Teoría Total simplificada, Revista Chilena de Ingeniería, Vol. 16, Nº1
Transcription
Teoría Total simplificada, Revista Chilena de Ingeniería, Vol. 16, Nº1
ISSN 0718-3291 Versión impresa ISSN 0718-3305 Versión en línea INGENIARE Revista Chilena de Ingeniería INGENIARE Revista Chilena de Ingeniería ISSN 0718-3291 Printed version ISSN 0718-3305 On line version Volume 16, N° 1 January - March 2008 I N D E Í N D I C E X EDITORIAL EDITORIAL MODERN ELECTROMAGNETIC ENGINEERING Carlos Villarroel González 4 CHIRAL ELECTRODYNAMIC: CONNECTION FOR THE UNIFICATION OF ELECTROMAGNETISM AND GRAVITATION H. Torres-Silva NEW INTERPRETATION OF THE ATOMIC SPECTRA OF THE HYDROGEN ATOM: A MIXED MECHANISM OF CLASSICAL LC CIRCUITS AND QUANTUM WAVE-PARTICLE DUALITY H. Torres-Silva MAXWELL’S THEORY WITH CHIRAL CURRENTS H. Torres-Silva CHIRAL FIELD IDEAS FOR A THEORY OF MATTER H. Torres-Silva THE CLOSE RELATION BETWEEN THE MAXWELL SYSTEM AND THE DIRAC EQUATION WHEN THE ELECTRIC FIELD IS PARALLEL TO THE MAGNETIC FIELD H. Torres-Silva DIRAC MATRICES IN CHIRAL REPRESENTATION AND THE CONNECTION WITH THE ELECTRIC FIELD PARALLEL TO THE MAGNETIC FIELD H. Torres-Silva 6 ELECTRODINÁMICA QUIRAL: ESLABÓN PARA LA UNIFICACIÓN DEL ELECTROMAGNETISMO Y LA GRAVITACIÓN H. Torres-Silva NUEVA INTERPRETACIÓN DEL ESPECTRO ATÓMICO DEL ÁTOMO DE HIDRÓGENO: UN MECANISMO MIXTO DE CIRCUITOS LC Y LA DUALIDAD ONDA CUÁNTICA-PARTÍCULA 2 6 24 H. Torres-Silva 24 31 TEORÍA DE MAXWELL CON CORRIENTES QUIRALES H. Torres-Silva 31 36 IDEAS DE CAMPO QUIRAL PARA UNA TEORÍA DE LA MATERIA H. Torres-Silva 36 43 LA ESTRECHA RELACIÓN ENTRE EL SISTEMA DE MAXWELL Y LA ECUACIÓN DE DIRAC, CUANDO EL CAMPO ELÉCTRICO ES PARALELO AL CAMPO MAGNÉTICO H. Torres-Silva 43 48 MATRICES DE DIRAC EN REPRESENTACIÓN QUIRAL Y LA CONEXIÓN CON EL CAMPO ELÉCTRICO PARALELO AL CAMPO MAGNÉTICO H. Torres-Silva 48 ECUACIONES DE MAXWELL PARA UNA FUNCIONAL DE LAGRANGE GENERALIZADA H. Torres-Silva 53 CALIBRE QUIRAL PARA AUMENTAR EL COEFICIENTE DE RENDIMIENTO DE MOTORES MAGNÉTICOS H. Torres-Silva 60 ELECTRODINÁMICA DE PODOLSKY BAJO UN ENFOQUE QUIRAL H. Torres-Silva 65 ESPÍN Y RELATIVIDAD: UN MODELO SEMICLÁSICO PARA EL ESPÍN DEL ELECTRÓN H. Torres-Silva 72 TEORÍA EXTENDIDA DE ONDAS DE EINSTEIN EN LA PRESENCIA DE TENSIONES EN EL ESPACIO-TIEMPO H. Torres-Silva 78 MAXWELL EQUATIONS FOR A GENERALISED LAGRANGIAN FUNCTIONAL H. Torres-Silva 53 ASYMMETRICAL CHIRAL GAUGING TO INCREASE THE COEFFICIENT OF PERFORMANCE OF MAGNETIC MOTORS H. Torres-Silva 60 PODOLSKY'S ELECTRODYNAMICS UNDER A CHIRAL APPROACH H. Torres-Silva 65 SPIN AND RELATIVITY: A SEMICLASSICAL MODEL FOR ELECTRON SPIN H. Torres-Silva 72 EXTENDED EINSTEIN`S THEORY OF WAVES IN THE PRESENCE OF SPACE-TIME TENSIONS H. Torres-Silva 78 EINSTEIN EQUATIONS FOR TETRAD FIELDS H. Torres-Silva 85 A METRIC FOR A CHIRAL POTENTIAL FIELD H. Torres-Silva 91 CHIRAL UNIVERSES AND QUANTUM EFFECTS PRODUCED BY ELECTROMAGNETIC FIELDS H. Torres-Silva 99 CHIRAL WAVES IN A METAMATERIAL MEDIUM H. Torres-Silva LA INGENIERÍA ELECTROMAGNÉTICA MODERNA Carlos Villarroel González ARTÍCULOS ARTICLES A NEW RELATIVISTIC FIELD THEORY OF THE ELECTRON H. Torres-Silva VO L U M E N 1 6 - N º 1 E N E RO - M A R Z O 2 0 0 8 ECUACIONES DE EINSTEIN PARA CAMPOS TETRADOS H. Torres-Silva 85 UNA MÉTRICA PARA UN CAMPO POTENCIAL QUIRAL H. Torres-Silva 91 UNIVERSOS QUIRALES Y EFECTOS CUÁNTICOS PRODUCIDOS POR CAMPOS ELECTROMAGNÉTICOS H. Torres-Silva 99 UNA NUEVA TEORÍA RELATIVÍSTICA DE CAMPO PARA EL ELECTRÓN 111 H. Torres-Silva 111 119 ONDAS QUIRALES EN UN MEDIO METAMATERIAL H. Torres-Silva 119 UNIVERSIDAD DE TARAPACÁ ARICA-CHILE portada impresion.indd 6 24/3/08 11:14:21 DIRIGIR CORRESPONDENCIA A: Comité Editor Ingeniare. Revista chilena de ingeniería Universidad de Tarapacá Casilla 6-D, Arica - Chile e-mail: [email protected] INFORMACIÓN GENERAL Ingeniare. Revista chilena de ingeniería, edita tres números al año (cuatrimestral), publica estudios originales e inéditos de académicos y profesionales pertenecientes a entidades públicas y privadas, chilenas o extranjeras, que deseen difundir sus experiencias sobre ciencias de la ingeniería, tecnología y disciplinas afines. La responsabilidad sobre el contenido de los artículos es exclusivamente de los autores. Procedimientos y precios para la adquisición de la versión impresa: Suscripciones: Chile: $15.000 por año. Extranjero: US$ 25 por año. Incluyendo franqueo por correo ordinario. Todas las suscripciones y cambios de dirección se deben enviar a la dirección señalada. La versión online de la revista es preparada con metodología SciELO. Todos los materiales publicados en ese sitio están disponibles en forma gratuita. COMMUNICATIONS AND SUBSCRIPTIONS SHOULD BE ADDRESSED TO: Editor Committee Ingeniare. Revista chilena de ingeniería Universidad de Tarapacá Casilla 6-D, Arica - Chile e-mail: [email protected] GENERAL INFORMATION Ingeniare. Revista chilena de ingeniería is published periodically, is printed in three issues per volume annually, publishing original articles by professional and academic authors belonging to public or private organizations, from Chile and the rest of the world, with the purpose of disseminating their experiences in engineering science and technology. Subscription to the printed version of journal can be purchased as follows: Chile: Annual subscription: $15.000. Elsewhere: Annual subscription: US$ 25. Including ordinary mail postage. For single issues please contact the editorial office at the address below. The SciELO online version of the journal is based upon the SciELO methodology. All online material published by this journal’s site is available free of charge. TAPA 2 3 16-1.indd 2 24/3/08 11:10:54 TAPA 2 3 16-1.indd 3 24/3/08 11:10:54 INGENIARE. REVISTA CHILENA DE INGENIERÍA1 VOLUMEN 16 Nº 1, ENERO – MARZO 2008 VOLUME 16 Nº 1, JANUARY – MARCH 2008 2 COMITÉ EDITOR ASESOR ADVISORY EDITOR COMMITTEE EDITOR Carlos Villarroel González Universidad de Tarapacá Enrique Fuentes Heinrich (President) Raúl Borjas Montero Jaime Gómez Douzet Ingrid Guillén Figueroa Ernesto Ponce López Héctor Valdés González COEDITOR Adelheid Mahla Álvarez Universidad de Santiago de Chile PRODUCCIÓN EDITORIAL EDITORIAL PRODUCTION Carolina Cautín Barría COMITÉ EDITOR EDITOR COMMITTEE Yurilev Chalco Cano Universidad de Tarapacá, Chile Eva María Navarro Instituto Mexicano del Petróleo, México Luis Cifuentes Seves Universidad de Chile, Chile Liliana Pedraja Rejas Universidad de Tarapacá, Chile Gerardo Espinosa Pérez Universidad Autónoma de México, México Manuel Recuero López Universidad Politécnica de Madrid, España Sylviane Gentil Institut National Polytechnique de Grenoble, France Miguel Ríos Ojeda Pontificia Universidad Católica de Chile, Chile Hugo Hernández Figueroa Universidade de Campinas, Brasil Marko Rojas Medar Universidade de Campinas, Brasil Cynthia Junqueira General-Command of Aerospace Technology, Institute of Aeronautics and Space, Brazil Heriberto Román Flores Universidad de Tarapacá, Chile Andre Koch Torres Assis Universidade de Campinas, Brasil Mario Letelier Sotomayor Universidad de Santiago de Chile, Chile Orestes Llanes Santiago Instituto Superior Politécnico José Antonio Echeverría, Cuba Sebastián Lorca Pizarro Universidad de Tarapacá, Chile 1 Fideromo Saavedra Guzmán Universidad de Santiago de Chile, Chile Osvaldo Saavedra Mendez Universidade Federal do Maranhão, Brasil Mario Salgado Brocal Universidad Técnica Federico Santa María, Chile Salah S. A. Obayya Brunel University, United Kingdom Linda Madsen European Journal of Engineering Education, Denmark Héctor Torres Silva Universidad de Tarapacá, Chile Adelheid Mahla Álvarez Universidad de Santiago de Chile, Chile Miguel Villablanca Martínez Universidad de Santiago de Chile, Chile João Marcos Romano Universidade de Campinas, Brasil Andrés Weintraub Pohorille Universidad de Chile, Chile Antonio Martins Soares Universidade de Brasilia, Brasil Juan Zolezzi Cid Universidad de Santiago de Chile, Chile Nelson Moraga Benavides Universidad de Santiago de Chile, Chile Ernesto Zumelzu D. Universidad Austral de Chile, Chile Indizada en Risk Abstract, Safety Science & Risk Abstract, Environmental Sciences & Pollution Management Abstract, Applied Science & Technology Index, Latindex, RedALyC, The Serials Directory - Ebsco. Esta obra está bajo una licencia de Creative Commons Chile 2.0. Electrónicamente se encuentra en Scientific Library Online (www.scielo.cl) e incluida en el Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal (http://www.latindex.unam.mx); Revistas especializadas Al Día - Universidad de Chile (http://www.al-dia.cl); ProQuest Information and Learning ProQuest (www.proquest.com); EBSCO Information Services (http://www.ebsco.com) Ingeniare. Revista chilena de ingeniería, vol. 