Skript zur Vorlesung “Einführung in die makromolekulare Chemie
Transcription
Skript zur Vorlesung “Einführung in die makromolekulare Chemie
Skript zur Vorlesung “Einführung in die makromolekulare Chemie – Physikalische Chemie der Polymeren” Prof. Dr. Manfred Schmidt, PD Dr. Wolfgang Schärtl, HD Dr. Michael Maskos Universität Mainz, Institut für Physikalische Chemie Version 2.1, 23.04.08 Inhalt 1. 2. 3. 4. 5. 6. 7. Kettenstatistik Thermodynamics Molekulargewichtsverteilungen, Mittelwerte GPC Lichtstreuung MALDI-TOF MS Feld-Fluss Fraktionierung Einige der wesentlichen Unterschiede der Polymere im Vergleich zu niedermolekuleren Verbindungen sind auf ihrer Konformation, sowie ihre Molekulargewichtsverteilung zurückzuführen. Beide Aspekte werden im Folgenden anhand von Modellen und Beispielen betrachtet. 1. Kettenstatistik 1.1. Gauss-Kette, Kuhn-Kette Eine Polymerkette besteht aus einer Vielzahl von gleichen Segmenten (Monomere), die vereinfacht über das Modell der Gauss-Kette beschrieben werden kann: l G lj G li i G R G R Modell einer Gauss-Kette (freie Drehbarkeit) Für den sogenannten Fadenendenabstand bzw. für das entsprechende, für eine statistische Beschreibung relevantere, mittlere Fadenabstandsquadrat ergibt sich dann: G N G R = ∑ li i =1 GG N N GG R 2 = RR = ∑ ∑ l i l j i j Mittelwert über sehr viele Konformationen (Gleichgewicht): N N GG R 2 = ∑∑ li l j ; i GG li l j = l 2 [− cosθ ] i− j j Statistische Verteilung der Bindungswinkel: cosθ = 0 ⇒ GG li l j = 0 , i ≠ j R 2 = N ⋅ l 2 , weil für N Terme i = j (wird auch als “Irrflug”-Modell bezeichnet) Das Kuhn- Modell Reale Polymere können nicht vollständig durch das Gauss-Kettenmodell beschrieben werden. Allerdings kann das Modell bei Verzicht auf die Detailstruktur als Vereinfachung dienen, was von Kuhn entsprechend beschrieben wurde durch: lk = Kuhnlänge Nk = Zahl der Kuhnsegmente R 2 = l k ⋅ N k ≠ l 2 ⋅ N , wenn θ und φ nicht statistisch. 2 Aber: l k ⋅ N k = l ⋅ N = L Konturlänge Die unterschiedlichen Modelle lassen sich zueinander ins Verhältnis setzen, um z.B. Informationen bzgl. der realistischeren, dafür aber physikalisch schwerer deutbaren Modelle gegenüber den physikalischeren, aber schwerer beschreibbaren Modellen zu erhalten. Hier für dient z.B. das Charakteristisches Verhältnis R2 N ⋅l2 = lk l k2 ⋅ N k l k = ≡ C∞ N ⋅l2 l l R 2 2 = lk ⋅ N k G R R2 ≥ l 2 ⋅ N Im Folgenden einige Beispiele, sowie die statistische Herleitung des Gauss-Modells: Fragestellung Mit welcher Wahrscheinlichkeit befinden sich zwei Segmente eines Makromoleküls im Abstand R? Ideales Knäuel: 3 3 R2 ⎛ 3 ⎞ 2 W(R) = ⎜ exp( − ) 2 ⎟ 2 nl2 ⎝ 2πnl ⎠ Gauss 2.Moment der Verteilung liefert <R2> (vgl. Übungen). ∞ R2 = ∫ W ( R) ⋅ R 2 4πR 2 dR = nl 2 0 ∞ ∫W ( R) ⋅ 4πR dR 2 0 Verknüpfung mit der Kontourlänge eines Polymers: Gauss-Modell Polymer mit Polymerisationsgrad N: R2 = N ⋅ l2 ⇒ L = N ⋅l Kuhn- Modell 2 R 2 = lk ⋅ N k = lk ⋅ L L = lk ⋅ N k C∞ = R2 N ⋅l 2 = lk ⋅ L lk = l⋅L l in der Literatur: Zahl der Bindungen unterschiedlich Zahl der Monomere Ausgehend von der oben beschriebenen Gaussverteilung lässt sich die entropische Rückstellkraft eine Polymerkette beschreiben (vgl. Übungen): Entropie: S = k B ln Ω mit Ω > 1, Anzahl der Konfigurationen; Ω = A W(R) Mit der normierten Gauss-Verteilung: 3 ⎛ ⎞ 2 R2 − R2 3 ⎟ exp ⎜ − ⎟ ⎜ 2 R2 ⎠ ⎝ 3 R2 3 R2 ) − k 2 + k 2 R 2 ⎛ 3 W(R) = ⎜ ⎜ 2π R 2 ⎝ S(R) = S( ⎞ ⎟ ⎟ ⎠ R2 3 ΔS ( R) = k (1 − 2 ) 2 R Freie Energie: ΔG = ΔH − TΔS ; Sei ΔH ≠ f (R) 3 3 R2 ΔG(R) = ΔH − kT + kT ⋅ 2 2 2 R Rückstellkraft eines elongierten Knäuels: f= ∂ΔG 3kT = 2 ⋅ R für R << L = N ⋅ l ∂R R Weitere Anwendung von W(R): ∞ 1 R = ∫W (R) ⋅ R −1 4 π R 2 dR 0 ∞ ∫ W ( R ) ⋅ 4π R 2 dR 0 Diffusion: D~ 1 R Höhere Momente R 4 , R 6 … Im Folgenden ein Beispiel, um die entropischen Rückstellkräfte mittels Rasterkraftmikroskop zu messen: 1.2. Das reale Valenzwinkel-Modell GG Mit li l j = l 2 [− cosθ ] i− j −l cos θ G l i +1 −l cosθ G li G li+ 2 θ l 2 ( − cosθ ) θ 2 GG li li +1 = l 2 (− cosθ ) G G li +1li + 2 = l 2 (− cosθ ) GG li li + 2 = l 2 (− cosθ ) 2 +1 90 -1 x l x = l ⋅ cos(180 − θ ) = −l cos(θ ) cos(180 − θ ) = x l x = l ⋅ cos(180 − θ ) = −l cos(θ ) cos(180 − θ ) = 180 270 360 Allgemein: R2 ⎛ ⎜ ⎜ ⎜ =⎜ ⎜ ⎜ ⎜ ⎝ GG l1l1 GG l 2 l1 GG l3l1 GG l1l 2 GG l2l2 GG l3 l 2 GG l1l3 GG l 2 l3 GG l3 l3 ... G G l N l1 ... G G l N l2 ... G G l N l3 ... ... ... ... GG l1l N GG l2l N GG l3 l N ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ... ⎟ G G lN lN ⎟ ⎠ GG GG GG GG R 2 = Nl 2 + 2( N − 1) li li ±1 + 2( N − 2) li li ± 2 + 2( N − 3) li li ±3 + ... + +2 li li ±( N −1) ∟1) Irrflugkette 2)Valenzwinkelkette GG li li ± n = l 2 [− cosθ N =∞ Man benutzt: ∑k i ] n = i =o 1 1− k 0 ≤ k ≤1 genau: s. unten und s.Flory S.16/17 N =∞ k ∑o ik i = (1 − k )2 0 ≤ k ≤1 und erhält für N → ∞: (1 − cosθ ) R 2 = Nl 2 (1 + cosθ ) Beispiel Polymethylen : θ = 109.5° ⇒ cosθ = − 1 3 R 2 = 2 Nl 2 R2 2 = C∞ = 2 ; C∞exp = 6.7!! (Modell immer noch nicht in der Lage, die Nl experimentellen Daten zu beschreiben). Die Valenzwinkelkette ist im Vergleich zur Gauss-Kette etwas aufgeweitet für θ > 90° da cosθ < 0 . Etwas detaillierter: R 2 ⎛ l11 ⎜ ⎜ ... = ⎜ ... ⎜ ⎜ ... ⎜l ⎝ 1N ... ... ... l 22 l33 l 44 ... ... N −1 ... l N1 ⎞ ⎟ ... ⎟ ... ⎟ ⎟ ... ⎟ l NN ⎟⎠ R 2 = Nl 2 + 2l 2 ∑ ( N − k )α k ; k =1 α ≡ − cosθ N −1 N −1 k =1 k =1 = Nl 2 + 2l 2 N ∑α k − 2l 2 ∑ kα k α −α N Es gilt: ∑ α = 1−α k =1 N −1 α (1 − α N ) N α N k α − k = ∑ (1 − α )2 (1 − α ) k =1 N −1 k R 2 = Nl 2 + 2l 2 N ⎧α (1 − α N ) Nα N ⎫ α −α N − − 2l 2 ⎨ ⎬ 2 1−α 1−α ⎭ ⎩ (1 − α ) α (1 − α N ) = Nl + 2l N − 2l 1−α (1 − α )2 N 2α ⎞ 2⎛ 2 α (1 − α ) = Nl ⎜1 + ⎟ − 2l (1 − α )2 ⎝ 1−α ⎠ N 2 ⎛ 1 − α + 2α ⎞ 2 α (1 − α ) = Nl ⎜ ⎟ − 2l (1 − α )2 ⎝ 1−α ⎠ N 2 ⎛1+ α ⎞ 2 α (1 − α ) = Nl ⎜ ⎟ − 2l (1 − α )2 ⎝1−α ⎠ 2 α 2 2 N → ∞: 2. Term vernachlässigbar R 2 = Nl 2 (1 − cosθ ) (1 + cosθ ) Weitere Verfeinerung des Modells: Berücksichtigung des Raumwinkels (Drehwinkel um den Bindungswinkel) φ : lim R 2 = Nl 2 N →∞ (1 − cos θ ) (1 + cos φ ) (1 + cos θ ) (1 − cos φ ) für cos φ << 1 cos φ = 0 frei drehbar (freely rotating chain) cos φ = 1 all-trans Berücksichtigung von gauche-trans Zustandsenergien (ungekoppelt) führt zu: C∞ ≈ 3.2 für Polymethylen Bezug zum charakteristischen Verhältnis: lim C n ≡ C∞ n →∞ C∞ = lim N →∞ R2 charakteristisches Verhältnis! Nl 2 Charakteristisches Verhältnis R2 C∞ = Nl 2 ( CH ) 2 N C ∞ = 6 .8 exp. C∞ = 2 θ = 109 ° C ∞ = 3.7 θ = 109° , φ aus gauche/ trans Pot.Minima π cos φ = ∫e 0 −V ( φ ) / kT π ∫e cos φ −V ( φ ) / kT dφ dφ 0 Unterschied zur Wirklichkeit: Potentialbarriere Vg hängt ab von der Nachbarkonfiguration, d.h. Vgg ≠ Vtg etc. Dies führte zum Modell von Flory: Rotational Isomeric State (RIS) Zusammenfassung Statistische Mechanik von Kettenmolekülen Kettendimension beschreibbar durch: G Bindungslänge: l , Bindungsvektor: l Valenzwinkel: θ Konformationswinkel: φ Zahl der Kettenglieder: N Merke: all-trans Konformation φ = 0 , denn: 1, 2, 3, 4: coplanar φ = 180 , denn: 1, 2, 3, 4: sc, eclipsed R 2 = nl 2 (1 − cos θ ) (1 + cos φ ) (1 + cos θ ) (1 − cos φ ) 1) cosθ = 0 cos φ = 0 : Freely Jointed Chain (Irrflug) 2) cosθ ≠ 0 cos φ = 0 : Freely Rotating Chain (Valenzwinkelkette) 3) cosθ ≠ 0 cos φ ≠ 0 : Valenzwinkelkette mit behinderter Rotation aber: cosφ = 1 ⇒ φ aus Zustandssumme R 2 = ∞ wegen Grenzwert n → ∞ exakte Lösung für endliche n möglich U g+ π cosφ = ∫e 0 −U (φ ) / kT π ∫e cosφ t g- dφ U, weiter oben verwendet: V −U (φ ) / kT dφ 0 trotzdem: U gg ≠ U fg Effekte übernächster Nachbarn Knäue-Konformation in 2-D? Flexibilitäten E gauche trans ∆E gauche ∆E φ -180 ΔE < kT : ΔE >> kT : -120 -60 0 60 dynamisch flexible Knäuel starres Knäuel (“eingefroren”) Konsequenz für die Materialeigenschaft? “Entropieelastizität” 120 180 Wiederholung und weitere Modelle: freie Bindungswinkel, freie Rotation R2 0 = nl 2 feste Bindungswinkel, freie Rotation (Valenzwinkelmodel, freie Drehbarkeit) R2 0 = nl 2 1 − cosθ 1 + cosθ feste Bindungswinkel, behinderte Rotation ⎛ 1 − cos θ ⎞⎛ 1 + cos φ ⎞ R 2 = nl2 ⎜ ⎜ 1 + cos θ ⎟⎜ ⎟⎜ 