω1 ω2 ω3 /x1 x2 x3 M0 {λ0 } h{λi }|R† |{λ0i }iΨc3q i where R is a Generalized Melosh Rotation and M0 = N q X m2i + ~ki2 i is the free-mass operator Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 5 / 29 Nucleon DAs ♠ Instant-Form Wave Function: Ψ = ΦI ⊗ ΦS ⊗ Ψ̃({~ki }) Spin and Isospin component: SU(6) symmetric x0 , time; x1 , x2 , x3 space Momentum Space component: p 2 P s-wave N , with M = Ψ̃ = (M 2 +β ki + m2q 0 2 )γ i 0 3 parameters: mq , β and γ fitted to reproduce the magnetic moment of the nucleon and gA : mq = 263 MeV, β= 607 MeV and γ = 3.5 Schlumpf, PhD Thesis, hep-ph/9211255 Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 6 / 29 Nucleon DAs ♠ Instant-Form Wave Function: Ψ = ΦI ⊗ ΦS ⊗ Ψ̃({~ki }) Spin and Isospin component: SU(6) symmetric Momentum Space component: p 2 P s-wave N Ψ̃ = (M 2 +β ki + m2q 2 )γ , with M0 = i x0 , time; x1 , x2 , x3 space 0 3 parameters: mq , β and γ fitted to reproduce the magnetic moment of the nucleon and gA : mq = 263 MeV, β= 607 MeV and γ = 3.5 Schlumpf, PhD Thesis, hep-ph/9211255 ♠ Ligh-Front wave function + x time; x− , x1 , x2 space Manuel Pincetti (DFNT and INFN Pavia) Breaking of SU(6) symmetry Non-zero quark orbital momentum N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 6 / 29 Nucleon DAs ♠ Instant-Form Wave Function: Ψ = ΦI ⊗ ΦS ⊗ Ψ̃({~ki }) Spin and Isospin component: SU(6) symmetric Momentum Space component: p 2 P s-wave N ki + m2q Ψ̃ = (M 2 +β 2 )γ , with M0 = i x0 , time; x1 , x2 , x3 space 0 3 parameters: mq , β and γ fitted to reproduce the magnetic moment of the nucleon and gA : mq = 263 MeV, β= 607 MeV and γ = 3.5 Schlumpf, PhD Thesis, hep-ph/9211255 ♠ Ligh-Front wave function x+ time; x− , x1 , x2 space Melosh Rotation Manuel Pincetti (DFNT and INFN Pavia) Breaking of SU(6) symmetry Non-zero quark orbital momentum =⇒ ↑ qLC = w[(k+ + m)qI↑ + (k1 + ik2 )qI↓ ] ↓ qLC = w[(k1 + ik2 )qI↑ + (k+ + m)qI↓ ] N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 6 / 29 Nucleon DAs ♠ Instant-Form Wave Function: Ψ = ΦI ⊗ ΦS ⊗ Ψ̃({~ki }) Spin and Isospin component: SU(6) symmetric Momentum Space component: p 2 P s-wave N ki + m2q Ψ̃ = (M 2 +β 2 )γ , with M0 = i x0 , time; x1 , x2 , x3 space 0 3 parameters: mq , β and γ fitted to reproduce the magnetic moment of the nucleon and gA : mq = 263 MeV, β= 607 MeV and γ = 3.5 Schlumpf, PhD Thesis, hep-ph/9211255 ♠ Ligh-Front wave function + x time; x− , x1 , x2 space Melosh Rotation Breaking of SU(6) symmetry Non-zero quark orbital momentum =⇒ ↑ qLC = w[(k+ + m)qI↑ + (k1 + ik2 )qI↓ ] ↓ qLC = w[(k1 + ik2 )qI↑ + (k+ + m)qI↓ ] ⇒ NON trivial SPIN STRUCTURE and a correlation between quark SPIN and quark ORBITAL ANGULAR MOMENTUM. Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 6 / 29 Nucleon DAs Results for the Nucleon DAs Boffi, Pasquini and M.P., drafting Defining . M λαβ,γ = 4F h0|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p)i λ Proton Helicity Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 7 / 29 Nucleon DAs Results for the Nucleon DAs Boffi, Pasquini and M.P., drafting Defining . M λαβ,γ = 4F h0|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p)i λ Proton Helicity p V = Ap = 1 √ 1 + − 32 fN 4 2 (p ) 3 1 √ 1 + −2 fN 4 2 (p ) T p = − f1N ↑ M12,1 + ↑ M21,1 ↑ ↑ M21,1 − M12,1 ↑ 1 + − 32 √ M11,2 4 (p ) 2 Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 7 / 29 Nucleon DAs Results for the Nucleon DAs Boffi, Pasquini and M.P., drafting Defining M λαβ,γ . j ijk i k = 4F h0| uα (z1 n)uβ (z2 n)dγ (z3 n)|P (p)i λ Proton Helicity 3 ↑ ↑ M12,1 + M21,1 ↑ ↑ 1 + − 32 √ M − M 4 (p ) 21,1 12,1 2 Vp = 1 √ 1 + −2 fN 4 2 (p ) Ap = 1 fN T p = − f1N ↑ 1 + − 23 √ M11,2 4 (p ) 2 Manuel Pincetti (DFNT and INFN Pavia) The symmetry of the WFs and the identity of the 2 u − quarks ⇓ Only 1 of the 3 DAs is indipendent... . Historically Φ = V − A N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 7 / 29 Nucleon DAs Results for the Nucleon DAs Boffi, Pasquini and M.P., drafting Defining . M λαβ,γ = 4F h0|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p)i λ Proton Helicity ↑ ↑ + M21,1 M12,1 ↑ ↑ 1 + − 32 √ − M M 4 (p ) 12,1 21,1 2 Vp = 1 √ 1 + − 23 fN 4 2 (p ) Ap = 1 fN T p = − f1N ↑ 1 + − 23 √ M11,2 4 (p ) 2 λ M αβ,γ = −√ N,[f ] ×Ψ̃λ 24 x1 x2 x3 The symmetry of the WFs and the identity of the 2 u − quarks ⇓ Only 1 of the 3 DAs is indipendent... . Historically Φ = V − A Z Y 3 dκi⊥ X λ1 λ2 + λ3 + u+α (x1 p+ 1 )u+β (x2 p1 )u+γ (x3 p1 ) 3 ]2 [2(2π) i=1 λ1,2,3 X 3 {x1 , κ1⊥ ; λ1 , u}{x2 , κ2⊥ ; λ2 , u}{x3 , κ3⊥ ; λ3 , d} δ (2) κi⊥ i=1 Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 7 / 29 Nucleon DAs DA Φ from Chernyak, Ogloblin & Zhitnisky, Yad. Fiz. 48, 841 (’88) QCD Sum Rule (Different POV to emphasize the structure) DA Φ from Bolz & Kroll, Z. Phys A 356, 327 (’96) Data Fit Our model calculation for the DA Φ Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 8 / 29 Nucleon DAs Comparison of the moments of the DA Φ: l + m + n ≤ 2 . Φ(l,m,n) = Z Z 1 n 2 [dx]xl1 xm 2 x3 Φ(x1 , x2 , x3 , Q ) 0 (l, m, n) 0 0 0 1 0 0 0 1 0 0 0 1 2 0 0 0 2 0 0 0 2 1 1 0 1 0 1 0 1 1 COZ 1 0.54 − 0.62 0.18 − 0.20 0.20 − 0.25 0.32 − 0.42 0.065 − 0.088 0.09 − 0.12 0.08 − 0.10 0.09 − 0.11 −0.03 − 0.03 1 [dx]Φ(x1 , x2 , x3 , Q2 ) 0 SB 1 0.572 0.184 0.244 0.338 0.066 0.170 0.139 0.096 0.018 DF 1 0.582 0.213 0.207 0.367 0.085 0.083 0.108 0.106 −0.021 BKfit 1 0.381 0.309 0.309 0.179 0.125 0.125 0.101 0.101 0.083 Our 1 0.346 0.331 0.323 0.152 0.142 0.137 0.099 0.096 0.091 LAT 1 0.394 0.302 0.304 0.18 0.132 0.138 0.113 0.112 0.05 COZ: Chernyak, Ogloblin & Zhitnitsky, Yad.Fiz.48 (’88); SB: Stefanis & Bergman, Phys.Rev.D47 (’93); DF: Dziembowski & Franklin, Phys.Rev.D42 (’90); BK: Bolz & Kroll, Z.PhysA356 (’96); LAT: QCDSF/UKQCD coll., arXiv:0804.1877 [hep-lat]. Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 9 / 29 Meson Cloud Does Meson Cloud matter? The role of a nonperturbative Pion Cloud surronding the nucleon is well explained in QCD as a consequence of the spontaneously-broken chiral symmetry. The Meson Cloud picture accounts for some unexpected experimental results... ¯ Gottfried sum rule, dū; Thomas, PLB 126 (’83) Proton (neutron) charge density, long range positively (negatively) charged component; Kelly, PRC 66 (’02) Neutron form factor GnE (Q2 ), pronunced bump structure; Friedrich & Walcher, EPJ A 17 (’03) Proton Spin, replacement of quark spin by quark and anti-quark OAM. Myhrer & Thomas, [hep-ph] 0709.4067 (’07) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 10 / 29 Meson Cloud Meson Cloud Model Pasquini & Boffi, PRD 73 (’06) In such a model the physical nucleon Ñ is made of a bare nucleon N dressed by a surrounding meson cloud... X (BM ) Ψ(3q)(qq̄) |B(qqq)M (q q̄)i + · · · |Ñ i = Ψ(3q) |N (qqq)i + B,M Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 11 / 29 Meson Cloud Meson Cloud Model Pasquini & Boffi, PRD 73 (’06) In such a model the physical nucleon Ñ is made of a bare nucleon N dressed by a surrounding meson cloud... X (BM ) |Ñ i = Ψ(3q) |N (qqq)i + Ψ(3q)(qq̄) |B(qqq)M (q q̄)i + · · · B,M Light-cone Hamiltonian: HLC = HLC |p̃N , λ; Ñ i = Manuel Pincetti (DFNT and INFN Pavia) P B,M B H0 (q) + H0M (q) + HI (N, BM ) 2 p2N ⊥ + MN |p̃N , λ; Ñ i. + pN N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 11 / 29 Meson Cloud Meson Cloud Model Pasquini & Boffi, PRD 73 (’06) In such a model the physical nucleon Ñ is made of a bare nucleon N dressed by a surrounding meson cloud... X (BM ) |Ñ i = Ψ(3q) |N (qqq)i + Ψ(3q)(qq̄) |B(qqq)M (q q̄)i + · · · B,M Light-cone Hamiltonian: HLC = HLC |p̃N , λ; Ñ i = P B,M B H0 (q) + H0M (q) + HI (N, BM ) 2 p2N ⊥ + MN |p̃N , λ; Ñ i. + pN Expanding the nucleon WF in terms of the eigenstates of H0 ≡ H0B (q) + H0M (q), |p̃N , λ; Ñ i = √ Z |p̃N , λ; N i + X0 |n1 ihn1 |HI |p̃N , λ; N i EN − En1 + i n1 X 0 |n2 ihn2 |HI |n1 ihn1 |HI |p̃N , λ; N i + ··· + (EN − En2 + i)(EN − En1 + i) n ,n 1 √ Z renormalization factor Manuel Pincetti (DFNT and INFN Pavia) ! 2 Speth & Thomas, Adv.Nucl.Phys. 24, (’98) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 11 / 29 Meson Cloud In the one-meson approximation, truncating the series expansion to the first order in HI ... |p̃N , λ; Ñ i = √ Z|p̃N , λ; N i + X Z dyd2 k⊥ B,M 2(2π)3 1 y(1 − y) p X λ (N,BM ) φλ0 λ00 (y, k⊥ ) λ0 ,λ00 + 0 00 × |yp+ N , k⊥ + ypN ⊥ , λ ; Bi |(1 − y)pN , −k⊥ + (1 − y)pN ⊥ , λ ; M i where: λ (N,BM ) φλ0 λ00 Vλλ0 ,λ00 (N,BM ) 1 2 −M 2 M (y,k⊥ ) y(1−y) N BM (y, k⊥ ) = √ is the probability amplitude for a nucleon with helicity λ to fluctuate into a virtual BM system with the baryon having helicity λ0 , longitudinal momentum fraction y and transverse momentum k⊥ , and the meson having helicity λ00 , longitudinal momentum fraction 1 − y and transverse momentum −k⊥ ; + 0 00 |yp+ N , k⊥ + ypN ⊥ , λ ; Bi |(1 − y)pN , −k⊥ + (1 − y)pN ⊥ , λ ; M i Baryon ↔ Meson Fluctuation Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 12 / 29 Transition Distribution Amplitudes From GPDs to TDAs Transition Distribution Amplitudes Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 13 / 29 Transition