16 15 Nº 1, 3, 2008, 2007 pp. 2-3 EDITORIAL LA INGENIERÍA ELECTROMAGNÉTICA MODERNA La ingeniería electromagnética es una rama de la física aplicada, con tal velocidad de desarrollo que en un futuro inmediato los ingenieros electromagnéticos serán indispensables en una nueva e importante área emergente: la ahora denominada Estructura de Onda de la Materia (Wave Structure of Matter, WSM). La razón principal es la capacidad de penetración de la tecnología electromagnética, donde ingenieros especializados serán necesarios para el diseño de sistemas relacionados con la tecnología WSM. Por ejemplo, en muy altas frecuencias, en sistemas tales como, redes inalámbricas de comunicaciones, chips de computadores, redes ópticas, antenas, y en frecuencias muy bajas, en extracción de energía, en dispositivos de almacenamiento de energía y en sistemas relacionados con un Enfoque Métrico de la Ingeniería (Metric Engineering Approach, MEA), en propulsión con campos electromagnéticos. La dificultad y la complejidad de las leyes que gobiernan el diseño de sistemas relacionados con la ingeniería electromagnética indican que la teoría y el análisis del electromagnetismo es una ciencia en continua evolución y es un área activa de investigación que ha atraído el interés de matemáticos, científicos de la computación y de los ingenieros. Sin embargo, un buen entendimiento del análisis electromagnético moderno requiere de un profundo conocimiento de la física, habilidad para el análisis matemático y del conocimiento de los algoritmos numéricos utilizados en computación. Aunque algunas universidades enfatizan en el análisis computacional del electromagnetismo, tenemos que ser conscientes de que un estudiante de ingeniería electromagnética debe entender los conceptos de física involucrados y desarrollar intuición y entendimiento de los problemas a resolver. Estas habilidades son importantes tanto para el análisis como para el diseño. Por lo tanto, es importante formar a los estudiantes de postgrado en los métodos modernos del análisis electromagnético, y en las nuevas teorías tales como: metamateriales, electrodinámica quiral y electrogravedad. Por ejemplo, el análisis electromagnético quiral debe incluir, entre otros, los conceptos de ondas polarizadas circularmente, ondas superficiales, ondas que se arrastran (creeping waves), ondas laterales, modos guiados, modos evanescentes, modos radiantes y los modos filtrados (leaky modes). Todo esto en la física de altas frecuencias donde la dualidad onda/partícula emerge como un nuevo enfoque físico de las interacciones electromagnéticas de la WSM. Recientemente se han producido avances en la WSM, por ejemplo, en microcircuitos industriales y en electrodinámica, donde existen corrientes de lazos cerrados de ondas de electrones, siendo el electrón no una partícula puntual sino una estructura de onda. Aquí la mayoría de las aplicaciones, como ser nanotubos quirales y sustratos de metamateriales para uso en microcircuitos, requiere de la comprensión del comportamiento de la materia en “dimensiones muy pequeñas”, donde la aproximación de la partícula falla y la WSM se hace necesaria para entender qué ocurre cuando interactúan diferentes sustratos, a nivel químico, eléctrico o biológico. A nivel de microestructuras, empresas como Intel están empezando a utilizar biología y genética en las técnicas de fabricación de dispositivos orgánicos, usando partes biológicas para sintetizar filamentos quirales de DNA (Deoxyribonucleic acid), donde las ondas que se propagan son equivalentes a las WSM. Por otra parte a nivel macroscópico, para entender adecuadamente la naturaleza de la interacción entre un campo electromagnético de muy alta frecuencia con la materia, debemos considerar la electrodinámica quiral relacionada con la relatividad. Un ejemplo relevante es el diseño de nuevos sistemas GPS (Global Positioning System) con distinta polarización circular, que son más exactos, con la finalidad de mejorar los sistemas actuales. Un estudiante de electromagnetismo debe estar consciente de la metamorfosis, que ocurre en la física, cuando trabajamos en distintas longitudes de onda o en distintas frecuencias. Cuando la longitud de onda es muy larga, nos encontramos en el dominio de la electro estática y de la magneto estática; aquí se aplica la teoría de circuitos, un ejemplo es el área de los dispositivos de almacenamiento de energía, desde baterías comunes a sofisticados dispositivos híbridos 2 Villarroel: La ingeniería electromagnética moderna utilizados para almacenamiento de energía. Concretamente, en los automóviles modernos, dichos elementos están hechos de mezclas químicas cuyas energías vinculantes son diferentes. Si se conoce la forma en que los elementos de la mezcla se unen, se podrían diseñar baterías para fines específicos, con cálculos basados en la WSM. En el futuro, la WSM requerirá de nuevas técnicas de aplicación, cálculo y diseño de la ingeniería electromagnética. Por otro lado, la mayoría de las aleaciones más valiosas que se utilizan ampliamente en las aplicaciones industriales, como ser el acero, el bronce y el duraluminio, son mezclas simples de elementos básicos, esto es posible gracias a que las uniones de las aleaciones son del tipo Estructuras de Onda. En relación con todo esto tenemos la MEA, enfoque que será muy importante en las próximas décadas. Esta metodología, para tratar los cambios métricos, ha surgido a través de años de estudio de las teorías electro gravitacionales. Este enfoque es isomórfico con la representación general de la relatividad del vacío, tratando el vacío como un medio polarizable con cambios métricos internos, en términos de la permisividad y la permeabilidad consideradas constantes en el vacío. Este enfoque es básico para obtener energía a partir del vacío (motores magnéticos). Aquí, las ecuaciones de Maxwell en el espacio curvo se modelan como un medio polarizable de índice de refracción variable en el espacio plano, donde la curvatura de un rayo de luz y la reducción de la velocidad de la luz en un potencial gravitacional se representan por un aumento efectivo del índice de refracción. Con este método es posible estudiar los Sistemas de Propulsión de Campos Electromagnéticos, donde la propagación de fotones posee momentum producido por los campos magnéticos y eléctricos ortogonales entre sí (vector de Poynting). Estos desafíos tecnológicos nos hacen ver que es importante atraer para este campo a personas más calificadas y creativas, reclutando los mejores estudiantes y estimulando su creatividad. En esta perspectiva de la enseñanza de la ingeniería electromagnética, la gente joven siempre puede generar buenas ideas, forjar nuevas fronteras, crear nuevas áreas de trabajo y cultivar el pensamiento independiente, estimulados por el profesor en el desafío de pensar. Puesto que el análisis electromagnético ha sido usado como una importante herramienta de predicción en muchas ramas de la ingeniería eléctrica, seguirá siendo aún más importante en las nuevas tecnologías. La larga y rica historia del electromagnetismo nos ofrece un desafío sobre cómo debemos educar a nuestros estudiantes de postgrado en esta área. El total del conocimiento requerido no se puede entregar dentro del corto período de su enseñanza universitaria. Por lo tanto, es fundamental educarlos en los conocimientos básicos, ya que aprender todo lo pertinente a la tecnología electromagnética requiere de toda una vida de aprendizaje. Asimismo, es importante educar a dichos estudiantes como pensadores, en vez de adquirir los conocimientos en forma mecánica, siendo esta forma de enseñar un importante aporte para nuestra sociedad. Es así como, en este número, presentamos el aporte del doctor Héctor Torres-Silva en esta área del electromagnetismo moderno, mediante la electrodinámica vinculada a la mecánica cuántica y a la gravitación. Este trabajo incluye aspectos fundamentales de la WSM, al unificar al electromagnetismo y a la gravitación a través de la electrodinámica quiral, mostrando en este estudio, en forma rigurosa, que la mecánica cuántica de Dirac es una consecuencia lógica de dicha unificación. Carlos Villarroel González Editor Ingeniare. Revista chilena de ingeniería Universidad de Tarapacá Arica, Chile 3 Ingeniare. Revista chilena de ingeniería, vol. 15 16 Nº 3, 1, 2008, 2007 pp. 4-5 EDITORIAL MODERN ELECTROMAGNETIC ENGINEERING Electromagnetic engineering is a branch of applied physics which is developing so fast that in the near future electromagnetic engineers will be indispensable in an important emerging area, that which is now known as Wave Structure Matter (WSM). The main reason for this is the penetration capacity of electromagnetic technology where