1 − cos φ ⎟⎟ 0 ⎝ ⎠⎝ ⎠ cos φ = 0 ; frei drehbar cos φ = 1 ; all-trans Kette (Grenzwertproblem lk, lp → ∞ Stäbchen!!) Maximale Länge: LMax = ( N − 1)l ≈ Nl ⎛θ ⎞ Eff. Konturlänge: L ≅ N ⋅ l ⋅ sin ⎜ ⎟ = N e be ⎝2⎠ θ Helix L Beschreibung der Kettensteifheit: (1) Kuhnlänge lk R2 N k l k2 l k C∞ = 2 = = nl nl 2 l (2) RIS (1 − cos θ ) (1 + cos φ ) C∞ = (1 + cos θ ) (1 − cos φ ) (Konturlänge) (3) Wormlike chain ⎛ L⎞ R( S ) R′( S ′) = exp⎜ − ⎟ ⎜ l ⎟ ⎝ p⎠ l lp ≡ k 2 absolute Kettensteifheit: lk, lp L L relative Kettensteifheit: , lk l p Experimentell z.B. in der Viskosität beobachtet: [η] kein Potenzgesetz!!! +0.5 +2 1 L/ lk 100 1.3. Konformation “Realer Makromoleküle” 1) Schmelzen Dichte: M 4π 3 ρ= ; VK = RK ; RK ~ R 2 N L ⋅ VK 3 3M M ~ = N −1 2 ρ= 3 3 2 N L ⋅ 4π ⋅ RK R2 12 Dichtefluktuationen gering ⇒ “Mean-field” d.h. chemische Umgebung ist überall gleich ⇓ “Ungestörte Dimensionen” = ideales Verhalten ( bis auf Eigenvolumen) 2) Verdünnte Lösungen große Konz.Fluktuationen ⇒ “Now-mean-field” ⇓ WW beeinflussen Konformation ⇒ nicht ideales Verhalten 2. Thermodynamics 1) Solvent quality ΔG m = ΔH m − TΔS m Gibbs free energy of mixing ⎛ ∂Gim ⎞ ⎟⎟ μi ≡ ⎜⎜ n ∂ ⎝ i ⎠T , p , ni≠ j ∑ n d (μ ) = 0 i i chemical potential Gibbs- Duhem i μ i = μ i0 RT ln ai = μ i0 + RT ln( xi γ i ) μ i0 = chem. pot. of pure component ai = activity xi = mole fraction γ i = activity coefficient Δμ i = μ i − μ i0 = RT ln xi + RT ln γ i = Δμ iid + Δμ iex excess chem. pot. ideal solution: Δμ i = Δμ iid ΔH m = 0 ; ΔS m = ΔS m (ideal ) = − R ∑ xi ln xi Δμ i = RT ln ( xi ) i athermal solution: Δμ i ≠ Δμ iid ΔH m = 0 ; ΔS m ≠ ΔS m (ideal ) regular solution: Δμ i ≠ Δμ iid ΔH m ≠ 0 ; ΔS m = ΔS m (ideal ) = R ln (xi ) irregular solution: Δμ i ≠ Δμ iid ΔH m ≠ 0 ; ΔS m ≠ ΔS m (ideal ) Special case of irregular solutions: Pseudo-ideal or “Theta” solution Δμ i = Δμ iid , but ΔH m ≠ 0 ; ΔS m ≠ ΔS m (ideal ) ΔH m = T (ΔS m − ΔS m (ideal )) can only be true for a single temp. T = θ Relation to Second Virial Coefficient A2 ⎛ 1 N U ⎞ Δμ1* = RTV10 c2 ⎜⎜ + A 2 c2 ⎟⎟ ⎝ M 2 2M 2 ⎠ (*) only binary interactions! V10 : partial molar volumen of solvent c2 : concentration of polymer (solute) M 2 : molar mass of polymer (solute) U : excluded volume of polymer (solute) ⎛ − Δμ1* ⎞ ⎜⎜ ⎟⎟ = Π osm. pressure 0 ⎝ V1 ⎠T ,n ⎛ 1 ⎛ 1 ⎞ N U ⎞ − Δμ1* + Ac2 ...⎟⎟ = Π = RTc 2 ⎜⎜ + A 2 c2 ⎟⎟ = RTc 2 ⎜⎜ 0 V1 ⎝ M2 ⎠ ⎝ M 2 2M 2 ⎠ Thermodynamik Schmelze → verdünnte Lösung ideale Lösung: ΔH m = 0 ; ΔS = ΔS id bei Polymeren nie erfüllt: Eigenvolumen, Packung Lsgm, WW Lsgm. Deshalb: Immer pseudoideales Verhalten ΔH = T ΔS ⇒ T = θ = Theta − Temperatur analog Boyle-Temp. bei id. Gas T = θ : Schlechtes Lösungsmittel (W + W22 ) ΔH ~ ΔW12 = W12 − 11 ≈0 2 T >> θ : Gutes Lösungsmittel ΔW12 >> θ ⇒ Viele Polymer/ Lsgm. Kontakte 1) Polymerknäuel muss expandieren, um Segmentkonz. niedrig zu halten 2) Entropieelastizität verursacht Rückstellkraft 1) Einfluß auf Verteilungsfunktion ω (R) R 2) Einfluß auf R 2 Flory → Skalenargumente R2 ΔG (R ) ~ 2 KT R 2 0 ⎛N ⎞ + ΔW12 ⎜ 3 ⎟ R 3 ⎝R ⎠ 2 ⎛N⎞ 2 ⎜ 3 ⎟ :Zahl der Kontaktpaare ~ ρ k R ⎝ ⎠ R 3 : Knäuelvolumen R2 N2 ~ 2 + ΔW12 3 lk N R ∂ΔG (R ) R N 2 ~ − 4 =0 N R ∂R 5 3 R ~N R ~ N 3 5 ~ N 0.6 (Flory-Limit) Ensemble-Mittelwert: R 2 = α 2 R 2 ~ N 0.6 0 α : Expansionskoeffizient α ~ N 0.1 ∞ gutes Lsgm. Molmassenabhängigkeiten Ideal flexible Knäuel, T = θ R2 ~ N ~ M Knäuel in gutem Lsgm T >> θ R 2 ~ M 1, 2 Starre Stäbchen R 2 ~ L2 ~ M 2 Kugeln R2 ≡ d 2 ~ M 2 3 Osmose Membran: ∆p = π c2 = 0 c2 = c π van´t Hoff: lim c2 →0 = c2 RT ideale Lösung M2 Frage: Welche Molmasse misst man? Verteilungen der Molmassen bei Polymeren: Exkurs Welcher Mittelwert bei Osmose? c m c Π = ∑ Π i ; c = ∑ ci ; Π i = i RT = RTni ; ni = i ~ i Mi Mi Mi M = RT = ∑m m ∑M i i ∑c ∑Π = i = ∑c c ∑M i ; ci ~ mi i i ∑n M ∑n i i i ≡ Mn i i Reale Lösungen: ⎧1 ⎫ Π = RT ⎨ + A2 c + A3c 2 + ... ⎬ Virialentwicklung c ⎭ ⎩M A2 , A3 : Virialkoeffizienten T = θ : A2 = 0 A3 ≠ 0 A2 beschreibt das “Ausgeschlossene Volumen” für Kugeln, Stäbchen: - Eigenvolumen für Knäuel: - intramol. Anteil - intermol. Anteil “Durchdringung von 2 Knäueln” Thermodynamik, θ-Zustand Ideale Lösung: μi = μ 0i + RT ln xi Reiner Zustand (Schmelze) G0 = ∑ ni μ 0i Mischung/ Lösung: Gm = ∑ ni μi ΔG id = Gm − Go = RT ∑ ni ln xi ΔH mid = o (athermisch) ΔS mid = − R ∑ ni ln xi Chemisches Potential der Mischung: Δμ i = μ i − μ i0 = RT ln ( x1 ) = RT ln (1 − x2 ) x1 >> x2 , d.h. x2 sehr klein und V10 = V 20 3 x22 x 2 − − ... 2 3 ⎛ m2 ⎞ ⎜ ⎟ n2 n2 ⎜⎝ M 2 ⎟⎠ x2 = ≈ ≈ (n1 + n2 ) n1 ⎛⎜ V1 ⎞⎟ ⎜V 0 ⎟ ⎝ 1 ⎠ ln (1 − x2 ) = − x2 − V ⎛ Volumen ⎞ m2 und n1 = 10 = ⎜ ⎟ M2 V1 ⎝ Molvolumen ⎠ m c ⋅V 0 x2 = 2 1 ; c2 = 2 M2 V1 mit n2 = ⎡ 1 ⎛ V0 ⎞ ⎤ ⎛ V 02 ⎞ 2 1 ⎟c2 + ⎜ 1 ⎟c + ...⎥ Δμ 1 = − RTV c ⎢ +⎜ 2 ⎜ 3M 3 ⎟ 2 ⎢⎣ M 2 ⎜⎝ 2M 2 ⎟⎠ ⎥⎦ 2 ⎠ ⎝ c2 → 0 : c Δμ 1id = − RTV10 2 M2 0 1 2 id Osmotischer Druck Π = − Π = RT Δμ 1 V10 c2 van´t Hoff M2 Ideale Lösung: ⎧ 1 ⎫ Π id + 2 A2id c2 + 3 A3id c 22 + ... ⎬ = RTc2 ⎨ c2 ⎭ ⎩M2 V0 A = 1 2 ; 2M 2 id 2 ( ) 2 V0 A = 1 3 3M 2 id 3 ( ) Reale Lösungen: Berücksichtigung von Aktivitätskoeffizienten, usw. Wiederholung: Special case of irregular solutions: Pseudo-ideal or “Theta” solution Δμ i = Δμ iid , but ΔH m ≠ 0 ; ΔS m ≠ ΔS m (ideal ) ΔH m = (ΔS m − ΔS m (ideal )) can only be true for a single temp. T = θ Relation to Second Virial Coefficient A2 ⎛ 1 N U ⎞ Δμ1* = RTV10 c2 ⎜⎜ + A 2 c2 ⎟⎟ ⎝ M 2 2M 2 ⎠ (*) only binary interactions! V10 : partial molar volumen of solvent c2 : concentration of polymer (solute) M 2 : molar mass of polymer (solute) U : excluded volume of polymer (solute) ⎛ − Δμ1* ⎞ ⎜⎜ ⎟⎟ = Π osm. pressure 0 ⎝ V1 ⎠T ,n For real solutions: Excluded volume N A ⋅ U statt V10 : ⎞ ⎛ 1 ⎛ 1 N U ⎞ − Δμ1* + A2 c2 ...⎟⎟ = Π = RTc2 ⎜⎜ + A 2 c2 ⎟⎟ = RTc 2 ⎜⎜ 0 V1 ⎠ ⎝ M2 ⎝ M 2 2M 2 ⎠ N AU A2 = 2 M 22 Excluded volume U: a) spheres R 4π (2 R )3 = 32π R3 3 3 1 N A 4πR 3 = v2 = 3M 2 ρ2 8M 2v2 U= NA U= 4v2 for spheres, for M 2 → ∞ M2 not included: A2 = A2 ⇒ 0 three particle excluded volume!! b) rods more complex: result 1 2 LM 2v2 U = πdL2 = dN A 2 Lv2 ⇒ for constant d : A2 ≠ f (L ) ≠ f (n2 ) A2 = dM 2 much more complex c) flexible coils Flory and others ⎛ θ⎞ U ~ M 22 ⋅ Ψ⎜1 − ⎟ ⎝ T⎠ Ψ : Interpenetration function T = θ : U = 0 ⇒ A2 = 0 why ideal or unperturbed solution? - conformation unperturbed by solvent effects! (intramolecular effect): R2 = α 2 R2 ; α =1 0 R 2 = kM 1 - U = 0 : No finite volume of the chain (Phantom chain) Elements infinitely small pseudo-ideal: Analogy to Boyle- temp. for gases!! Attraction and repulsion compensate at Tg - three particle interactions not zero, A3 > 0 even if A2 = 0 (comes from derivation of eq. (*)) Dampfdruckosmose Lösungsmittel Lösung T1 Dampf: T = const. Lösungsmittel Π ~ ΔT ∆U ~ ∆T T2 3. Molekulargewichtsverteilungen, Mittelwerte Mittelwertsbildungen für ein einzelnes Molekül, definiert durch P Wiederholungseinheiten! Reale Polymerprobe → Viele Makromoleküle mit unterschiedlicher Molmasse ⇒ Molmassenverteilung Schulz-Zimm Verteilung (m = 1: Polykond. + Polyaddition + Radikal., Disprop. m = 2 : Radikal., Rekomb.) ( ) − β M ⇒ s. Abbildung W (M ) = β m M m exp m! m β= m = “Kopplungsparameter” Mn Poisson-Verteilung (Anionische Polym.) Mv M −1 exp(− v ) ( ) W M = ⇒ s. Abbildung (M − 1)!