Distribution Amplitudes From GPDs to TDAs From GPDs...to TDAs For u DVCS, the non-perturbative part does not describe anymore a H → H transition, but rather a Meson to Photon transition Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 14 / 29 Transition Distribution Amplitudes From GPDs to TDAs From GPDs...to TDAs For u DVCS, the non-perturbative part does not describe anymore a H → H transition, but rather a Meson to Photon transition or a Baryon to Photon Manuel Pincetti (DFNT and INFN Pavia) & N → π TDAS in a LCCQM Baryon to Meson Transition Transversity ’08 - May 31, 2008 14 / 29 Transition Distribution Amplitudes “Historical path” History and Authorship First idea given by Frankfurt, Polyakov & Strikman in hep-ph/9808449 and F.P.S. + Pobylitsa in PRD60 (’99). To study γ ∗ + p → B + M one has to introduce what they called Skewed Distribution Amplitudes (SDAs). ’04 Pire & Szymanowski gave the definitions for, what they called, the Meson to Photon Transition Distribution Amplitudes (TDAs) [appeared in PRD71, (’05)], M M → γ ∗ γ. ’05 Pire & Szymanowski → definitions of the 8 indipendent Baryon to Meson TDAs, PLB622 (’05), p̄N → γ ∗ π. ’05 First model estimations for the mesonic TDAs, π → γ, by Tiburzi PRD72. ’06 Lansberg, Pire & Szymanowski → definitions of the 16 indipendent Baryon to Photon TDAs, γ ∗ N → N 0 γ, NPA 782 (’06). ’07 First estimations for 3 (of 8) Baryon to Meson TDAs, γ ∗ N → N 0 π, Lansberg, Pire & Szymanowski PRD75 (’07). ’07 First paper entitled “Transition Distribution Amplitudes”, making systematic classification, Lansberg, Pire & Szymanowski, 0709.2567 [hep-ph]. ’08 Model estimations for all the 8 Nucleon to Pion TDAs, Boffi, Pasquini & M.P., drafting. Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 15 / 29 Transition Distribution Amplitudes Interpretation of the TDAs Interpretation of the TDAs Mesonic Sector The mesonic TDAs possess an interpretation at the amplitude level and provide with information on how a meson and a photon “look alike”... Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 16 / 29 Transition Distribution Amplitudes Interpretation of the TDAs Interpretation of the TDAs Mesonic Sector The mesonic TDAs possess an interpretation at the amplitude level and provide with information on how a meson and a photon “look alike”... Baryonic Sector The baryonic TDAs rather provide information on how one can find a meson or a photon in the baryon... Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 16 / 29 Transition Distribution Amplitudes Interpretation of the TDAs Interpretation of the TDAs Mesonic Sector The mesonic TDAs possess an interpretation at the amplitude level and provide with information on how a meson and a photon “look alike”... Baryonic Sector The baryonic TDAs rather provide information on how one can find a meson or a photon in the baryon... Crucial to test the Pion Cloud contribution!!! Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 16 / 29 Mesonic TDAs Few words on Mesonic TDAs (mTDAs)...not our business Z dz − ixP + z− −z z e hπ(pπ )|ψ̄( )Γψ( )|γ(pγ , ε)i|z+ =z =0 ⊥ 2π 2 2 γµ → Γ: γ µ γ5 → σ µν 1 µεP ∆⊥ π V (x, ξ, t) fπ ε Vectorial 1 fπ (ε · ∆)P µ Aπ (x, ξ, t) Axial h → εµνρσ Pσ ερ T1 (x, ξ, t) i − f1π (ε · ∆)∆⊥ρ T2 (x, ξ, t) Tensorial 4 indipendent mTDAs in spite of 2 indipendent mGPDs; Polinomiality condition OK! ⇒ Double Distributions; Initial state 6= Final ⇒ No conditions from Time Rev. ⇒ odd-powers of ξ; Models: DD, Tiburzi ’05; Lansberg et al. ’06; Spectral Model, Broniowski et al. ’07; NJL, Courtoy & Noguera ’07; χQM, Kotko & Praszalowicz ’08. EXP. SIDE: mTDAs complete the Kinematical domain of γ ∗ γ → M1 M2 Data exist from LEP & CLEO for ρρ states Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 17 / 29 Baryonic TDAs Baryonic TDAs (bTDAs) For both meson and photon case 3 quarks are exchanged in the t−channel, satysfing the relation x1 + x2 + x3 = 2ξ (ξ ≥ 0) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 18 / 29 Baryonic TDAs Baryonic TDAs (bTDAs) For both meson and photon case 3 quarks are exchanged in the t−channel, satysfing the relation x1 + x2 + x3 = 2ξ (ξ ≥ 0) =⇒ bTDAs are FT of matrix elements of the same operator that appears in the usual baryonic Distribution Amplitudes (bDAs), ijk qαi (z1 n)qβj (z2 n)qγk (z3 n) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 18 / 29 Baryonic TDAs Baryonic TDAs (bTDAs) For both meson and photon case 3 quarks are exchanged in the t−channel, satysfing the relation x1 + x2 + x3 = 2ξ (ξ ≥ 0) =⇒ bTDAs are FT of matrix elements of the same operator that appears in the usual baryonic Distribution Amplitudes (bDAs), ijk qαi (z1 n)qβj (z2 n)qγk (z3 n) Same operator → same ren. group eqs., but different kin. → different evol. eqs! Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 18 / 29 Baryonic TDAs Baryonic TDAs (bTDAs) For both meson and photon case 3 quarks are exchanged in the t−channel, satysfing the relation x1 + x2 + x3 = 2ξ (ξ ≥ 0) =⇒ bTDAs are FT of matrix elements of the same operator that appears in the usual baryonic Distribution Amplitudes (bDAs), ijk qαi (z1 n)qβj (z2 n)qγk (z3 n) Same operator → same ren. group eqs., but different kin. → different evol. eqs! As done for GPDs one can define different regions: ERBL: xi ≥ 0; DGLAP1: x1 ≥ 0; x2 ≥ 0; x3 ≤ 0; DGLAP2: x1 ≥ 0; x2 ≤ 0; x3 ≤ 0; Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 18 / 29 Baryonic TDAs Baryonic TDAs (bTDAs) For both meson and photon case 3 quarks are exchanged in the t−channel, satysfing the relation x1 + x2 + x3 = 2ξ (ξ ≥ 0) =⇒ bTDAs are FT of matrix elements of the same operator that appears in the usual baryonic Distribution Amplitudes (bDAs), ijk qαi (z1 n)qβj (z2 n)qγk (z3 n) Same operator → same ren. group eqs., but different kin. → different evol. eqs! As done for GPDs one can define different regions: ERBL: xi ≥ 0; DGLAP1: x1 ≥ 0; x2 ≥ 0; x3 ≤ 0; DGLAP2: x1 ≥ 0; x2 ≤ 0; x3 ≤ 0; So far only ERBL region solved → asymptotic form, NOT phenomenologically usefull as for DAs (unfair description of