specialized engineers will be needed for the design of systems related to WSM technology. Examples of such systems with very high frequencies are wireless communication networks, computer chips, optical networks, antennae and at low frequencies, energy storage devices and systems related to a Metric Engineering Approach (MEA) with electromagnetic fields. The difficulty and complexity of the laws that govern the design of systems related with electromagnetic engineering indicate that the theory and analysis of electromagnetism is a continually-evolving science and an area of active research that has attracted the interest of mathematicians, computer scientists and engineers. However, a good understanding of modern electromagnetic analysis requires a deep knowledge of physics, a capacity for mathematical analysis and knowledge of the numerical algorithms used in computing. Even though some universities emphasize the computational analysis of electromagnetism, we must be aware that a student of electromagnetic engineering should understand the concepts of physics involved and develop intuition and understanding of the problems to be solved. These abilities are as important in design as they are in analysis. Therefore, it is important to train postgraduate students in modern methods of electromagnetic analysis and new theories such as: metamaterials, electrodynamism chiral electrogravity. For example, chiral electromagnetic analysis ought to include, amongst other things, the concepts of circular-polarized waves, superficial waves, creeping waves, lateral waves, guided modes, evanescent modes, radiant modes and leaky modes. All of this in high-frequency physics where the wave-particle duality is emerging as a new physical focus of the electromagnetic interactions of WSM. Recently, advances have been made in WSM, for example in industrial micro-circuits and electrodynamics where there are currents in closed loop of real electron waves, since the electron is not a point particle but rather a wave structure. Here the majority of applications, such as chiral nanotubes and metamaterial substrates for use in microcircuits, require the understanding of material in “very small dimensions” where an approximation of the particle fails and WSM makes it necessary to understand what happens when different substrates interact at the chemical, biological and physical level. A the microstructural level, companies such as Intel are beginning to use biology and genetics in the production techniques for organic devices, using living elements to synthesize chiral filaments of DNA (deoxyribonucleic acid) where the propagating waves are equivalent to WSM. Moreover, at the microscopic level, in order to adequately understand the nature of the interaction between a very high frequency electromagnetic field and the material, we should consider the chiral electrodynamic related to the relativity. A pertinent example is that of the design of new GPS (Global Positioning Systems) with distinct circular polarization that are more accurate with the aim of improving the current systems. A student of electromagnetism should be aware of the metamorphosis that occurs in physics when we work in different wavelengths or frequencies. When wavelength is very long, we find ourselves in the electrostatic and magnostatic domain, where circuit theory applies. An example from this area is that of energy storage devices that range from ordinary batteries to sophisticated hybrid devices used for storing energy. To give a concrete example, in modern automobiles, these elements are made from chemicals with different bond energies. If we know the way in which the elements of the mixture bond, batteries can be designed for specific purposes with calculations based on WSM. In the future, WSM will require new techniques for application, calculation and design from electromagnetic engineering. Furthermore, the majority of the most costly alloys that are widely used in industrial applications, such 4 Villarroel: La ingeniería electromagnética moderna as steel, bronze and hard aluminium are simple mixtures of basic elements. They serve their purposes thanks to the bonds between the alloys that have wave structure. Connected to all of this is MEA, an area that will be extremely significant during the next few decades. This methodology for treating metric changes has arisen through years of study of electrogravitational theories. This focus is isomorphic with the general representation of vacuums, treating them as polarizable media with internal metric changes in terms of the permittivity and permeability considered to be constant in the vacuum. This focus is the basis for obtaining energy from vacuum (magnetic motors). Here, Maxwell’s equations in curved space are modelled as a polarizable medium of the variable refraction index in flat space where the curvature of a ray of light and the reduction in the speed of life in a gravitational potential are represented by an increase in the refractive index. With this method it is possible to study Electromagnetic Field Propulsion Systems, where the propagation of photons has a momentum produced by the crossed electric and magnetic fields (Poynting’s vector). These technical challenges enable us to see that for this field it is important to attract qualified and creative people, to recruit the best students and stimulate their creativity. From the perspective of electromagnetic engineering teaching, young people can generate good ideas, stretch boundaries, create new areas for study and cultivate independent thought, stimulated by teachers that challenge them to think. Given that electromagnetic analysis has been used as an important tool in prediction in many areas of electric engineering, it will continue to be one of the most important tools in new technologies. The long and rich history of electromagnetism makes the question of how to train our postgraduate students in this area challenging. All the knowledge required cannot be conveyed during the short period of university education. Thus, it is fundamental to provide the most essential knowledge; learning about everything related to electromagnetic technology would take a whole life-time of learning. Moreover, it is important to train these students to be thinkers, rather than mechanically acquiring knowledge, and thus contribute significantly to our society. It is for these reasons, that in this issue, we present Dr. Héctor Silva-Torres’s contribution to the area of modern electromagnetism through electrodynamics linked to quantum mechanics and gravity. This work includes fundamental aspects of WSM, to unify the electromagnetism and gravity through electrodynamics chiral showing rigorously in this study, that the Dirac’s quantum mechanics is a logical consequence of this unification. Carlos Villarroel González Editor Ingeniare. Revista chilena de ingeniería Universidad de Tarapacá Arica, Chile 5 Ingeniare. Revista chilena de ingeniería, vol. 16 vol. 16 Nº 1, Nº 1, 2008, 2008 pp. 6-23 ELECTRODINÁMICA QUIRAL: ESLABÓN PARA LA UNIFICACIÓN DEL ELECTROMAGNETISMO Y LA GRAVITACIÓN CHIRAL ELECTRODYNAMIC: CONNECTION FOR THE UNIFICATION OF ELECTROMAGNETISM AND GRAVITATION H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 12 de diciembre de 2007 Received: September 5, 2007 Accepted: December 12, 2007 RESUMEN Una alternativa a la teoría cuántica de la gravedad, aún no descubierta, es la Teoría Total Simplificada (TTS) aquí propuesta, que postula unificar la gravedad con el electromagnetismo (EM) teniendo como corolario fundamental la ecuación cuántica de Dirac. Con ello, aquí se propone todo un programa de unificación en el cual el electromagnetismo quiral juega el rol central. La TTS se deriva de las ecuaciones originales de Einstein-Hilbert G µv = kTµv, donde el tensor de Einstein no se modifica. El tensor EM en cambio es quiral y la masa de las partículas es de naturaleza electromagnética. Para el caso del electrón se tiene como consecuencia que, por primera vez, se obtiene la ecuación de Dirac a partir de ondas EM con el campo eléctrico paralelo espacialmente al campo magnético. Como modelo del universo se propone una interfaz o membrana de separación donde ocurren solamente eventos cuánticos. Hay dos regiones enantioméricas de un universo cerrado, o un universo derecho y un universo izquierdo, relacionados por un elemento de simetría PCT (paridad, carga, tiempo) a lo largo de la interfaz. Las ecuaciones de Einstein-Hilbert son estudiadas bajo el enfoque quiral y se discute la electrodinámica quiral y la gravedad en la era de Planck. Palabras clave: Unificación, electrodinámica quiral, era de Planck. ABSTRACT An alternative to the theory of quantum