(v + 1) v = Mn −1 W (M ) ist Massenverteilung H (M ) ist die Häufigkeitsverteilung: H ( M ) ≡ W(M) M M Molmassen-Mittelwerte: ∞ Mn ∑n M = ∑n i ⇒ i i ∫ H (M )MdM ∫W (M )dM = H (M )dM ∫ H (M )dM ∫ 0 ∞ 0 ∑ n M ⇒ ∫W (M )MdM = M ∑n M ∫W (M )dM ∫W (M )M dM M ⇒ ∫W (M )MdM M ∑n M ∑n = Polydispersität: M (∑ n M ) ∑m M = ∑m ∑m M = ∑m M i w i i z i 2 i i i i 2 i i i 2 w 2 i i i 2 n i i M Uneinheitlichkeit: w − 1 ≡ U Mn Schulz-Zimm Verteilung Mw 1 = 1+ Mn m Poisson Mw M 1 1 = 1 + − 2 ; Pn = n Mn Pn Pn M0 Meßgrößen sind Mittelwerte über die gesamten Proben, d.h. über die gesamte Molmassenverteilung: ni R 2 ∑ 2 i = R n ∑ ni ∑m R = ∑n M R = ∑m ∑n M ∑m M R = ∑m M 2 R i 2 w i i i i i 2 i i 2 R2 i z ersetze R i i 2 i i i gegen Molmasse M i ⇒ Molmassenmittelwerte! Zahlen- vs Gewichtsverteilung H (M) M W ( M ) ≡ H(M) M M M 0.20 Poisson P -1 P: ni(Pi)=exp(1-Pn)(Pn-1) /Γ(Pi) i SF SF P P wi(Pi)=ni(Pi)*Pi/Pn 2 Pw/Pn=1+1/Pn-(1/Pn) =1.09 0.15 ni bzw wi Pn = 10 0.10 ζ+1 ζ ζ-1 SZ: ni(Pi)=ζ /(Pn*Γ(ζ+1))*(Pi *exp(-ζPi/Pn)) wi(Pi)=ni(Pi)*Pi/Pn 0.05 Schulz-Flory (Schulz-Zimm mit Pw/Pn=2; ζ=Pn/(Pw-Pn)=1) 0.00 0 10 20 30 Pi 40 50 Gewichts- bzw. Massenverteilung (auch Konzentration) Häufigkeits- bzw. Zahlenverteilung 300 1000000 250 800000 200 mi ni 600000 150 400000 100 200000 50 0 2000 2500 3000 3500 4000 4500 5000 0 2000 5500 2500 3000 3500 4000 4500 5000 5500 Mi Mi Verteilung des Häufigkeitsanteils (Molenbruch) Verteilung des Massenanteils (Gewichtsbruch) 0.07 0.06 0.05 0.05 0.04 0.04 xi wi 0.06 0.03 0.03 0.02 0.02 0.01 0.01 0.00 2000 2500 3000 3500 4000 Mi 4500 5000 5500 0.00 2000 2500 3000 3500 4000 Mi 4500 5000 5500 xi = ni ∑ ni wi = mi nM nM = i i = i i ∑ mi ∑ ni M i ∑ ni M i ∑n ∑n i = xi i Mi Mn xi und ni, sowie mi und wi vom Verlauf prinzipiell identisch, ni und mi sowie xi und wi allerdings nicht! Vorsicht bei Umrechnung von z.B. xi in wi: Mn berücksichtigen! Wenn nicht, ergibt sich andere (falsche) Verteilung (s.u., rechts)! 70000 0.06 60000 0.05 50000 40000 xi mi wi 0.04 0.03 30000 0.02 20000 0.01 10000 0.00 2000 2500 3000 3500 4000 Mi 4500 5000 5500 0 2000 2500 3000 3500 4000 Mi 4500 5000 5500 4. Gelpermeationschromatographie (GPC) Das Trennprinzip: Kalibrierung mit engverteilten Standards (häufig Polystyrol): Mi Elution volume Ve Ci Elution volume Ve Universelle Kalibrierung: Benoit et al., 1967: Grundlage der universellen Kalibrierung ist die Kuhn Mark Houwink (KMH)-Beziehung: [η ] = KM a η ,[η]: Staudinger-Index bzw. Grenzviskosität für c gegen 0, K, aη: KMH Koeffizient bzw. Exponent. Sie gilt für alle Objekte, bei denen die Molmasse mit der Dimension skaliert, also für alle Objekte mit fraktaler Dimension (s.o., M ∝ R f ). Zudem d trennt die GPC Partikel nach ihrem hydrodynamischen Volumen, dieses skaliert wiederum entsprechend der KMH-Beziehung mit der Molmasse. Universelle Kalibrierung: Ve = A − B log ([η ]k M k ) , [η ]k = K k M k log ([η ]1 M 1 ) = log ([η ]2 M 2 ) , log M 2 = aη,k , d.h.: bei Ve ,1 = Ve,2 ( ⎛ K ⎞ a +1 log ⎜ 1 ⎟ + η ,1 log M 1 . aη ,2 + 1 ⎝ K 2 ⎠ aη ,2 + 1 1 a log K1M 1 η ,1 +1 ) = log ( K M 2 aη ,2 +1 2 ) 5. Lightscattering to Determine Structure and Dynamics of Macromolecules in Solution (PD Dr. Wolfgang Schärtl) Introduction: The phenomenon of light scattering has first been described theoretically by Lord Rayleigh in the 19th century: Rayleigh discovered that our sky looks blue due to the fact that the short wavelengths “blue part” of the visible spectrum of the sun light is scattered much stronger by the gas molecules of our atmosphere than the longer wavelengths “red part”. Nowadays, light scattering has become a very important analytical tool to determine molar mass, size and shape of nanoparticles in solution. This experiment tries to illustrate the potential of laser light scattering using selected examples. I. Theoretical Background: (A) Static Light Scattering I.1 Rayleigh scattering of small particles Scattering from gases: Matter scatters electromagnetic waves (light, X-ray) due to the induction of an oscillating electric JG dipol which serves as a source for the scattered light wave. This oscillating dipole moment m ( t ) depends on polarizability α (= measure for the potential of creating an induced dipole moment JG within a given particle/molecule) and electric field vector E of the incident radiation as: JG JG JG GG m ( t ) = α E ( t ) , E ( t ) = E0 exp i ω t − k x (( )) (1) with ω = 2πν = 2π c λ G the frequency of light of wavelength λ, and k = 2π λ the wave vector. In Eq.(1) we assumed linearly and vertically polarised light propagating in x-direction (s.figure 1). JG E JG m JJG Es Fig.1 JG As seen in the figure, the induced dipolmoment within the scattering particle ( m ( t ) ) acts like an antenna. It emits an electromagnetic wave (the scattered light) isotropically in all directions of the scattering plane perpendicular to the oscillation direction of, as indicated by the concentric circles. The scattered light wave emitted by the oscillating dipole is given as: JG JJG GG ⎛ ∂2 m ⎞ 1 −4π 2ν 2α E0 exp ϖ − (2) Es ( t ) = ⎜⎜ 2 ⎟⎟ 2 = i t k r rc 2 ⎝ ∂t ⎠ rc Note that in Eqs.(1) and (2) the complex exponential describes regular oscillations of the electric field vector both in time and space! These equations therefore also can be called “wave equations”. JG JG ∗ JG 2 In a light scattering experiment, the scattered intensity I s = E s E s = E s is detected. For (( )) very small scattering particles (“point scatterers”) irregularly distributed over the scattering volume (e.g. gas molecules), it is called Rayleigh scattering and given as: I s 1 16π 4 2 (3) = α N I0 r 2 λ 4 with I0 the intensity of the incident beam and r the distance between sample and detector. As seen in Eq.(3) and has been stated already above, this scattering is isotropic and not depending on observation angle. I= Scattering from Solutions: For pure liquids, the scattering is caused by random density fluctuations within the liquid which are caused by thermal motion of the molecules. For solutions, on the other hand, the total scattering intensity depends both on these density fluctuations found also in the pure solvent, as well as on concentration fluctuations of the dissolved particles within the solution. In the following, the minor contribution of the pure solvent (density fluctuations !) will be neglected: within this approximation, the scattering intensity depends only on the scattering power of the dissolved particles b and on the concentration fluctuations, the later given by the concentration c – dependence of the osmotic pressure π of our binary solution, as given in Eq. (4): c I s ∼ b 2 kT (4) ( ∂π )T ∂c According to van´t Hoff : ∂π kT ∂π 1 for ideal solutions, = kT ( + 2 A2c + ...) for real solutions = ∂c M ∂c M (M = molar mass of dissolved particles, A2 = 2nd virial coefficient) Note that the expression for real solutions given in brackets is actually a series expansion in c! The scattering intensity of an ideal solution is just depending on scattering power, concentration and molar mass of the solute, and given as: I s ∼ b 2 cM (5) The scattering power b2 here depends on the difference in polarizability of solute and solvens Δα, which itself depends on the respective refractive indices as: 2 2 2 2 n − nD ,0 ε − ε 0 nD − nD ,0 Δα = α − α 0 = = = D (6) 4π N 4π N 4π N V V V with nD the refractive index of the solute, nD,0 the refractive index of the solvent and N particle number density. V the Next, we define the so-called Rayleigh ratio R, which is the scattering intensity normalized by the scattering geometry and therefore neither depending on scattering volume V nor on the distance sample-detector r: r 2 4π 2 cM 2 ∂n R = ( I S − I LM ) = 4 nD ,0 ( D )2 [m-1] (7) V ∂ c N λ0 L with the refractive index increment ( ∂nD ) ∼ nD − nD ,0 ∂c (8) c To determine this absolute scattering intensity R in the experimental praxis, a so-called scattering standard, that is a pure solvent (typically toluene) with known absolute scattering intensity ISt,abs, is used. The numerical value of this absolute scattering intensity of the standard ( in [cm-1]) is found in textbooks. By measuring the actual scattering intensity of the standard ISt using a given experimental setup as well as the scattering intensity of the solvent ILM and of the solution Is, the absolute scattering intensity of the solute sample of interest can be calculated according to: R= I Lsg − I LM I St ,abs I St (9) Comparing Eqs.(5) and (7), we deduce that the scattering power of one individual solute particle b, also called contrast factor K, is given as: 4π 2 2 ∂n b = 4 nD ,0 ( D )2 = K ∂c λ0 N L 2 (10) [cm2 g-2 Mol ] For real solutions of small (size < 10 nm) scattering particles, one finally (see also Eq.