Form Factors) Pire & Szymanowski, PLB622 (’05) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 18 / 29 Baryonic TDAs Nucleon to Pion TDAs Our Focus: Nucleon to Pion TDAs Starting from the leading twist decomposition of the FT of the matrix element hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 19 / 29 Baryonic TDAs Nucleon to Pion TDAs Our Focus: Nucleon to Pion TDAs Starting from the leading twist decomposition of the FT of the matrix element hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i one obtains 8 indipendent functions: 2 Vectorials 0 V1pπ and 0 V2pπ ; Manuel Pincetti (DFNT and INFN Pavia) 0 0 0 2 Axials Apπ and Apπ ; and 4 Tensorials Tipπ (i=1,...,4) 1 2 N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 19 / 29 Baryonic TDAs Nucleon to Pion TDAs Our Focus: Nucleon to Pion TDAs Starting from the leading twist decomposition of the FT of the matrix element hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i one obtains 8 indipendent functions: 0 0 0 0 0 2 Vectorials V1pπ and V2pπ ; 2 Axials Apπ and Apπ ; and 4 Tensorials Tipπ (i=1,...,4) 1 2 4F hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i i = fN h pπ0 + pπ 0 5 5 + V1 (p /C)αβ (N )γ + A1 (p /γ C)αβ (γ N )γ fπ 0 0 + +T1pπ (σpµ C)αβ (γ µ N + )γ + M −1 V2pπ (p /C)αβ (∆/T N )γ 0 0 0 0 5 5 + −1 pπ + +M −1 Apπ (p /γ C)αβ (γ ∆/T N )γ + M T2 (σp∆T C)αβ (N )γ 2 +M −1 T3pπ (σpµ C)αβ (σ µ∆T N + )γ + M −2 T4pπ (σp∆T C)αβ (∆/T N + )γ Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM i Transversity ’08 - May 31, 2008 19 / 29 Baryonic TDAs Nucleon to Pion TDAs Nucleon to Pion TDAs ↔ Nucleon DAs 4F hπ i 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i = fN h pπ0 pπ 0 + 5 5 + V (p /C)αβ (N )γ + A1 (p /γ C)αβ (γ N )γ fπ 1 0 0 + +T1pπ (σpµ C)αβ (γ µ N + )γ + M −1 V2pπ (p /C)αβ (∆/T N )γ 0 0 + −1 pπ 5 5 + +M −1 Apπ /γ C)αβ (γ ∆/T N )γ + M T2 (σp∆T C)αβ (N )γ 2 (p 0 0 +M −1 T3pπ (σpµ C)αβ (σ µ∆T N + )γ + M −2 T4pπ (σp∆T C)αβ (∆/T N + )γ Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 i 20 / 29 Baryonic TDAs Nucleon to Pion TDAs Nucleon to Pion TDAs ↔ Nucleon DAs 4F hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i = i fN h pπ0 pπ 0 + 5 5 + V1 (p /C)αβ (N )γ + A1 (p /γ C)αβ (γ N )γ fπ 0 0 + +T1pπ (σpµ C)αβ (γ µ N + )γ + M −1 V2pπ (p /C)αβ (∆/T N )γ 0 0 5 5 + −1 pπ + +M −1 Apπ /γ C)αβ (γ ∆/T N )γ + M T2 (σp∆T C)αβ (N )γ 2 (p 0 0 +M −1 T3pπ (σpµ C)αβ (σ µ∆T N + )γ + M −2 T4pπ (σp∆T C)αβ (∆/T N + )γ i Restricting to the case with ∆T = 0, where ∆ = pπ − pN , only 3 TDAs survive... Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 20 / 29 Baryonic TDAs Nucleon to Pion TDAs Nucleon to Pion TDAs ↔ Nucleon DAs 4F hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i = i fN h pπ0 pπ 0 + 5 5 + V1 (p /C)αβ (N )γ + A1 (p /γ C)αβ (γ N )γ fπ 0 0 + +T1pπ (σpµ C)αβ (γ µ N + )γ + M −1 V2pπ (p /C)αβ (∆/T N )γ 0 0 5 5 + −1 pπ + +M −1 Apπ /γ C)αβ (γ ∆/T N )γ + M T2 (σp∆T C)αβ (N )γ 2 (p 0 0 +M −1 T3pπ (σpµ C)αβ (σ µ∆T N + )γ + M −2 T4pπ (σp∆T C)αβ (∆/T N + )γ i Restricting to the case with ∆T = 0, where ∆ = pπ − pN , only 3 TDAs survive... 