gravity, not yet discovered, is the Theory Simplified Total (TTS) proposal, which aims to unify gravity with the EM taking as a corollary essential quantum Dirac equation. Thus, this article proposes a whole program of unification in which electromagnetism chiral plays the main role. TTS is derived from the original equations of Einstein-Hilbert G µv = kTµv, where the Einstein tensor is unchanged. The EM tensor instead is chiral and the mass of the particles is electromagnetic nature. In the case of the electron the consequence of this is that, for the first time, Dirac’s equation is obtained from EM waves with the electric field spatially parallel to the magnetic field. As a model of the universe an interface or membrane separation is proposed as the only location for quantum events. There are two enanciometrics regions in a closed universe, or right and left universe, connected by an element of PCT (parity, charge, time) symmetry along the interface. Einstein-Hilbert equations are studied under the chiral approach and discusses the chiral electrodynamics and gravity in Planch’s era are discussed. Keywords: Unification, chiral electrodynamics, age Planck. INTRODUCCIÓN No es difícil mostrar, sin lugar a dudas, que la física se lleva el honor de ser la disciplina con los mayores adelantos teóricos y con las más grandes aplicaciones tecnológicas. Hoy, a comienzos del siglo XXI, la física sigue el rumbo 1 6 y la impronta marcada por los grandes progresos logrados el siglo pasado. Como un logro no alcanzado se destaca la formulación de una teoría unificada de todas las fuerzas de la naturaleza. Físicos teóricos de todo el mundo, en solitario o en equipo, han dedicado y dedican una enorme cantidad de tiempo y esfuerzo para la consecución de ese sueño. Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación Al mencionar este esfuerzo, en la búsqueda de la unificación, siempre conviene recordar los trabajos pioneros de Albert Einstein (1879-1955), quien se convirtió en el líder de un sueño singular de hacerlo realidad: la teoría geométrica para la unificación de los campos gravitacionales y electromagnéticos (EM). El programa de Einstein para la unificación no tuvo éxito por el hecho de no considerar la existencia de campos eléctricos y magnéticos paralelos en el espacio y desfasados en el tiempo pues la existencia teórica y experimental de dichas ondas se ha verificado solo en los últimos años. A fin de proporcionar una visión global, se ha dividido este trabajo en tres partes. En la primera, se hace una introducción a la electrodinámica quiral (EQ), en la segunda se describen sintéticamente las ideas acerca de la Teoría General de la Relatividad (TGR), los trabajos de Einstein y otros autores para la unificación de los campos, y en la tercera parte se propone una teoría de unificación basada en la electrodinámica quiral para un universo de cuatro dimensiones que da lugar a la Teoría Total Simplificada (TTS). INTRODUCCIÓN A LA QUIRALIDAD Con el avance en la construcción de compuestos artificiales, los materiales quirales han asumido una gran importancia tecnológica en antenas, circuitos de alta frecuencia y en fibras ópticas. Tales materiales, que no tienen la simetría tipo espejo, también se encuentran en la naturaleza desde las galaxias en espiral a moléculas tipo hélices como el DNA, que son ópticamente activas, las cuales muestran birrefringencia a frecuencias ópticas y de microondas. Ya que la quiralidad es un concepto geométrico, es posible concebir la fabricación de materiales quirales artificiales y metamateriales, con aplicaciones en ingeniería electromagnética. El fenómeno de la actividad óptica, en ciertas substancias biológicas y materiales, fue descubierto por Pasteur (1848-1850) interpretando las observaciones de arreglos asimétricos de átomos dentro de un material ópticamente activo, por lo que se tiene una imagen espejo no superpuesta, arreglo definido como “maniobrable” o quiral. Con los avances en la teoría de campos electromagnéticos el campo de la esteroquímica se expande fuertemente y se conocen detalles de la estructura de las moléculas y, además, de la naturaleza de estructuras moleculares indispensables para la vida. Un medio quiral está caracterizado por su maniobrabilidad en su microestructura, ya sea a la izquierda o a la derecha. Esto resulta en un medio quiral polarizado circularmente a la izquierda (LCP) o a la derecha (RCP) y los campos se propagan a diferentes velocidades de fase: el campo con esta última polarización viaja, a través de un medio manipulado a la derecha, más rápido que un campo circularmente polarizado a la izquierda, y viceversa. La actividad óptica, la cual se encuentra en una serie de moléculas orgánicas a frecuencias ópticas, es una manifestación de la quiralidad nativa de estas moléculas. Se observan fenómenos similares al dicroísmo circular (CD) y a la dispersión óptica rotatoria (ORD), con absorción diferencial de las ondas polarizadas circularmente a la izquierda o a la derecha al interior del medio quiral. Estudios giroscópicos tienen tal riqueza de información que se puede decir que “la actividad óptica entrega una ventana hacia el interior de la fábrica del universo”. Los átomos son ahora considerados quirales debido a la débil violación de paridad de la corriente neutral de interacción entre el núcleo y los electrones; la pequeña actividad óptica resultante para los átomos ha hecho más concordante la teoría con la práctica. Los avances tecnológicos en las décadas de los 80-90 han hecho posible la detección de asimetría quiral en dispersión Raman. Aunque han sido estudiados muchos aspectos de mecánica cuántica, la quiralidad ha sido poco estudiada, falta un estudio sistemático de la teoría clásica de campos electromagnéticos considerando la quiralidad. Con los avances en la ciencia de los polímeros (dieléctricos quirales activos a frecuencias milimétricas, por ejemplo), hacen necesario revisar todos los aspectos relacionales de la teoría de campos electromagnéticos. Además, a causa de que la quiralidad es un atributo geométrico específico, el conocimiento recogido del estudio de la estructura molecular debe trasladarse al diseño y manufactura de medios quirales artificiales, los cuales deben exhibir CD y ORD a frecuencias de telecomunicaciones. Sólo en el rango intermedio de frecuencia la quiralidad molecular no desaparece cuando se efectúa una transición desde escala microscópica a macroscópica en teoría electromagnética. Lo anterior significa que es posible la construcción de medios artificiales introduciendo objetos quirales micrométricos en un medio huésped aquiral. En un rango de frecuencias intermedias, la microestructura podría tener una dimensión adecuada (2-5%) respecto de la longitud de onda del material huésped (substrato); consecuentemente, el medio compuesto podría comportarse como efectivamente quiral. La factibilidad de esta idea ha significado un intenso estudio sobre la propagación de ondas electromagnéticas en medios quirales. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 7 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 A modo de ejemplo, el ojo humano contiene dos tipos de estructura activa para distinguir entre proceso fotópico (umbral alto) y proceso escotópico (umbral bajo) que son: el bastón y los conos, respectivamente. Varias partes en el ojo son anisotrópicas; en particular las fibras de la retina son algo uniaxiales. Se puede usar la anisotropía estructural para explicar la diferencia en la sensibilidad de los ojos a la luz polarizada circularmente a la derecha y a la izquierda. Así, cualquier tratamiento de la física del ojo no sólo debe incluir anisotropía debido a la microestructura, bastones, conos, ganglios, etc., sino que debería también considerar la macroestructura, es decir, la helicidad de los componentes moleculares cuyas dimensiones pueden ser una fracción significativa de la longitud de onda óptica. Esto será relevante en futuros sistemas ópticos. recientes indican que valores de T. para compuestos quirales artificiales, en el rango de 8-40 GHz, estarán luego disponibles. Nuestro trabajo específico sobre teoría y simulaciones de la electrodinámica quiral aplicada a solitones, fibras ópticas, sistemas de microondas, sistemas biológicos, etc. están relacionados en [1-18]. La actividad óptica puede ser explicada por la sustitución directa de nuevas relaciones constitutivas en las ecuaciones de Maxwell, es decir, D = εE + Tε∇xE y B = µΗ + T µ∇ × Η. Aquí ε y µ son la permitividad y permeabilidad respectivamente, mientras T es el parámetro con dimensión de longitud y es el resultado directo de cualquier quiralidad en la manoestructura del medio. Como tal, las ecuaciones