(4) obtains: Kc 1 = + 2 A2c + ... R M 1.2. (11) Static Structure Factor and Pair Distribution Function: For semidilute binary solutions, not just simple concentration fluctuations as considered in chapter 1.1., but more defined interferences of scattered light originating from neighboring scattering solute particles have to be taken into account. To approach this problem theoretically, we first introduce the definition of the scattering vector in order to describe the interference of two scattering centers B and D with distance r, as sketched in Fig.2: JJG A B k0 a α G r JJG k0 β θ b C G k Fig.2 D We consider only two beams emitted from the two scattering centers at positions B and D into one (arbitrarily) selected observation direction, defined by the observation or scattering angle θ. k 0 and k are the wave vectors of the incident and of the scattered light beam, respectively, 2π with k 0 = k = . The difference in distance traveled by the two beams than is given as λ Δx = a + b = AB + BC leading to a phase shift ϕ= 2π ( a + b) λ (12) (13) This traveled distance can be expressed as function of r, using a= r cos a and b= r cos b: ϕ= 2π ( r cos α + r cos β ) λ (14) On the other hand, the traveled distance can be expressed via the scattering vector G G G G q = k − k 0 and the distance vector r regarding the following scalar products: GK k 0 r = k 0 r cos α GK k r = kr cos(180 − β ) = − kr cos β => GK G G G K GG k 0 r − k r = −( k − k 0 ) r = − q r GK G 2π k 0 r − k r = k 0 r cos α + kr cos β = ( r cos α + r cos β ) = ϕ (15) (16) λ Thus, the phase shift is given as ϕ = − qr (17) ,that is, the scalar product of the scattering wave vector and the distance vector. (Note: q has the dimension of an inverse length while r is the distance. The product yields the dimensionless phase shift.) Importantly, as seen from Fig.2 the value of the scattering vector q is given as: q = k −k0 = 4π sin θ λ (18) In solution, the wave length of the incident light changes as given by the refractive index of the solvent nD. Therefore, the scattering vector in this case is given as: q = k −k0 = 4π nD sin θ λ (19) Accordingly, the scattered electric field strength is given by: GG GG { } { } or (20) E s ( x , t ) = b e iωt −iq r = b e iωt e −iq r ω with b (see above) the contrast factor. The factor ei t corresponding to the time-oscillations of the electric field vector does not contribute to the average measured scattering intensity, and therefore can be ignored. Please note that here the interference was derived for two scattering centers in general. The two scattering centers could be two particles of a multi-particle crystal or within a semidilute solution (intermolecular interference, structure factor (see below)), or it could be two volume elements within one scattering particle (intramolecular interference, form factor (see below)) GG E s ( x , t ) = b cos(ωt − q r ) • • • • • • • • r • • • • r Fig.3 Before we continue, let us illustrate the important meaning of the scattering vector q in more detail: simply spoken, the scattering vector can be regarded as an “inverse magnification glass“: we have shown that the scattering vector has the dimension of an inverse length. The meaning of this is indeed deeper then “just being a dimension”. The scattering vector acts as sort of an “inverse magnification glass”: It was shown that the scattered intensity is determined via the phase shift by the product rq . This means the same change in intensity can be caused by a large structure with a large characteristic distance r in connection with a small q value, or alternatively for a small structure, for small r, in connection with a large value of q. On the other hand, in order to “see” certain structures, for small structures we have to use a large q and for large structures we have to use a small q. This is where the expression “inverse magnification glass” results from. From the magnitude of q as calculated above (see Eq.(18), it is obvious how we can adjust the value of q in experimental practice: the larger the scattering angle θ and the smaller the wavelength λ, the larger gets q. In a scattering experiment, one usually chooses a given wavelength that fits the order of magnitude in size of the scattering particles of interested. Keeping this wavelength fixed, one investigates the scattering intensity at different scattering angles θ in order to probe different length scales within the range of interest. The following figure shows the meaning of q as “inverse magnification glass” and correlates the different scattering methods (corresponding to different values of λ!) with approximate size scales. many point-like particles single coils with persistence length l many coils with size d long thin rod internal structure increasing q images smaller structures light scattering SAXS and SANS Fig.4 Many Scattering Centers Within the scattering volume of our semidilute solution, there are obviously more than two scattering centers, scattered waves of which interfere and contribute to the resulting scattering intensity. In this case, one can calculate the scattering intensity by summing up over all scattered electric field amplitudes. The scattering from one scattering center can be expressed as: ⎧ Es GG ⎫ ⎨ −iq r ⎬ i⎭ ( x , t ) = b e {iωt }e ⎩ (21) with b the contrast factor and r the position of scattering particle i within the scattering volume. i For N scattering centers, the electric field strength is therefore given by the sum N E s (q ) = ∑ b i e ⎧ GG ⎫ ⎨ −iq r ⎬ i⎭ ⎩ (22) i =1 and the scattering intensity is N I ( q ) = E s ( q ) E * s ( q ) = ∑ bi e i =1 {−iqG rGi } N ∑ j =1 bi e {+iqG rGj } = N N i =1 j =1 ∑ ∑ bi b j e ⎧ G ⎪ ⎨ −i q ⎪⎩ (rGi − rGj ) ⎫ ⎪ ⎬ ⎪⎭ (23) Following this procedure, in principle we can calculate the scattering intensity from any accumulation of scattering centers, e.g. a certain crystal structure or a particle with a certain shape. We just have to think about what it means to “sum over all scattering centers”, i.e. how to describe e.g. the particle shape mathematically. We will do this later when we deal with the form factor. We have seen so far that the scattered intensity of binary solutions is based on pairwise interference of scattered light originating from the scattering particles within the scattering volume. Finally, let us consider the correlation between scattered intensity and this particle location within the sample by introducing a new important function, the so-called pair G distribution G (r ) . First, we divide the scattering volume into very small volume segments, each () () with an individual refractive index difference ΔnD r = nD r − nD ,0 . r is the position vector of () the volume segment, nD r its local refractive index which depends both on type and number of () the scattering particles within. If all particles are identical, ΔnD r is directly proportional to the () N r (see fig.5). V scattering volume V containing a total of N scattering particles number density or concentration fluctuation Δ Δ () N r V r Δ () N 0 V Fig. 5 G The pair distribution function G (r ) is defined as the space correlation function of the local density fluctuations (for correlation functions, see also section on “Dynamic Light Scattering”!): G N G N G N G N G G G (r ) =< Δ (0) Δ (r ) >= ∫ Δ (0) Δ (r )d r V V V V V (24) G G On the other hand, G (r ) and the detected scattered intensity I (q) are Fourier pairs, that is they can be transformed into each other by Fourier transformation, respectively: G G (r ) = 1 GG (2π ) 3 G G ∫ exp(iqr )I (q)d q V −1 G GG G G I (q ) = b 2V ∫ exp(−iqr )G (r )d r (25) V Finally, it should be noted that Eqs. (23) and (25) show two different expressions for the same quantity, namely the scattered intensity obtained by summing up pairwise the interferences of scattered light emitted from all pairs within the scattering volume of our sample. 