4F hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i = |∆ =0 T i i fN h pπ0 + pπ 0 5 5 + pπ 0 µ + V1 (p /C)αβ (N )γ + A1 (p /γ C)αβ (γ N )γ + T1 (σpµ C)αβ (γ N )γ fπ in complete analogy to the usual Nucleon DAs!!! Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 20 / 29 Baryonic TDAs Nucleon to Pion TDAs Nucleon to Pion TDAs Nucleon DAs 4F hπ 0 (pπ )|O|P (p1 , s1 )i i = |∆ =0 T fN h pπ0 + V (p /C)αβ (N )γ fπ 0 +T pπ (σpµ C)αβ (γ µ N + )γ = h 5 + fN V p (p /C)αβ (γ N )γ 5 + +Ap (p /γ C)αβ (N )γ 0 5 5 + +Apπ (p /γ C)αβ (γ N )γ 4F h0|O|P (p1 , s1 )i i +T p (σpµ C)αβ (γ µ γ 5 N + )γ i ∆T = 0 ⇒ 1:1 correspondence among Nucleon to Pion TDAs and Nucleon DAs in the SOFT-PION LIMIT: ξ → 1 Lansberg et al., PRD75 (’07) Soft Pion Theorem 0 i hπ|O|P i = − h0|[Qa5 , O]|P i fπ + nucleon pole term V pπ (x1 , x2 , x3 , ξ, ∆2 ) 0 Apπ (x1 , x2 , x3 , ξ, ∆2 ) 0 T pπ (x1 , x2 , x3 , ξ, ∆2 ) = = = 1 p x1 x2 x3 V ( , , ) 4ξ 2ξ 2ξ 2ξ 1 p x1 x2 x3 A ( , , ) 4ξ 2ξ 2ξ 2ξ 3 p x1 x2 x3 T ( , , ) 4ξ 2ξ 2ξ 2ξ A similar relation T DAs(xi ) ↔ DAs(xi /2ξ) has been found by Braun et al. in the study of the Pion-Nucleon GDAs h0|O|N πi, Phys. Rev. D 75 (’07) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 21 / 29 Baryonic TDAs Nucleon to Pion TDAs Our Results... Boffi, Pasquini and M.P., drafting α, β, γ = 1, ..., 4 λ = ±1/2 4 × 4 × 4 × 2 = 128 but 8 IND. . Dλαβ,γ = 4F hπ 0 (pπ )|ijk uiα (z1 n)ujβ (z2 n)dkγ (z3 n)|P (p1 , s1 )i 1 V1pπ0 = −i 21/4 √1+ξ(P + )3/2 fπ fN 1 0 Apπ = i 21/4 √1+ξ(P + )3/2 1 fπ fN 1 T1pπ0 = i 21/4 √1+ξ(P + )3/2 fπ fN ↑ ↑ D12,1 + D21,1 ↑ ↑ D12,1 − D21,1 ↑ D11,2 + fπ fN M 1 0 √ Apπ = −i (∆T 1 +i∆ 2 T 2 ) 21/4 1+ξ(P + )3/2 fπ fN 2 T3pπ0 = i ∆M2 21/4 T T T4pπ0 = i (∆ √ 1/4 √ fπ 1 1+ξ(P + )3/2 fN fπ 1 1+ξ(P + )3/2 fN 2M 2 T 1 +i∆T 2 ) Manuel Pincetti (DFNT and INFN Pavia) 2 21/4 (∆T 1 −i∆T 2 ) D↑ (∆T 1 +i∆T 2 ) 22,2 M 1 √ V2pπ0 = −i (∆T 1 +i∆ T 2 ) 21/4 1+ξ(P + )3/2 T2pπ0 = i ∆M2 ↑ ↑ D12,2 + D21,2 ↑ ↑ D12,2 − D21,2 ↑ ↑ − (∆T 1 + i∆T 2 )D11,1 (∆T 1 − i∆T 2 )D22,1 ↑ ↑ (∆T 1 − i∆T 2 )D22,1 + (∆T 1 + i∆T 2 )D11,1 fπ 1 √ 1+ξ(P + )3/2 fN ↑ D22,2 N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 22 / 29 Baryonic TDAs Dλαβ,γ = − √ 24 x1 x2 x3 1 2ξ 32 X Nucleon to Pion TDAs u+α (x1 P + )u+β (x2 P + )u+γ (x3 P + ) λ1,2,3 Z Y 3 p dyd2 k⊥ P+ λ(N,N π) 2 y(1 − y)δ y − 2ξ + d κi⊥ φλ0 0 y, k⊥ × [2(2π)3 ]2 p1 i=1 λ0 3 X p+ ×δ 1 − y − π+ δ (2) pπ⊥ + k⊥ δ (2) κi⊥ p1 i=1 N,[f ] ×Ψ̃λ0 {x1 /2ξ, κ1⊥ ; λ1 , u}{x2 /2ξ, κ2⊥ ; λ2 , u}{x3 /2ξ, κ3⊥ ; λ3 , d} XZ ⇓ DA : M λαβ,γ ∝ N,[f ] Ψ̃λ0 N,[f ] T DA : Dλαβ,γ ∝ Ψ̃λ0 {x1 , κ1⊥ ; λ1 , u}{x2 , κ2⊥ ; λ2 , u}{x3 , κ3⊥ ; λ3 , d} { x1 x2 x3 , κ1⊥ ; λ1 , u}{ , κ2⊥ ; λ2 , u}{ , κ3⊥ ; λ3 , d} 2ξ 2ξ 2ξ Same functional dependence of Pire et al., Phys.Rev.D75, 074004 (’07) and Braun et al.,Phys.Rev.D75, 014021 (’07) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 23 / 29 Baryonic TDAs Nucleon to Pion TDAs The choice of the Dirac indices α, β, γ automatically fixes the quark helicities... s