constitutivas quirales son aplicables a cualquier región del espectro electromagnético como radiación. En óptica, hasta muy recientemente, sólo fue posible realizar mediciones de intensidad, es decir, de la magnitud pero no de la fase. Así la literatura sobre actividad óptica está relacionada, generalmente, sólo con la diferencia en la intensidad de la luz dispersada cuando un volumen quiral es irradiado ya sea por una onda plana LCP o RCP. Esto significa que sólo mediciones de (nL –nR) están disponibles, donde nL y nR son los índices de refracción para las ondas LCP y RCP respectivamente. Aunque cada uno de estos índices de refracción puede estar muy relacionado a ε, µ , T, el conocimiento de (nL –nR) no es suficiente para inferir los valores de los parámetros constitutivos. Con el surgimiento de la Relatividad Especial en 1905, casi de inmediato los físicos llegaron a reconocer la invariancia lorentziana en la teoría de Maxwell; y dada la geometría de Minkowski se tornó claro para Einstein y D. Hilbert que la unificación implicaba, de algún modo, la unificación del espacio tridimensional y el tiempo en un “espacio-tiempo continuo” cuadridimensional. En 1915, Hilbert presentó por primera vez una teoría de campo unificado basado en los primeros trabajos de Einstein (1914) sobre la teoría relativista de la gravitación y en los artículos de G. Mie (1912) sobre la electrodinámica no lineal de la materia. Cuando uno considera este fenómeno a un rango de frecuencias mucho más bajo, 0.5-100 GHz, se podría estar más interesado en ε, µ, T que en nL y nR. Con el advenimiento de los analizadores vectoriales de redes ahora ha llegado a ser posible realizar mediciones muy exactas de magnitud y fase, pero la generación de ondas circularmente polarizadas requiere de tecnología de punta y se prevén aplicaciones en antenas de polarización circular en sistemas GPS de última generación y en comunicaciones satelitales. El uso del analizador vectorial de redes, en conjunto con experimentos canónicos deseablemente definidos, puede entonces facilitar la medición de T. Investigaciones 8 EL PROGRAMA DE EINSTEIN PARA LA UNIFICACIÓN La historia muestra que la idea de la unificación de las fuerzas de la naturaleza no se origina con los trabajos de Einstein; ni la propuesta de unificación a altas dimensiones tampoco es original de Kaluza [19]. En el trabajo de Hilbert se obtienen las ecuaciones de Euler-Lagrange, derivadas de un principio variacional. Cinco días después de la conferencia de Hilbert sobre su teoría de unificación, Einstein publicó su TGR verificable y verificada que vinculara directamente la distribución y movimiento de materia a la geometría del espaciotiempo. En la TGR, Einstein geometriza la gravitación en el sentido de que toda la información acerca de las interacciones gravitacionales está contenida en el elemento de línea del espacio-tiempo. La poderosa y bella descripción de la gravitación entusiasmó a los físicos y matemáticos a intentar una geometrización para la unificación con el electromagnetismo (EM). La búsqueda de una teoría geométrica y unificada de los campos gravitacionales y electromagnéticos ocupó un rol dominante en los últimos veinte años de la actividad científica de Einstein. Las ideas principales de Einstein para la unificación clásica de las interacciones eran: geometrizar el electromagnetismo, unificar las variables básicas de la Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación gravitación y el electromagnetismo en un único objeto geométrico y obtener las ecuaciones de campos unificados a partir de un principio variacional. Einstein esperaba que las propiedades fundamentales de las partículas elementales y sus respectivos comportamientos cuánticos pudieran ser de algún modo descritos y explicados en el marco de una teoría clásica puramente geométrica. La teoría general de la relatividad (TGR 1915) está basada en dos objetos geométricos fundamentales: un tensor métrico g y una conexión lineal Γ. La métrica es necesaria para medir distancias, intervalos de tiempos, velocidades relativas y ángulos. La conexión basada en la noción de transporte paralelo de Levi-Civita sirve a su vez para comparar direcciones, fuerzas y campos en puntos separados en el espacio-tiempo de Riemann. Todos los intentos iniciales en unificación estaban basados en los objetos geométricos antes mencionados. La idea básica es obtener nuevos grados de libertad en la TGR para describir el electromagnetismo relajando o imponiendo restricciones sobre el tensor métrico (g) y/o Γ, o incrementar el número de dimensiones de la variedad riemanniana. Dos años después de que Einstein postulara la TGR, H. Weyl (discípulo de Hilbert) propone un modelo geométrico de la gravitación y del electromagnetismo. Weyl consideró que la geometrización podría ser generalizada a otras fuerzas de la naturaleza. Así, propuso una conexión general dependiente de la trayectoria cuando se compara la longitud de vectores en diferentes puntos del espaciotiempo. En otras palabras, él notó que la TGR está basada en la “relatividad de la dirección” y propuso extenderla a fin de tomar en cuenta la “relatividad de las magnitudes” al permitir una transformación conforme de la métrica. Esta idea, que llegó a ser conocida como teoría de calibre o de “gauge”, no prosperó porque llegaba a contradecir la escala absoluta de masas del mundo real. A pesar del fracaso Weyl reinterpretó los calibres (gauge en el contexto de la física cuántica) al indicar que podrían actuar en las funciones de onda de las partículas cargadas más bien que sobre g. Esta idea inspiró a las teorías de calibre no abelianas y a la interpretación de los potenciales electromagnéticos y de Yang-Mills como conexiones en fibrados principales. También llegó a constituirse en el germen para el desarrollo de las llamadas “teorías gauge de la gravedad”. En 1919, T. Kaluza propuso una teoría de la gravitación de cinco dimensiones. Esta idea fue trabajada por Einstein y colaboradores en 1923. Einstein vuelve sobre esta teoría pentadimensional en un trabajo publicado en 1927; también lo hace en cuatro trabajos (1931, 1932, 1938 y 1944) con sus colaboradores, pero sin llegar a geometrizar el EM ni a la unificación de los campos gravitacional y EM. A. Eddington propuso considerar a Γ como la cantidad básica de la TGR y derivar de ella tanto el tensor métrico como el campo electromagnético al dividir el tensor de Ricci, R µν, en sus partes simétricas y antisimétricas. Einstein, en cinco trabajos (cuatro en 1923 y uno en 1925), desarrolló esta idea al postular que la densidad lagrangiana debería ser proporcional a la cantidad det Rµν1/2. Desafortunadamente, todos estos intentos llevaron a ecuaciones incompatibles con los experimentos y Einstein se vio obligado a abandonar este camino. En 1925 Einstein consideró una teoría basada en la conexión Γ y una gµν no simétrica e identificaba a g[µν] (la parte antisimétrica de gµν ) con el campo electromagnético; volvió sobre esta idea en los últimos años de su vida trabajando en una “teoría asimétrica” fundamentada en la métrica y en la conexión. Sobre esta línea de investigación publicó 11 trabajos entre 1925 y 1955. Bajo la influencia de Cartan, Einstein genera una nueva línea de investigación en la que se dota a la variedad del espacio-tiempo de una nueva entidad geométrica llamada torsión inventada por Cartan en 1922. Este esquema fue transformado por un nuevo y poderoso concepto geométrico llamado teleparalelismo, también desarrollado por Cartan. Teleparalelismo significa que la curvatura total es cero, o una suposición más débil: que el tensor total de Ricci es cero. Estas ideas fueron trabajadas por Einstein y publicadas en tres trabajos (uno en 1929 y dos en 1930). En esa área tampoco logró la ansiada unificación. Las teorías de unificación basadas en teleparalelismo han sido reconsideradas en años recientes siguiendo el enfoque de la geometría diferencial moderna [20]. En resumen, Einstein se embarcó en un programa geométrico de unificación de las interacciones clásicas gravitacionales y electromagnéticas en más de cuarenta trabajos. A pesar del fracaso, aun así entreabrió nuevas sendas hacia la búsqueda de la unificación de las fuerzas de la naturaleza, en cuya tarea se han ocupado importantes físicos durante el siglo XX. Pero la mayoría de estos esfuerzos están bajo el enfoque de la teoría cuántica de campos. De hecho, las tres cuartas partes de las fuerzas de la naturaleza conocidas son estudiadas en el marco de la mecánica cuántica; y ya se ha logrado la unificación de las fuerzas débiles con las electromagnéticas. La unificación con la fuerte en este esquema no debe tardar en concretarse. La gravitación, por Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 