1.3. Scattering of Interacting Particles The pair distribution function G(r) and its Fourier transform I(q) depend on the particle interaction pair potential u(r). For illustration, let us consider two small hard spheres. R << q-1, and G(r) therefore is given as: u (r ) r < 2 R : u (r ) = ∞ → G (r ) = 0 G (r ) = exp(− ) with (26) kT r ≥ 2 R : u (r ) = 0 → G (r ) = 1 Note that the exponential is a Boltzmann term, expressing the probability of finding a certain interparticle distance r in case of a competition between thermal energy kT (“chaos”) and interaction u(r) (“order”). For the hard sphere system, G(r) is a step function a shown in fig.6: G(r) 1-G(r) -1 1- 2R r 2R r Fig. 6 In general, the scattered intensity I(q) in dependence of u(r) is given for the hard sphere system and an isotropic sample as: I (q) N N = [1 − b2 V V ∞ u (r ) sin(qr ) N N 2 ∫0 (1 − exp(− kT )) qr 4π r dr ] = V [1 − V 2R ∫ 0 sin(qr ) 4π r 2 dr ] qr (27) Next, we consider G(r) and I(q) for more concentrated solutions, that is increased particle interactions. At a given particle concentration, we can increase the effective particle volume fraction by exchanging the short-range hard sphere repulsion by a long-range repulsive potential, e.g. the Lennard-Jones-potential u (r ) = 4ε[( r which has been sketched in figure 7: 1.3d )−12 − ( r 1.3d )−6 ] (28) u(r) 0 r Fig. 7 d=2R G(r) In this case G(r) shows well-pronounced correlations (and oscillations) even for larger interparticle distances, as sketched below: 1 2R r Fig.8 If the scattering particles are larger in size (10 nm < radius < 1 µm), the scattered intensity I(q) contains both interparticular interferences (structure factor = Fourier transform of G(r) = S(q)) and intraparticular interferences (particle form factor = P(q)): N N Z Z G G G I (q) = b 2 ∑∑∑∑ < exp(−iq(r pi − r qj ) >t (29) p =1 q =1 i =1 j =1 Consider N identical particles within the scattering volume, each consisting of Z scattering centers. The meaning of the distance vector rpi - rqj is illustrated below: interparticle distance: rpi - rqj particle p, scattering center i rpi rqj particle q, scattering center j Fig. 9 Separating intraparticular (p = q, formfactor) and interparticular (p ≠ q) interferences, we get: I (q) 1.4. N 2 = b V 2 GG GG ⎛N⎞ Z Z < exp(−iqr i1 j1 ) > + ⎜ ⎟ ∑ ∑ < exp(−iqr i1 j2 ) > ∑∑ ⎝ V ⎠ i1 =1 j2 =1 i1 =1 j1 =1 Z Z (30) The Zimm-Equation For very dilute solutions the interparticle scattering distribution or structure factor S(q)= 1, and the measured scattered intensity only contains the particle form factor P(q), which for isotropic particles is given as: Z Z Z Z GG sin(qrij ) >r P (q ) = 1 2 ∑∑ < exp(−iqr ij ) > Gr = 1 2 ∑∑ < (31) Z i =1 j =1 Z i =1 j =1 qrij Series expansion yields: Z Z 2 (32) (1 − 1 q 2 rij + ...) 6 Z 2 ∑∑ i =1 j =1 Next, we need the so-called center-of-mass coordinate system. For this purpose, the origin of the coordinate system is transferred to the particle’s center of mass, as shown in the figure: P(q) = 1 i 0=S j Next, we assume a homogeneous particle density, i.e.. ρ(ri) = ρ. Therefore Fig. 10 Z G ∑s i =0 and < s 2 >= 1 i =1 G2 Z s Z∑ i (33) ≠0 i =1 2 with si the position vector of scattering center i of the particle. Note that < s 2 >=< Rg > ≠ 0. With the distance vector r ij = s j − s i we get: 1 G 2Z 2 ∑∑ < r 2 ij >= 1 2Z 2 ∑∑ (s i 2 G G 2 + s j − 2( s i s j )) (34) G G s i s j = 0 for i ≠ j , and we get for the form factor P(q): P(q) = 1 − 1 < s 2 > q 2 + ... 3 (35) Note that this is a series expansion in q where higher order terms are not shown explicitly (see below). Thermodynamic fluctuation theory shows that the absolute scattering intensity depends on P(q) as: (36) = 1 + 2 A2 c + ... R MP(q) This is a series expansion in c. For comparatively dilute solutions, higher order terms in c can be neglected, however. Kc Inserting P(q) from eq. (42) we get the very important Zimm-equation: Kc 1 + 1 < s2 > q2 3 = + 2 A2 c ≈ 1 (1 + 1 < s 2 > q 2 ) + 2 A2 c R M (1 − 1 < s 2 > 2 q 4 ) M 3 9 (37) This equation provides the basis for analyzing the scattered intensity from comparatively small particles (<s2>q2 << 1, in which case the series expansion (Eq.(35)) is terminated with the < s 2 > q 2 -term. For light scattering, this size regime is corresponding to: 10 nm < radius < 50 nm)) to determined the molar mass, the radius of gyration <s2>0.5 or the 2nd Virial coefficient A2 , the later providing a quantitative measure for the particle-solvent interactions. Note that for polydisperse samples the Zimm analysis yields the following averages: (i) Mass-average of the molecular mass Mw ∑N M M ∑N M ∑N M < s > = ∑N M Mw = i i i i 2 (ii) Z-average of the squared radius of gyration <s 2 (38) i i i i 2 z i 2 > (39) i How are the quantities Mw, A2 and s2z determined in experimental praxis (Zimm-Plot) ?? As an exercise, try to explain all details of the Zimm-Plot given in figure 11 !! 6,0 5,5 5,0 4,0 3,5 -7 Kc/R / 10 mol/g 4,5 3,0 2,5 2,0 1,5 1,0 0,0 5,0 10,0 2 15,0 10 20,0 -2 (q +kc) / 10 cm Fig.11 1.5. Particle Form Factor for “Large” Spheres As shown above (see Eq.(31)), the form factor P(q) is given as: P(q) = 1 Z Z 2 Z GG ∑∑ < exp(−iqr i =1 j =1 ij (40) ) > Gr For homogeneous spherical particles, one gets: P (q ) = 9 ( qR ) 6 ( sin ( qR ) − qR cos ( qR ) ) 2 (41) with R the radius of the sphere. This corresponds to an oscillating function as shown in figure 12. Note that the position of the first minimum is found at qR = 4.49, which can be used to easily determine the particle size. 0 10 -1 10 P(q) -2 10 -3 10 -4 10 -5 10 0 2 4 6 qR 8 10 12 Fig. 12 Note also that for polydisperse samples these oscillations are not as well pronounced, as shown in figure 13: 0 10 -1 10 ΔR/R=0.01 ΔR/R=0.05 ΔR/R=0.10 P(q) -2 10 -3 10 -4 10 -5 10 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 -1 q [nm ] Fig.13: form factor P(q) for spherical particle with size polydispersity 1, 5 and 10 %. (B) Dynamic Light Scattering So far, we have ignored the fact that particles in solution show thermally incited diffusion, socalled Brownian motion. The origin of this Brownian motion are the random thermal density fluctuations of the solvent molecules already mentioned above. While we have neglected their direct influence on the scattering intensity before, they nervertheless push the scattering particles along and therefore cause a time-dependence of our pair correlation function G(r). As characteristic for this Brownian motion, also called a “Random walk”, the mean squared displacement of the scattering particles depends linearly on the time of motion: <ΔR(t)2> = 6Dst, with Ds the selfdiffusion coefficient. 2.1. Time-Intensity-Autocorrelation Function and Particle Motion The so-called dynamic structure factor Fs(q,t) contains the complete informations concerning the particle motion. In analogy to Eqs.(25), Fs(q,t) it is the Fourier transform of the so-called vanHove-autocorrelation function Gs(r,t): G G GG G Fs (q, t ) = ∫ Gs (r , t ) exp(iqr )d r (42) G N G N G Gs (r , t ) =< (0, 0) (r , t ) >V ,T V V and (43) G Gs (r , t ) is a measure for the probability to find a given scattering particle at time t and position G r , if the same particle previously at time 0 has been located at position 0. Note that not the G absolute position vectors but only the relative distance vector r is important. The average < > is taken both over the whole scattering volume and the total measuring time. For an isotropic G diffusive particle motion (= Brownian motion), also called “random walk“, Gs (r , t ) is: Gs (r , t ) = [2π 3 3 3r (t ) 2 ) 2 < ΔR (t ) 2 > (44) ) = exp ( − Ds q 2t ) (45) < ΔR (t ) 2 >] 2 exp(− Fourier transform leads to: Fs (q, t ) = exp(−q 2 < ΔR 2 (t ) >T t 6 The Stokes-Einstein-equation Ds = kT kT = f 6πη RH (46) allows to determine the hydrodynamic radius of the scattering particle if sample temperature T and solvent viscosity η are known and the selfdiffusion coefficient is measured by dynamic light scattering. This is the underlying principle of important modern analytical apparatus, so-called particle sizers. Finally, let us consider the theoretical