u+ (xi P + , ↑) = 0 1 1 xi P + B 0 C C √ B @ 1 A 2 s and u+ (xi P + , ↓) = 0 1 0 xi P + B 1 C C √ B @ 0 A 2 −1 0 Combinations of helicities, λi , and OAM, Lz , carried by the active partons ↑ D12,1 ↑ D21,1 ↑ D11,2 ↑ D11,1 ↑ D12,2 ↑ D21,2 ↑ D22,1 ↑ D22,2 λ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 λ1 1/2 −1/2 1/2 1/2 1/2 −1/2 −1/2 −1/2 λ2 −1/2 1/2 1/2 1/2 −1/2 1/2 −1/2 −1/2 λ3 1/2 1/2 −1/2 1/2 −1/2 −1/2 1/2 −1/2 OAM No No No 1 1 1 1 2 D↑ unsuppressed D↑ suppressed D↑ doubly-suppressed Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 24 / 29 Baryonic TDAs ↑ D12,1 ↑ D21,1 ↑ D11,2 ↑ D11,1 ↑ D12,2 ↑ D21,2 ↑ D22,1 ↑ D22,2 λ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 λ1 1/2 −1/2 1/2 1/2 1/2 −1/2 −1/2 −1/2 Nucleon to Pion TDAs λ2 −1/2 1/2 1/2 1/2 −1/2 1/2 −1/2 −1/2 λ3 1/2 1/2 −1/2 1/2 −1/2 −1/2 1/2 −1/2 OAM No No No 1 1 1 1 2 D↑ unsuppressed –D↑ suppressed – D↑ doubly-suppressed TDA V1 calculated at ξ = 0.5 and for ∆2 = −2GeV2 V1pπ0 = −i 1 fπ ↑ ↑ √ D +D 12,1 21,1 21/4 1 + ξ(P + )3/2 fN Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 24 / 29 Baryonic TDAs Nucleon to Pion TDAs Summary... DAs sector: Model Calculation of the 3 Leading twist DAs pretty close to the Bolz & Kroll Fit to data... Moment predictions for the DA Φ close to the brand new Lattice calculations and Bolz & Kroll Fit. TDAs sector: General Overlap decomposition in the ERBL region... First Time calculation of the 8 TDAs Nucleon to Pion Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 25 / 29 Baryonic TDAs Nucleon to Pion TDAs Summary... DAs sector: Model Calculation of the 3 Leading twist DAs pretty close to the Bolz & Kroll Fit to data... Moment predictions for the DA Φ close to the brand new Lattice calculations and Bolz & Kroll Fit. TDAs sector: General Overlap decomposition in the ERBL region... First Time calculation of the 8 TDAs Nucleon to Pion ...and Outlook Impact Parameter representation (as for GPDs) → Transverse localization of the virtual meson in the nucleon Proton Decay: p → π 0 e+ & p → π + ν̄... GUT → the matrix elements hπ 0 |ijk (ui Cdj )ukγ |P i = A1 Nγ hπ + |ijk (ui Cγdj )ukγ |P i = A2 Nγ Martinelli et al., Nucl.PhysB312 (’89) Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 25 / 29 Baryonic TDAs Nucleon to Pion TDAs OK...Now YOU deserve a coffee break!!!! Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 26 / 29 Baryonic TDAs Nucleon to Pion TDAs BACK-UP SLIDES Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 27 / 29 Baryonic TDAs Nucleon to Pion TDAs Hamiltonian for the N − −π interaction Z HI (N, πN ) = −igπN N dx− d2 x⊥ ψ̄N (x)γ5 φ(x)ψN (x), 2 φ(x) and ψN (x) are the pion and nucleon fields respectively, φ(x) ≡ 3 X τi φi (x) = i=1 Manuel Pincetti (DFNT and INFN Pavia) φ3 φ1 + iφ2 φ1 − iφ2 −φ3 N → π TDAS in a LCCQM ≡ 0 √π − 2π √ 2π + −π 0 Transversity ’08 - May 31, 2008 ; 28 / 29 Baryonic TDAs Nucleon to Pion TDAs Nucleon Wave Function Manuel Pincetti (DFNT and INFN Pavia) N → π TDAS in a LCCQM Transversity ’08 - May 31, 2008 29 / 29