background of the dynamic light scattering experiment itself: 2.2. Theory of the Dynamic Light Scattering Experiment I(t) <I(t)I(t+τ)>T The principle of dynamic light scattering is shown in the following sketch: τ1 τ2 t τ Fig. 14 On the left, the signal detected by the photomultiplier at a given scattering angle is shown. Note that the particle motion, as mentioned above, causes statistic fluctuations with measurement time in G(r) and therefore also in I(q). For static light scattering experiments, the average scattered intensity as indicated by the dotted line is determined. For dynamic light scattering, on the other hand, the detailed analysis of the fluctuating intensity is important. For this purpose, the fluctuation pattern is transferred into an intensity correlation function, using the following scheme as indicated in fig.14 for two different correlation times τ: the time-dependent scattered intensity is multiplied with itself shifted by a distance τ in time, and these products are averaged over the total measurement time. This intensity correlation function <I(q,t)I(q,t+τ)>=g2(τ) , which for diffusing particles should exponentially decay from 2 to 1, is related to our dynamic structure factor or amplitude correlation function Fs(q,τ) via the so-called Siegert-relation: Fs (q,τ ) = exp(− Ds q 2τ ) =< Es (q, t ) Es (q, t + τ ) >= or Fs (q,τ ) = g1 ( q,τ ) = < I ( q, t ) I ( q, t + τ ) > − A A g 2 ( q, τ ) − A A Here, A = <I>2 is the base line of the correlation function. (47) (48) log Fs(q,τ) Fs(q,τ) (= g1(q,τ)) In experimental practice, Fs (q,τ ) is plotted not only in a lin-lin-scale (leading to the wellknown expontential function) but also in lin-log and log-lin scale as sketched below for a bimodal sample, that is a sample containing scattering particles with two different sizes: τ log τ Figs.15: log-lin and lin-log plot of Fs (q,τ ) for a bimodal sample. What are the advantages/disadvantages of the two representations, respectively ?? Finally, it should be noted that only in case of very dilute samples the selfdiffusion coefficient, and therefore the hydrodynamic radius of the scattering particles, can be determined by dynamic light scattering. Polydisperse samples: For polydisperse samples with size distribution P(R) we also get a distribution function of the corresponding selfdiffusion coefficients P(Ds). There Fs (q,τ ) is not simply a monoexponential decay, but a superposition of several exponential functions: ∞ Fs (q,τ ) = ∫ P( Ds ) exp ( −q 2 Dsτ )dDs (49) 0 One practicable way of analyzing these signals is the so-called „cumulant analysis“, which in practice is a series expansion of Fs(q,τ) and therefore only is valid for small size polydispersities < 20 %: 1 1 ln Fs (q,τ ) = −κ1τ + κ 2τ 2 − κ 3τ 3 + ... (50) 2! 3! The first cumulant κ1 = Ds q ² yields the average diffusion coefficient Ds and therefore an 2 average hydrodynamic radius R H , the second cumulant κ2 = ( Ds2 − Ds )q 4 provides a quantitative measure for the polydispersity of diffusion coefficients σD which is given as: σD = Ds2 − Ds Ds 2 = κ2 κ12 (51) Note that determination of the actual size polydispersity is far more complicated and depends on the size distribution function of the sample, for example Gaussian or rectangular. Corresponding expressions for the diffusion coefficient polydispersity κ2 and the corresponding size κ12 polydispersities are shown in figure 16: Fig. 16 Finally, it should be noted that for polydisperse samples the average selfdiffusion coefficient determined from the correlation function Fs(q,τ), e.g. by cumulant analysis, is q-dependent. Therefore, it is also called apparent diffusion coefficient Dapp(q). The “true” average diffusion coefficient, which by the way is a z-average, is determined by interpolation of the apparent diffusion coefficient towards q = 0. For small particles 10 nm < radius < 120 nm, this interpolation is given as: ( Dapp ( q ) = Ds , z 1 + K Rg 2 q2 ) (52) Importantly, the constant K not only depends on sample polydispersity but also on the particle topology (sphere, cylinder etc.). Plotting Dapp(q) vs. q2 in this case leads to a linear increase, the intercept with the q = 0 axis yielding the z-average diffusion coefficient Ds,z and therefore an inverse z-average hydrodynamic radius RH,z-1. The fact that the apparent diffusion coefficient due to polydispersity effects increases with increasing scattering vector q is simple to understand: the scattered intensity which determines the relative contribution of a respective particle size to the correlation function depends both on particle concentration and particle form factor. Consider for illustration the particle form factors of 3 different particle sizes as shown in figure 17. q1 q2 0 10 -1 10 P(q) -2 10 -3 R = 100 nm R = 120 nm R = 140 nm 10 -4 10 -5 10 0,00 0,01 0,02 -1 q [nm ] 0,03 Fig. 17 Obviously, P ( q ) of the largest particles decays first with increasing q (due to destructive intraparticular interferences). This causes a loss in contribution of larger particles to the scattered intensity and therefore decreases their contribution to the average correlation function with increasing q, leading to the fact that the apparent diffusion coefficient becomes larger (“faster”) with increasing q. How does Dapp(q) vs. q2 look like for large polydisperse particles 200 nm < <R> < 500 nm ?? 6. MALDI-TOF Mass Spectrometry (HD Dr. Michael Maskos) Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 1 Ekin = U ⋅ z ⋅ e = mv 2 , U: applied electrical field, z: number of charges, m: mass, v : average 2 velocity v = at , a : acceleration, t: time U a 2 Force: F = m ⋅ a = ⋅ z ⋅ e , d = ⋅ t acc 2 d t acc = d ⋅ tdrift = 2m z U ⋅e m distance L z = =L velocity v 2 ⋅U ⋅ e t = tacc + tdrift = const. m z U real (dead times etc.): m = a ⋅ t meas + b z Resolution: ⎧ ⎫ 2 2 2 ⎪⎪⎛ d m ⎞ ⎛ ⎛ ΔE ⎞ ⎞ ⎪⎪ U Δt I ,D ⎞ ⎛ ⎟ + ⎜ cTA = ⎨⎜⎜ c I ,D Δv ⎟ + ⎜ c E ⎜ ⎟⎟ ⎬ L U ⎟⎠ ⎜⎝ ⎝ U ⎠ ⎟⎠ ⎪ L ⎟⎠ ⎜⎝ ⎪⎝m ⎪ ⎪⎩ C ⎭ A B 12 ⎛ Δt ⎞ ⎜ ⎟ ⎝ t ⎠ linear A: distribution of ionization times, detector response time Δt I , D → given by exp. setup B: velocity distribution due to desorption process Δv (“turn-around-time”) C: initial speed and place of ionization → energy distribution ΔE independent of m and L Reflectron: energy refocussing leads to c ≈ 0 dominant: m A for ≤ 3000amu z m B for ≥ 3000amu z MultiChannel Plate (MCP) Reflectron 7. Field-Flow-Fractionation FFF (HD Dr. Michael Maskos) Theory of FFF: Flow density J x = − D dc ( x ) + Uc ( x ) , D : diffusion coefficient, U : field induced velocity dx from the wall to the wall at equilibrium: J x = 0 ⎡ U⎤ concentration profile: c( x ) = c0 exp ⎢− x ⎥ , c0 : conc. at the wall, x : coordinate in channel D⎦ ⎣ height direction D ⎛ x⎞ ⇒ c( x ) = c0 exp⎜ − ⎟ , l: characteristic average of distance U ⎝ l⎠ (depending on sample and field) F kT D= (Stokes – Einstein), U = , F : force, f : friction coefficient f f kT => l = , typically 1 < l < 10 μ m F effective layer thickness: l = Normal Retention Mode (“Brownian”) L , L : channel length, v : particle velocity ( v of an exponential v distribution in a parabolic flow profile) Retention time t R = Parabolic flow profile: Retention (as in Chromatography) described by dimensionless retention parameter λ l kT , w : channel height (typically 75-300 μm) λ= = w Fw average zone velocity v in z-direction v = Retention ratio R = c(x )v( x ) c( x ) (averaging over channel height) v , v : average v of sample component, v ( x ) : average v of solvent v( x ) w Integral expression: R = ∫ c( x)v( x)dx 0 w w 0 0 ∫ c( x)dx ∫ v( x)dx Flow profile of an isoviscous liquid between two parallel plates (Hagen-Poiseuille): v( x) = Δp x( w − x) , η : viscosity of solvent 2ηL Δpw 2 => average velocity v( x) : v( x) = 12ηL ⎛ ⎞ ⎛ 1 ⎞ Integration yields: R = 6λ ⎜⎜ coth⎜ ⎟ − 2λ ⎟⎟ ⎝ 2λ ⎠ ⎝ ⎠ if w >> l (requirement for efficient operation): λ -> 0, thus lim ( ) - Term → 1 and so limit λ → 0 lim R = 6λ λ →0 Alternative description: V t R = 0 = 0 , V0 : dead volume (channel volume), VR : retention volume, t 0 : dead-(void-) time VR t R t R : retention time → tR w F w = = t 0 6l 6kT → tR ~ F ⇒ seperation if ΔF is high enough (typically: 10-16 N) size selectivity: S d = d log t R d log R Flow FFF viscous force on particle due to cross flow: F = f U = kT U = 6πη R U D → tR ~ f , D −1 , R , thus S d ≅ 1 (GPC typically S d ~ 0.2 ) Band broadening: average plate height H H = H neg + H long + ∑ H i , H neg : velocity gradient → mass transfer (non-equilibrium), H long : longitudinal diffusion: can often be neglected, H i : instrumental effects: can often also be neglected Theory of separation systems with non-uniform flow profile leads to: L χw 2 H neg = v , v : average Carrier-velocity = 0 , χ = f ( λ ) t D 3 for small λ (λ ≈ 0.06) : χ ≅ 24λ L Dt 0 = 2 H w 24λ3 typical example of channel parameters yields: H of 0.18 mm ⇒ N ≅ 1550 possible plate height N = The FFF-Family Sedimentation FFF: 4π 3 R Δρ G , m´ : effective mass (mass – mass of flowtation), V p : 3 particle volume, R: radius, G: gravitational acceleration t R ~ m´,V p , T , Δρ , parameter G F = m´G = V p Δρ G = → Sd ≅ 3 → run time problem with samples of totally different size → programmed field (simple equations no longer valid!) limits: - Maximum load/pressure on the seals: max 105 g - Lower limit of separation: approx. d ~ 50 nm, Polymer only > 104 – 107 g/mol Thermal FFF: Temperature gradient: 100 K dT K ~ 10 4 → ΔT ≈ ( ≅ w) 100μm dx cm thermal diffusion of polymers → cold wall D dT F = kT T , DT : thermal diffusion coefficient D dx ⎛ tR ⎛ DT ⎞ ⎞ b with D ≅ AM − b , b ≈ 0.6 ⎟ ⎜ ≅⎜ ⎟ ΔTM ⎝ t0 ⎝ A ⎠ ⎠ Problem: DT often unknown DT ≅ Soret coefficient D with known D determination of DT D : sensitive to polymer dimension DT : sensitive to chemical composition Electrical FFF: So far not established, because problmes with elektrolyte gases ⎡⎣ F ~ q ( effective charge ) ⎤⎦ F = kT μE D , μ : elektrical mobility, E : applied electrical field General FFF Theory Velocity vectors Parabolic Flow Profile FFF-channel no flow, only field Field Field only flow, no field concentration flow and field General FFF Theory te M1 = ∫ tc(t )dt ta te R= ∫ c(t )dt ta υ zone R= υ w υ zone = M 1,u M 1,r tu R= tr c ( x )υ ( x ) c ( x) 1 υ = ∫ υ ( x )dx 1-x/w w0 w 1 c ( x )υ ( x ) = ∫ c ( x )υ ( x )dx w0 w 1 c ( x ) = ∫ c ( x )dx w0 ⎡ x ⎛ x ⎞2 ⎤ υ ( x ) =6 υ ⎢ − ⎜ ⎟ ⎥ ⎢⎣ w ⎝ w ⎠ ⎥⎦ v(x)/<v> FFF Theory: Force Field dc ( x ) J x = U xc ( x ) − D dx Jx = 0 ⎛ xU x ⎞ Solution: c ( x ) = c0 exp ⎜ ⎟ D ⎝ ⎠ F Forces: U x = f dc ( x ) U xc ( x ) = D dx ⎛ x Ux ⎞ Convention: c ( x ) = c0 exp ⎜ − ⎟ D ⎝ ⎠ Fritction: f = kT D ⎛ xF ⎞ c ( x ) = c0 exp ⎜ − ⎟ kT ⎝ ⎠ Flow-FFF: • wV c Ux = V0 ⎛ xwV• ⎞ c ⎜ ⎟ c ( x ) = c0 exp − ⎜ DV0 ⎟ ⎝ ⎠ FFF Theory: Retention Parameter Average height l: kT l= F Retention Parameter λ: l kT λ= = w Fw w Exact Average height le: le = ∫ xc ( x ) dx 0 w ∫ c ( x ) dx ⎛ x⎞ ∫0 x exp ⎜⎝ − l ⎟⎠ dx le = w ⎛ x⎞ ∫0 exp ⎜⎝ − l ⎟⎠ dx w le Exact Retention Parameter λe: λe = w 0 λe = λ + 1 ⎛1⎞ 1 − exp ⎜ ⎟ ⎝λ⎠ ⎛ w⎞ exp ⎜ − ⎟ ( l + w ) − l w l ⎠ ⎝ le = =l+ ⎛ w⎞ ⎛ w⎞ exp ⎜ − ⎟ − 1 1 − exp ⎜ ⎟ ⎝ l ⎠ ⎝l ⎠ Flow-FFF Theory: Retention Parameter λ= kTV0 • f Vq w f = 3πη d 2 λ= kTV0 • 3πη V q w2 d FFF Theory: Retention Parameter ⎛ x ⎞ c ( x ) = c0 exp ⎜ − ⎟ ⎝ λw ⎠ c ( x) ⎛ − λ1 ⎞ = −c0 λ ⎜ e − 1⎟ ⎝ ⎠ 1 1 ⎛ ⎞ − − ⎛ ⎞ 2 λ λ c ( x )υ ( x ) =6λ c0 υ ⎜ 2λ ⎜ e − 1⎟ + e + 1⎟ ⎜ ⎟ ⎠ ⎝ ⎝ ⎠ 1 2λ − 1 2λ ⎛ 1 ⎞ e +e coth ⎜ ⎟= 1 1 − 2 λ ⎝ ⎠ e 2λ − e 2λ FFF Theory: Retention Ratio and Retention Parameter R= c ( x )υ ( x ) c ( x) υ ( x) Approximations: ⎛ 1 ⎞ 2 12 λ = 6λ coth ⎜ − ⎟ 2 λ ⎝ ⎠ 1. empirical: λ= ( 1− 1− 4 R 3 2 2. square: R = 6λ − 12λ ⇒ λ = 4 R = 6λ ⇒ λ = R 3. linear: 6 Upper limits of R und Approx. ) R 6 (1 − R ) 1 3 λ , with max. λ - %deviation Analyt. limits of R 2% 5% 10% R λ R λ R λ 1 <1 0.64 0.15 0.76 0.20 0.85 0.27 2 <3/4 0.68 0.17 0.72 0.20 0.74 0.22 3 - 0.06 0.01 0.14 0.02 0.27 0.04 Relation between R and λ 1 3 lin 2 quad 1 empir exact Appr. Approximation A Appr. Approximation B Appr. ApproximationGl. C ex.Funktion 0.8 λ 0.6 0.4 smaller distance from accum. wall 0.2 0 0 0.2 0.4 0.6 0.8 1 R longer sample retention times unretained Band Broadening diffusional flux x υH υ zone υL l c concentration profile z x diffusional flux in time td υH l υ zone υL l +z +z z Band Broadening Elution: (z direction) Plate height H: ∂c ∂ 2c =D 2 ∂t ∂z1 H= σ2 Z small, monodisperse: Einstein: with σ 2 = 2Dt υ zone = Z t z1 = z − υ zonet second moment of dislocation (in z direction) first moment of dislocation (in z direction) 2 ⎛ z − υ zonet ) ⎞ ( m exp ⎜ − c= ⎟ ⎜ ⎟ 4 Dt 4π Dt ⎝ ⎠ D = Dz + ∑ Di ∑D i = Dn 2 Dz t + 2 Dnt 2 Dz 2 Dn H= = + υ zone υ zone Z H = Hd + Hn i Dz : axial diffusion coefficient (z direction) H d == 2 Dz υ zone 2 Dz Hd = R υ H n == 2 Dn υ zone Band Broadening Nonequilibrium c∗ = c0 ( z ) e c = c∗ (1 + ε ) sample concentration c(x,z,t) − x l c*: concentration without flow, c0: concentration at accum. wall, ε: equlilibrium departure term, accounts for the differential displacement of analyte in axial direction (z direction) cυ = c∗υ + c∗ευ average convective flux: Fick‘s 1. law: J z = − Dn Dn = − (cross-sectional average) ∂ c∗ ∂z c∗ευ c∗ ( ∂ ln c∗ ∂z ) υ: from Navier-Stokes equation for incompressible flow between two infinite parallel plates ⎡ x ⎛ x ⎞2 ⎤ υ ( x ) =6 υ ⎢ − ⎜ ⎟ ⎥ ⎢⎣ w ⎝ w ⎠ ⎥⎦ Band Broadening Nonequilibrium determination of ε: solving with assumption ∂c ∂ ⎛ ∂c ⎞ ∂ ⎛ ∂c ⎞ = − ⎜ Uc − Dx ⎟ − ⎜υ c − Dz ⎟ ∂t ∂x ⎝ ∂x ⎠ ∂z ⎝ ∂z ⎠ ∂c∗ c∗ =− l ∂x and i) axial gradient negligible (analyte cloud spans a much greater width in axial (z) than in lateral (x) dimension) ii) near-equilibrium (lateral (x) equilibrium maintained during axial (z) migration) ∂c ∂ 2 c∗ ∂c∗ ∂t ∂ ε −1 ∂ε υ − υ zone ∂ ln c −l = 2 ∂x ∂x ∂z Dx ⎛ dε ⎞ (no analyte flux with ⎜ = 0 ⎟ across accum. wall) dx ⎝ ⎠ x =0 2 ∗ ≈ Dz ∂z 2 − υ zone c∗ε = 0 ∂z (assumpt. 1, c = c∗ ) Band Broadening Nonequilibrium Final solution Hn = ψ l 2υ zone Dx = χ w2 υ Dx 1 2 ⎞ ⎛ 2 −1 λ −1 λ 28λ + 1)(1 − e ) − 10λ (1 + e ) − 2 − ( ⎜ ⎟ −1 λ λ λ 3 4 (1 − e ) ⎜ ⎟ ψ= ⎛ ⎛ ⎞⎟ 2 ⎜ ⎞ 1 −1 λ −1 λ 1 1 ⎡(1 + e ) − 2λ (1 − e ) ⎤ ⎜ +4 − ⎜ 4λ ⎜1 + ⎟− − 6⎟⎟ ⎣ ⎦ −1 λ −1 λ ⎟⎟ ⎜ λ (1 − e ) ⎜ ⎜⎝ λ (1 − e ) ⎟⎠ 3λ ⎝ ⎠⎠ ⎝ where and χ = ψλ 2 R if λ is small: limψ = 4; lim χ = 24λ 3 λ →0 λ →0 power series expansion (λ < 0.10; R < 0.48): ψ = 4 (1 − 6λ + 24λ 3 + 96λ 4 ) χ = 24λ 3 (1 − 8λ + 12λ 2 + 24λ 3 + 48λ 4 ) Resolution and Fractionating Power Resolution: measure of separation between two zones ∆z: gap between center of gravity of neighboring zones, σ: standard deviation of the zones related to retention time: Fractionating Power F: Resolution between particles by difference in diameter or molecular weight ∆z ∆z Rs = = 2 (σ 1 − σ 2 ) 4σ δ tr Rs = 4σ t Rs Fd = δd d tr ∂ ln tr tr d ∂tr Fd = Sd = = ∂d 4σ t 4σ t ∂ ln d 4σ t Rs Fm = δM M d ( log tr ) Sd = d ( log d ) Selectivity S M ∂tr tr ∂ ln tr tr Fm = Sm = = ∂M 4σ t 4σ t ∂ ln M 4σ t d ( log tr ) Sm = d ( log M ) Resolution and Fractionating Power Theoretical plate number N Fd , M High retention: ⎛ tr ⎞ N =⎜ ⎟ ⎝ σt ⎠ N = Sd , M 4 2 L N= H random dispersion: N selective dispersion: S 24λ 3w2 υ H ≈ Hn = D Fd , M = S d , M LD 384λ 3 w2 υ differentiating R 1⎞ ⎛ R + 1 − ⎟ S max S = 3⎜ 2 R⎠ ⎝ 36λ Smax d ( ln λ ) = d ( ln d ) d ( log tr ) d ( log λ ) Sd = d ( log λ ) d ( log d ) analyte-field interaction Th-, F-FFF: Smax 0.5 – 0.7 SEC: Smax 0.1 – 0.2 Theory of Asymmetrical Flow FFF (AF-FFF) Bolt Inlet Tubing Sample Inlet Block Outlet Tubing Upper Wall (Glass/Plexiglass) Spacer Membrane Frit Crossflow Outlet K b0 bL L zk z Theory of Asymmetrical Flow FFF (AF-FFF) Corrections for the flow force field velocity: width in trapezoidal channel: ⎛ 3x 2 2 x3 ⎞ u ( x ) = − u0 ⎜ 1 − 2 + 3 ⎟ w w ⎠ ⎝ b ( z ) = b0 − z ( b0 − bL ) L • average flow velocity: impact on plate height: unretained time: (void time) υ = H= Vin − u0 ( b0 z − z 2 ( b0 − bL ) ( 2 L ) ) w ( b0 − z ( b0 − bL ) L ) χ w2 D υ ⎛ • V0 ⎜ Vc tu = • ln ⎜ 1 + • Vc ⎜ V out ⎜ ⎝ b0 − bL 2 ⎛ ⎛ ⎞ ⎞⎞ ⎜ w ⎜ b0 zk − 2 L zk − K ⎟ ⎟ ⎟ ⎠ ⎟⎟ ⎜1 − ⎝ V0 ⎜ ⎟⎟ ⎜ ⎟⎟ ⎝ ⎠⎠ Theory of Asymmetrical Flow FFF (AF-FFF) K b0 bL L zk Parameter • Vc • z value 1 ml/min V out 1 ml/min zk 2.1 cm V0 0.68 ml w 105 µm b0 2.12 cm bL 0.47 cm L 28.6 cm K 2.25 cm2 tu = 27.6 s Asymmetrical Flow FFF (AF-FFF) in Toluene bim.Kugeln monodisp.Kugeln 0,16 detector a.u. 0,14 0,1095 0,1090 0,1085 0,1080 0,1075 0,12 0,1070 400 600 0,10 0 200 400 600 tR / s FFF: General Setup Inlet Field Outlet x Spacer Chann el y z Accu mu lation wall Historical Overview Thermal- Sedimentation- Electrical- Capillary/Flow- 1966 - 1974 1976 Flow-FFF Concentration-FFF 1977 Gravitational-FFF 1978 1979 Pressure-FFF Magnetical-FFF 1980 Shear-FFF 1984 1987 Asym. Flow-FFF 1993 - 1995 Frit-Inlet-Outlet-FFF 2D-Sed.-Flow-FFF 1994 Publications on FFF until 1998 90 Utah Rest of the world Total 80 Papers / year 70 60 50 40 30 20 10 0 1965 1970 1975 1980 1985 1990 Year J. Calvin Giddings 1966 1995 2000 FFF: General principle Basic Mode: „Normal Mode“ („small“ particles/molecules: diffusion) Field Parabolic flow profile Flow Flow vectors X Accumulation wall lY Y lX X Steric/Hyperlayer Mode x = 0.2 w x=0 Accumulation wall Accumulation wall 0.12 better retained (exit later) (small first) Steric-Hyperlayer Mode (large first) Normal Mode less retained (exit earlier) 0.10 Retention Ratio x=0 x = 0.2 w 0.08 0.06 0.04 0.02 S-Fl-FFF 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Particle size, µm 3.5 4.0 4.5 5.0 0.001 0.01 0.1 1.0 10 100 StericHyperlayer FFF Fumed Silica Silica Beads Cyan Blue Pigment Carbon Black Lipoproteins Viruses Yeast Microsomes Transition Region Normal FFF Chromatographic Silica Ground Limestone Ground Coal Glass Beads Cells Pollens, Spores Polystyrene Latexes Polymers Proteins DNS, Vesicles 0.001 0.01 0.1 1.0 10 Hydrodynamic diameter [µm] 100 General Experiment - Fractogram 2 tintr Vintr F 3 4 4 5 5 stop trel void time retentation time flow relaxation on channel sample introduction loop filling 1 V° t°= F textra = tr Vextra F textra Separation Example SEC Thermal-FFF PMAA 240 000 and PS 200 000 PS 200 000 PMAA 240 000 inj. inj. Void peak 0 1 2 3 4 0 2 4 6 8 10 Practical Overview over the FFF Methods FFFTypical application range technique Modes Sd-FFF Polymers > 106 g/mol, and colloids or Normal, particles > 30 nm, useful for particular matter steric, and biological applications. Applicable to focussing, adhesion water and organic solvents. The only technique operating in all modes of FFF. Gr-FFF Particles > 1 µm. Applicable to water and organic solvents. Th-FFF Lipophilic synthetic polymers > 104 g/mol. Normal, steric Very useful for large shear sensitive polymers or aggregates. Applicable to water and organic solvents. Fl-FFF Polymers, colloids and particles from 1000 Normal, steric g/mol or 1 nm to ≈ 50 µm. Most universal of all FFF techniques. Applicable to water and organic solvents. El-FFF Biopolymers and colloids from 40 nm to > 1 Normal, steric µm. Applicable to water. Steric, adhesion Band Broadening A) A) Correction for zone broadening of a model fractogram. (a) represents the original curve and the corrected one whereas (b) is the uncorrected fractogram. B) Comparison of differential particle size distributions of narrowly distributed polystyrene latex standards derived by MALLS and FlFFF without correction for zone broadening. B) Flow FFF: Membrane Fowling (b) scale µm 0 2 4 6 8 SEM micrograph of a polycarbonate Fl-FFF membrane after the fractionation of a mixture of 121 nm, 265 nm and 497 nm polystyrene standards Separation for the FFF-Family FFF technique λ= Sedimentation (Sd) λ= RT ⎛ ρ ω 2 r M ⎜⎜1 − ⎝ ρs 6k T π dH3 physico-chemical parameter ⎞ ⎟⎟ w ⎠ ω r w (ρ s − ρ ) 2 ρs, M dH Thermal (Th) λ= D DT (dT / dx) w D, DT Electrical (El) λ= D µe E w D, µe Flow (SF, AF) λ= D V0 V w 2 D, dH c Steric λ= dH 2w Magnetic (Mg) λ= RT M w χ m H m ∆H m dH M, χm Relation between λ and the physical solute properties using different FFF techniques with R = gas constant, ρ = solvent density, ρs = solute density, ω2r = centrifugal acceleration, V0 = volume of the fractionation channel, V c = cross flowrate, E = electrical field strength, dT/dx = temperature gradient, M = molecular mass, dH = hydrodynamic diameter, DT = thermal diffusion coefficient, µe = electrophoretic mobility, χM = molar magnetic susceptibility, Hm = intensity of magnetic field, ∆Hm = gradient of the intensity of the magnetic field. Sedimentation FFF (Sd-FFF) t0 1800 rpm 0.22 µm 0.40 0.30 Response 0.27 tr shift 0.50 0.40 0.60 800 rpm 5 0 1800 rpm 15 10 Time (min) 0.40 C 25 20 D 0.50 t0 Response 0.22 µm 0.60 0 rpm 0.27 0.30 0 5 15 10 Time (min) 20 25 Sedimentation FFF (Sd-FFF) F = meff G = v p ∆ρ G = meff = m ∆ρ ρp π d H3 G ∆ρ 6 vp: particle volume buoyancy-corrected particle mass G = ω 2 racc centrifugal acceleration 2π rpm ω= 60 rotation angular velocity kT kT 6kT λ= = = meff G w v p ∆ρ G w π d H3 ∆ρ G w Sedimentation FFF (Sd-FFF) Separation of components of partially aggregated latex by Sd-FFF. Thermal FFF (Th-FFF) Thermal FFF (Th-FFF) DT dT |F| = kT D dx ⎡ dc ⎞ dT ⎤ ⎛α Jx = −D⎢ + c⎜ + γ ⎟ ⎥ ⎝T ⎠ dx ⎦ ⎣ dx γ is the thermal expansion coefficient and α the thermal diffusion factor α = (DT/D)T 1 dc ⎞ dT ⎛α = −⎜ + γ ⎟ c dx ⎠ dx ⎝T ⎛− x⎞ c( x ) = c 0 exp⎜ ⎟ ⎝ l ⎠ with 1 ⎛α ⎞ dT = ⎜ + γ⎟ l ⎝T ⎠ dx < c( x) >= c 0 λ (1− exp( −1/ λ )) -1 ⎡ ⎛ DT D ⎞ dT ⎤ λ = ⎢⎜ + γ⎟w ≈ ⎥ D T ⋅ ∆T ⎠ dx ⎦ ⎣⎝ D γ small compared to α/T, small dT/dx = ∆T/w Thermal FFF (Th-FFF) η is η(T) => η(x)! ⎡ ⎢x ∆p ⌠ x dx − v ( x ) = − ⎢⎮ ⎢ L ⌡ η( x ) ⎢0 ⎣ d ⎛ dv( x) ⎞ ∆p ⎜η ⎟= − dx ⎝ dx ⎠ L virial expansion 1 η ⎤ x x ∫0 η( x ) dx ⌠ 1 ⎥ dx ⎥ ⎮ w 1 ⌡ η( x ) ⎥ ⎥ ∫0 η( x ) dx 0 ⎦ w = a0 + a1T + a 2 T 2 + a3 T 3 dT/dx is a function of the thermal conductivity κ, and κ is κ(T) κ = κc + dκ T − Tc ) ( dT if dκ/dT = constant: 2 x ∆T 2 ⎛ 1 dκ ⎞ ∆T + −1+ 1+ ⎟ ⎜ w κc dT w ⎝ κc dT ⎠ T( x) = Tc + 1 dκ 2x 1 dκ κc dT difficult to calculate 1/η, approximation (within 0.25% error): ⎛ dT ⎞ x2 ⎛ d2T ⎞ x3 ⎛ d3 T ⎞ ⎜⎜ 2 ⎟⎟ + ⎜⎜ 3 ⎟⎟ + ....... T( x) = Tc + x ⎜ ⎟ + ⎝ dx ⎠c 2 ⎝ dx ⎠ 3! ⎝ dx ⎠ c c Thermal FFF (Th-FFF) ⎛ x ⎞i v( x) = − hi ⎜ ⎟ L i=1 ⎝ w ⎠ ∆p < v( x) >= − R= R= ∑ ∆p L 1 5 ∑ i=1 For R → 0: 5 hi hi (i + 1) λ 5 ∑ h(ii +/ h1)1 i=1 5 hi: calculated polynominal coefficient hi ∑hi (i + 1) i=1 ⎧ ⎡5 ⎪ 1 ⎢ hi ⎨ ⎪⎩ ( 1− exp( −1/ λ )) ⎢⎣ i = 1 ⎫ ⎤ 5 j⎥ i⎪ λ + i! hi λ ⎬ ⎪⎭ j = 1 ( i − j )! ⎥ ⎦ i=1 i −1 ∑ ∑ i! ∑ Detector response (A.U.) Thermal FFF (Th-FFF) 232 30 272 91 330 135 198 0 20 40 60 80 Retention time, tr(min) 426 100 120 Separation of eight polystyrene latex particles in aqueous suspension by Th-FFF. The numbers above each peak correspond to the particle diameter in nm. Thermal FFF (Th-FFF) 80 ∆T, °C 60 ∆T 9k 40 35 k 575 k 200 k 90 k 1970 k 5480 k 20 0 0 5 10 15 Time, min 20 25 Thermal FFF (Th-FFF) Micelle with Au in core Empty micelle Response [a.u.] 1500 Elugram ∆T = 20.7K w = 75µm 1000 500 0 0.0 0.5 1.0 1.5 2.0 2.5 VE [ml] Th-FFF measurements of polystyrene-poly-4-vinylpyridine (PS123-b-P4VP118) micelles in toluene. The core consists of poly-4-vinylpyridine which can be used as a nanoreactor for Au synthesis to generate a significantly different DT of the core. However, the detected DT is that of polystyrene. Electrical FFF (El-FFF) U = µe E F = f µe E D λ= µe Ew including ζ-potential (ζ-potential < ± 25 mV): µe = ζ ( 2ε 3η ) f (κ D d H ) κD: inverse Debye length 1.0 < f(κD dH) < 1.5 Magnetic FFF (Mg-FFF) Mχ mHm dHm F= dx RT λ= MwχmHm ∆Hm Literature M.E. Schimpf, K. Caldwell, J.C. Giddings (eds.), Field-Flow Fractionation Handbook, Wiley-Interscience, New York 2000 M. Martin, „Theory of Field Flow Fractionation“, Advances in Chromatography 1998, 39, 1 – 138 H. Cölfen, M. Antonietti, „Field-flow fractionation techniques for polymer and colloid analysis“, Adv. Polym. Sci. 2000, 150, 67 – 187 M. Maskos, W. Schupp, „Circular Asymmetrical Flow Field-Flow Fractionation for the Semipreparative Separation of Particles“, Anal. Chem. 2003, 75, 6105-6108