9 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 su naturaleza misma, se resiste a entrar en ese esquema. Existen por lo menos cuatro programas de cuantización del campo gravitatorio [21], todos los cuales parecen están destinados al fracaso. El más popular de estos fracasados esfuerzos es el programa de las “variables de Asthekar”, físico hindú que pretende cuantizar el campo gravitatorio “a la canónica”, es decir, siguiendo el mismo procedimiento que llevó a la cuantización del campo EM. El punto crucial es que si deseamos cuantizar el campo gravitacional deberíamos, como bien han señalado R. Penrose y R. Wald [21], reconstruir la mecánica cuántica sobre nuevos fundamentos. El otro programa de unificación vía geometría diferencial es también extraordinariamente difícil. Es pertinente mencionar que en esta área de trabajo se distinguen dos líneas de investigación. Una en la que se mezclan conceptos de calibres de la mecánica cuántica con conceptos y herramientas de la topología diferencial. Un ejemplo de ello son las llamadas teorías de Kaluza-Klein, en cinco o más dimensiones. La otra línea de acción proviene de los trabajos de Wheeler, quien partiendo del enfoque de una geometría diferencial pura ha publicado la más elaborada geometrización del electromagnetismo de toda la literatura [20]. MODELO QUIRAL DEL UNIVERSO Einstein en su visión del universo y en su programa de unificación, aun teniendo presente el origen cuántico de la materia, no pudo concretar la unificación GEM. Tal vez el recorrido zigzagueante de Einstein en su programa de unificación fue producto de las numerosas tentativas de modificar el lado izquierdo de su ecuación GµvkTµv, dejando el tensor de materia Tµv sin alterar. En la TTS lo que cambia es el tensor Tµv. Conviene aquí decir algo al respecto de la relatividad general y la mecánica cuántica. En la actualidad, no hay duda de que la teoría de la relatividad y el modelo del Big-Bang son exitosos a la hora de presentarnos un panorama general de cómo el universo que hoy disfrutamos es consecuencia de la evolución bajo ciertas condiciones iniciales del universo que había luego de unas cuantas fracciones de segundo y de la aplicación de leyes conocidas de la física. Insistimos, no es que se conozcan todas las respuestas ni todos los detalles, sino que el modelo brinda la plataforma sobre la cual estas preguntas y estos detalles pueden ser bien planteados y abordados con la estrategia de las ciencias físicas. La relatividad de Einstein permanecerá como una portentosa contribución de la ciencia del siglo XX y un formidable 10 tributo al ingenio humano. Tanto en su versión especial como en la general cuando haya materia que curve el espacio-tiempo, la relatividad será una poderosa herramienta de interpretación de una parte de la realidad física. La revolución iniciada por la relatividad cambió de manera contundente la forma como debemos entender al espacio, al tiempo y a la materia. Nos brinda una imagen más coherente y unificada del mundo físico: la manera por la que brillan las estrellas tiene que ver con el retraso de relojes en movimiento. Entendemos mejor por qué cierta escala el sistema newtoniano da tan buenos resultados. Una buena parte de sus predicciones han sido corroboradas dándole sentido a las observaciones. Otras, como la existencia de ondas gravitatorias, nos permitirán ‘mirar’ el universo con otra mirada, más profunda, que habrá de revelarnos mucho acerca del universo en que vivimos. La ‘flexibilidad’ del tiempo y el espacio permite considerar las seductoras posibilidades de desaparición del tiempo como en los agujeros negros, la aparición del tiempo en el Big Bang, la expansión del espacio a escala cosmológica, que en la rígida perspectiva newtoniana eran impensables. Sin embargo, sabemos que algo importante está faltando. Las dos grandes revoluciones del siglo XX, la relatividad general y la cuántica, son incompatibles ente sí. Cada una es exitosa en su ámbito: la teoría cuántica describiendo el micromundo y la relatividad general, el cosmos a gran escala. Usan estrategias diferentes, imágenes de la realidad diferentes, metáforas diferentes y métodos matemáticos diferentes. La relatividad elude la naturaleza cuántica y la teoría cuántica elude el espacio-tiempo curvo. La primera no acepta el principio de incertidumbre y la segunda no acepta el principio de equivalencia. Para la relatividad general, la constante de Planck h es igual a cero; para la teoría cuántica, la constante, gravitacional de Newton G es igual a cero. Obviamente ambas son aproximaciones. La construcción de una teoría cuántica de la gravitación de la cual obtengamos casos límites apropiados, a la teoría cuántica de campos y a la relatividad, es la parte faltante de la revolución de la física del siglo XX, y es tarea pendiente para la física del nuevo milenio. Únicamente con esta teoría en la mano podremos entender qué ocurre cuando lo muy pequeño pero muy pesado aparecen en la misma situación física. Tan sólo con una teoría cuántica de la gravedad podremos hablar con propiedad de la naturaleza del Big Bang o de la singularidad escondida en el centro de los agujeros negros. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación Los intentos y acercamientos a esa(s) teoría(s) sugieren que en la llamada escala de Planck en tiempo y espacio (L P ≈ 10–33 cm, tp ≈ 10 –43 seg), característica de los fenómenos cuánticos gravitacionales, la naturaleza del espacio y el tiempo es radicalmente distinta de lo que observamos, tal vez cambie el número de dimensiones del espacio. Lo importante, como siempre, estará en las consecuencias y predicciones que una presunta teoría cuántica de la gravedad proponga, y que nos permita entender un poco mejor el universo que nos alberga, y tal vez un poco mejor a nosotros mismos. Una alternativa a la teoría cuántica de la gravedad, aún no descubierta, es la teoría propuesta en los artículos en esta edición de Ingeniare, la Teoría Total Simplificada (TTS) que postula unificar la gravedad con el EM teniendo como corolario fundamental la ecuación cuántica de Dirac. Ver figura 1. Con ello, aquí se propone todo un programa de unificación en el cual el electromagnetismo quiral juega el rol central [22]. La TTS se deriva de las ecuaciones originales de Einstein-Hilbert Gµv = kTµv, donde el tensor de Einstein no se modifica. El tensor EM en cambio es quiral y la masa de las partículas es de naturaleza electromagnética. Para el caso del electrón se tiene como consecuencia que por primera vez se obtiene la ecuación de Dirac a partir de ondas EM con el campo eléctrico paralelo espacialmente al campo magnético [22-26]. En la figura 1 se muestra una interfaz o membrana de separación donde ocurren solamente eventos y sucesos cuánticos. Hay dos regiones enantioméricas de un universo cerrado, o un universo derecho y un universo izquierdo, relacionados por un elemento de simetría PCT (paridad, carga, tiempo) a lo largo de la interfaz. Las características principales de ambas regiones enantioméricas están definidas en la figura y representan un modelo con todos los atributos requeridos por un vacío teórico. Lejos de la membrana de separación son válidas las ecuaciones de Einstein- Universo derecho: plasma de partículas espacio-tiempo >0, Electrón: espín ±h/2, masa me, carga –e¯, tiempo t>0 Rµv = Λclgµn Radiación quiral EM y ondas/partículas producidas por la curvatura del factor T líneas de tiempo: Universo diestro líneas de espacio Membrana Espacio Tiempo (cuerdas quirales) µ(ε) [1+ T∇x] interfaz de vacío: Rµv = Λcgµv Λc: constante cosmológica cuántica Superficie espacio-tiempo Universo izquierdo: plasma de antipartículas espacio-tiempo <0, Positron: espín h/2, masa mp, carga +e+, tiempo t<0 Figura 1. Modelo del universo con dos regiones enantioméricas separadas por una membrana cuántica con Λc/ Λcl del orden de 10120. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 11 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Hilbert G µv = kTµv, que son de naturaleza clásica. En la vecindad de la capa de separación hay efectos cuánticos y es válida la ecuación de Dirac para partículas en la región enantiomérica diestra y para antipartículas en la otra región [22-26]. Cada región puede ser considerada como un vacío, tiene una constante cosmológica Λcl, que tiende a cero, la membrana posee una constante cosmológica de naturaleza cuántica tal que Λc / Λcl~10120. ECUACIONES EINSTEIN-HILBERT BAJO EL ENFOQUE QUIRAL Descubierta por Hilbert, que desempeña un papel clave para la obtención de las ecuaciones de gravitación en el marco del principio de mínima acción [32]. Pero fue Einstein sobre la base de la idea de la equivalencia de la aceleración y la gravedad que formula la ley de conservación general de la energía-impulso [31]. A través del principio de mínima acción (Axioma I de Hilbert) y de la teoría de invariantes es que en este artículo se considera un modelo quiral para el universo considerando no la electrodinámica de Mie sino la EQ. Vamos a examinar con atención el enfoque de Hilbert [32]. El Axioma I es tal que: Desde los estudios de J. Earman y C. Glymour [27] se hizo evidente que las ecuaciones de la relatividad general de Einstein se descubrieron casi simultáneamente, pero con diferentes métodos, por D. Hilbert y A. Einstein [28-30]. Según el actual punto de vista Einstein y Hilbert, de forma independiente uno de otro y de diferentes maneras, descubrieron las ecuaciones del campo gravitacional [30]. En el trabajo de Einstein con Λcl = 0 las ecuaciones de campo gravitacional son dadas por: Las leyes de la física son los eventos definidos por la función mundo H cuyos argumentos son gµν , gµν l = qs , qsl = ∂gµν ∂x l ∂qs ∂x l , gµν lk = ∂2 gµν ∂x l ∂x k , ( l , s = 1, 2, 3, 4) (4) (5) Siendo que la variación de la integral − gRµν = −κ (Tµν − gµν T ) (1) Donde, como de costumbre, gµv es un tensor métrico; R µv es el tensor de Ricci, k es la constante gravitacional de acoplamiento, Tµ v es el tensor de densidad de energía-momento para la materia, T es la traza de Tµv: T = gµvTµv. 1 Hilbert, habiendo visto el término “traza” gµν T , también 2 lo introdujo en sus ecuaciones, g ( Rµν − gµν R) = − ∂ gL ∂g µν (2) el término traza (en este caso 1 g R , donde la traza 2 µν R = g µν Rµν ). El enfoque de Hilbert es exacto donde todo es definido por la función lagrangiana 12 H = R+ L (3) ∫H g dω (6) con ( g =| gµν |, dω = dx1dx 2 dx3 dx 4 ) (7) es cero para cualquiera de los 14 potenciales gµv, qS. Bajo el enfoque quiral la variación temporal ∂/∂t pasa a ser ∂/∂t (1+T∇x)∂/∂t. En cuanto a la función mundo, de acuerdo a Hilbert, axiomas adicionales son necesarios para su definición no ambigua. Si sólo las segundas derivadas de los potenciales pueden entrar en las ecuaciones de la gravitación, esto no cambia con EQ la función tiene que tener la forma H = R + LQ (8) Donde R es un invariante del tensor de Riemann (curvatura escalar de un sistema múltiple de cuatro dimensiones): Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 R = g µν Rµν , (9) H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación Rµν = ∂ν Γαµα − ∂α Γαµν + Γ λµα Γαλν − Γ λµν Γαλα , (10) L Q es una lagrangiana quiral que es función de las variables g µν , gµν , qs , qsk , T El factor quiral T > o corresponde a la región enantiomérica diestra o nuestro universo de materia, T < 0 a la región izquierda (ver figura 1 del modelo para el universo) y Rµv es el tensor de Ricci. Además de eso, suponemos más adelante que LQ no depende de gµν . A partir de la variación en los 10 potenciales gravitacionales se tienen 10 ecuaciones diferenciales de Lagrange: Luego, sobre la base del Teorema II, se tiene que la función de Lagrange depende de las derivadas del potencial qv, sólo a través del tensor Fµv, es decir, LQ ( Fµν ) (15) Fµν = ∂ µ qν − ∂ν qµ . (16) Donde Según el teorema II las cuatro identidades tienen lugar en el invariante LQ: Q ∂ gR ∂g µν − ∂k ∂ gR ∂gkµν + ∂ k ∂l ∂ gR ∂gklµν =− ∂ gLQ ∂g µν (11) Es fácil de ver de las ecuaciones anteriores que R y Rµv que son derivadas de segundo orden entran en la métrica linealmente. Todos los demás tensores se obtienen como combinaciones de estos tensores con similares propiedades. Así, la ecuación de campo gravitacional sometido al tensor electromagnético quiral es µ Se desprende de la identidad (17) que, en caso de las ecuaciones de movimiento de un sistema material (14) se sostienen, entonces la ley de la conservación covariante se lleva a cabo: Q ∇ µ Tνµ = 0 g R = −κ T µν . µν (12) (18) Si uno hace uso de las ecuaciones de la gravitación para la identidad (17) se obtiene de la misma manera que de las ecuaciones de Hilbert [31, 32]: Q µ ∇ µ Tνµ = Fµν g LQ + qν ∂ µ g LQ (17) µ µ Fµν g LQ + qν ∂ µ g LQ = 0 (19) De aquí la ley de conservación covariante de la energíaimpulso se deduce naturalmente. El tensor densidad g R contiene por construcción las derivadas µν lineales de segundo orden. Ecuaciones (19) tienen que ser compatibles con las ecuaciones, que se deriven del principio de mínima acción con la misma lagrangeana LQ. Sólo es posible en el caso de que “ecuaciones generalizadas de Maxwell” se autosustentan: Las ecuaciones de Lagrange, de Hilbert bajo el enfoque quiral son consecuencia del principio de mínima acción (Axioma I de Hilbert). Así las ecuaciones de la gravitación tienen la forma: Q 1 g ( Rµν − gµν R) = g R = −κ T µν . µν 2 (13) Se elige el invariante L Q en función de las variables g µν , qσ , ∂ν qσ , T , por lo que se obtienen las ecuaciones generalizadas de Maxwell ν g L = 0 Q (14) ν g L = 0 Q (20) En el caso particular de que L Q = αQI. El segundo término en Eq. (19) desaparece idénticamente y se llega a las ecuaciones µ Fµν g LQ = 0 (21) De ello se deduce, por lo tanto, que si el determinante Fµv no es cero, se tienen las ecuaciones de Maxwell µ g L = 0 . Esto está plenamente de acuerdo con Q el principio de mínima acción (Axioma I de Hilbert). De esta forma, la ecuación de Maxwell son consecuencia de las ecuaciones de gravedad y de las cuatro identidades Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 13 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (21). Cabe señalar que originalmente Hilbert obtuvo la ecuación de campo gravitatorio “no de un arbitrario sistema material, sino que en base a la teoría de Mie [33] con un lagrangeano en la forma L = α Q + f (q) donde α es una constante y f(q) es el término no covariante de Mie con Q = Fµν Fλσ g µσ gνλ , q = qµ qν g µν , (22) Este hecho hace que de dicha teoría no se obtiene una teoría sustentable para el electrón, pero el método de Hilbert es correcto en general, y es un excelente punto de partida para la unificación propuesta en este trabajo. En las referencias [22-26] se muestra específicamente que la unificación de la gravedad con el EM de Maxwell conocido en aquella época no era sustentable, por cuanto el determinante del tensor de campo de Maxwell siempre es cero. El hecho de que las ecuaciones de la gravitación implican cuatro ecuaciones para el sistema material, hace muy atractivo el método de Hilbert por la sencillez y potencia del mismo, por lo que se presta muy bien al enfoque de la gravitación con electrodinámica quiral. Basado en los argumentos expuestos en [34-36] y suponiendo que el electromagnetismo quiral nace en la interfaz de vacío (membrana de separación de las dos regiones enantioméricas), y recordando que ∂ / ∂t se transforma en (1+ T ∇×)∂ / ∂t , la ecuación (5) de Hilbert reformulada es (1+ T ∇×)∂qs / ∂t . Las tensiones electromagnéticas espaciales [34] son de la forma ε → ε 0 (1 + T ε µlν ∂ ∂ ), µ → µ0 (1 + T ε µlν ) (23) ∂xl ∂xl Además se tiene que el potencial qs tiene las componentes vectoriales q = A +T ∇ × A , donde A es el potencial vector de Maxwell y el campo magnético en un espacio curvado es B = ∇ × q . El factor quiral T > 0 corresponde a la región enanciométrica diestra donde se tiene un plasma de partículas, T < 0 a la región izquierda, donde existe un plasma de antipartículas (ver figura 1 del modelo para el universo). En el apéndice, las ecuaciones de Maxwell derivadas plenamente en forma relativística de LQ son presentadas además de las ecuaciones de onda en régimen quiral. En la siguiente sección se discute esta teoría en los inicios del Big-Bang. 14 LA ELECTRODINÁMICA QUIRAL Y LA GRAVEDAD EN LA ERA DE PLANCK Se sabe que el universo se está expandiendo debido a la oscuridad de la noche. La dinámica dominante del cosmos es, al parecer, una expansión repulsiva de “antigravedad” a gran escala en contraste con la de corto alcance de atracción de la materia en las galaxias y las estrellas. Este fenómeno es la respuesta a la paradoja de Olber, es decir, el hecho de que el cielo, que se llena de un infinito campo de estrellas y galaxias, no brilla como una estrella sólida, sino que es predominantemente oscuro y tiene sólo la radiación de temperatura de 2,7 ºK. El hecho de que el universo se está expandiendo significa que las estrellas y galaxias se alejan entre sí y hay un corrimiento al rojo, por lo que el cielo de la noche es de por sí oscuro y frío, en lugar de ser un campo brillante y caliente de polvo de estrellas. Este hecho permite un universo de baja temperatura donde la vida pueda florecer. Por lo tanto, la expansión del universo puede ser vista como esencial para la vida. El fenómeno que provoca la expansión acelerada del universo se conoce como “energía oscura” y se puede decir que la causa el vacío. La densidad de la energía oscura puede ser identificada como el término “constante cosmológica” en las ecuaciones de la relatividad general. Este término puede ser entendido a través del concepto de un universo de plasma, donde la electrodinámica cósmica desempeña un papel de igualdad con la gravitación que es la conformación del cosmos y de sus estructuras. De hecho, la gravitación ahora puede ser entendida como una manifestación de la electrodinámica de un gran número de partículas cargadas. Este término cosmológico puede estudiarse en el contexto de esta teoría TTS que determina el valor de la constante de la gravitación. La principal hipótesis del universo de plasma es que la electrodinámica desempeña un papel igualitario con la gravedad en la configuración de las estructuras del cosmos. Es posible ampliar este principio incluso a la microescala del cosmos, y considerar la posibilidad de que incluso el vacío en sí mismo puede ser analizado como un “plasma virtual” de partículas cargadas. De esta manera es posible desarrollar un modelo del universo que va desde la longitud de Planck al radio de Hubble para el universo, como un tejido continuo de la electrodinámica, y con los dos límites de longitud que se correlacionan entre sí. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación Esta unificación se basa en dos postulados: el EM se unifica con la gravedad a la longitud de Planck, donde el campo eléctrico Ep es paralelo al campo magnético Bp. El segundo postulado establece que en el tiempo de Planck la gravedad y los campos EM están unificados y que se separaran, y se convierten en diferentes variables a nivel de mesoescala. Aquí encontramos diferencias con [37]. Esta teoría puede predecir campos de gravedad y el valor de la constante de gravedad. Asimismo, se puede predecir el valor del tiempo de Hubble y temperatura de la radiación cósmica de fondo. Según esta teoría, la razón de masa de electrones a protones Rm asume un rol central. Sin embargo, es evidente que el valor de Rm depende de la fuerza fuerte, y los nucleones, que constituyen la mayor parte de la masa visible del universo, se derivan de los quarks. Esto es esencial para cualquier teoría de unificación [38]. Aquí, en la TTS, la EQ es como una extensión de la teoría de Sahkarov para la gravedad y el origen tanto de protones y electrones, pero la unificación nace en la era de Planck con un plasma cosmológico en nuestro universo diestro. La teoría TTS es un intento de crear una teoría geométrica para resolver el problema de Einstein-Dirac de la unificación de la gravedad y el EM. La teoría por ahora se limita a los protones y electrones. La teoría está todavía en un estado temprano de desarrollo, es decir, que se describe como un “modelo de Bohr” de la unificación, por analogía con la mecánica cuántica y el modelo del átomo de hidrógeno, y se basa en una extensión de los trabajos de Einstein y Kaluza. El aspecto separado de la gravedad y el EM relativos a los protones y electrones proviene desde la escala de Planck y se produce con la aparición de una dimensión quiral como un equivalente de la quinta dimensión de Kaluza-Klein. La teoría TTS comienza con el principio de acción de Hilbert, que permite la obtención de las ecuaciones fundamentales de los campos de vacío con la extremización de la acción integral H = (16π G )−1 ∫ ( R − 2 Λ) − gdx 4 24) Donde es la curvatura escalar de Ricci de la relatividad general, Λ es la constante cosmológica, G es la constante de la gravitación de Newton. Aquí, la acción integral para un campo cuántico de partículas con espín y masa, m cuando LEM procede de una EQ y Ep = iBp. Este campo produce un tensor de tensión de la forma p = pc2, es decir, una presión negativa, que a su vez impulsa una explosión del cosmos [39, 40]. Si suponemos que el cosmos es una entidad electrodinámica, entonces sería natural que, en un universo en expansión rápida, una especie de reacción de la ley de Lenz se debe haber producido para frenar la expansión cósmica. Esto también puede ser considerado como un “principio cósmico de la mínima acción”. Esta reacción sería la aparición de campos EM y de materia que presentan una densidad de energía positiva que dramáticamente frena la explosión inicial del universo. Este escenario es, de hecho, el escenario inflacionario, que se considera ahora el principal modelo de la cosmología. Sin embargo, puesto que nuestro objetivo final es la modificación tecnológica práctica de la gravedad, vamos a examinar ahora la relación de la gravedad y el EM en detalle. En la teoría de la relatividad general (RG) de Einstein, la gravedad surge de la geometría del espacio tiempo determinado por las propiedades del tensor métrico gij. El límite newtoniano se recupera donde el espacio no es muy curvado y el potencial de Newton φ es en realidad parte del elemento diagonal principal del tensor métrico gtt = −1 − 2φ / c 2 . Desde el punto de vista de la TTS, la gravedad surge de la electrodinámica quiral. Sobre la base de esto, parece ser que una buena generalización para modelar la gravedad es que el tensor métrico de la RG es en realidad un tensor EM normalizado. Es decir, los campos EM no sólo son la curvatura de la métrica, sino que la métrica misma. Esto significa que el espacio tiempo es en realidad un vasto mar de radiación ultrapoderoso de EM. Con el fin de satisfacer los postulados de la TTS debemos tener una generalización covariante y física de campo para el vacío g ij = 4 Fik Fjk / F µν Fµν = 4 Fik Fjk / T0 (25) Donde Fik es el tensor de Faraday y T0, es la covariante generalización normalizada del escalar de tensión escalar. La forma de esta expresión para el tensor métrico es determinada por el primer postulado TTS, esto es, para que un campo EM ultrafuerte llene el cosmos el tensor de Maxwell es Tij = 1 / 4π ( Fij Fjk − 1 / 4 gij F µν Fµν ) (26) que debe desaparecer en todas partes. Así, en la TTS, un poderoso campo EM determina la geometría del espacio, pero en sí no es detectable directamente, sino que por ser tan poderoso se anula a sí mismo. Cabe señalar que Fjk , la forma mixta del tensor de Faraday, es a menudo escrito como gij F ik. Físicamente, sin embargo, el objetivo principal de la TTS es demostrar que la gravedad, los campos EM, y, por tanto, la geometría, son unificadas y son partes de una relación cíclica. Esto significa que en la TTS, EQ implica la geometría y viceversa, de Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 15 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 manera que para empezar con uno en lugar del otro es una cuestión de convención, y para reclamar que uno es superior y más fundamental que el otro no parece razonable. La EQ es dada por LQ = ∫ κ gµν − g EQ ⋅ BQ dx 4 , EQ ( BQ ) = (1 + T ∇×) E ( B ) (27) la densidad de energía neta del espacio puede ser ligeramente negativa con este lagrangeano si T tiene un valor apropiado. Un mecanismo similar fue propuesto por primera vez en [40] y se denomina “Zeldovich reacción”. En este artículo se deriva el valor de G como la “elasticidad de la métrica del espacio” con el supuesto de que la longitud de Planck Tp = (Gh/c3)1/2, donde Tp es el factor quiral de nuestro R-Universo, es la constante de Planck. El valor de la integral se determina por la frecuencia de corte cerca de la frecuencia de Planck ωp = c/Tp. Numéricamente este valor de T es igual al radio de Planck [39, 40]. Esta conexión entre la gravedad y el campo EQ alienta la posibilidad de que la gravedad pueda un día ser modificada directamente por medios externos. La manera más sencilla de obtener una energía oscura o la constante cosmológica es permitir que E→iB y esto genera una constante cosmológica y, por tanto, un universo en expansión. Teniendo en cuenta la hipótesis de un universo de plasma donde domina la electrodinámica quiral, suponemos la existencia de modos quirales que componen la energía oscura. En la escala de Planck, la incertidumbre de Heisenberg permite que se generen masas Mp, que tienen una longitud de onda de Compton igual a su radio de Schwartzchild GM P /c 2 = rP = TP = / 2 M P c = G / 2c3 (28) A la longitud de Planck, los horizontes de evento de los agujeros negros aparecen y desaparecen en un período de Planck, y la distinción topológica entre estar dentro y fuera de un evento horizonte desaparece. Por breves instantes de un período de Planck, las partículas de antimateria pueden interaccionar con las partículas ordinarias. Esto produce la cuantización de la carga e = khc/2πT. Sin embargo, el tamaño de T debe ser del orden de la longitud de Planck, para dar el correcto valor de la carga y las masas son del orden de la masa de Planck. Sin embargo, la existencia de la escala de masas de protones y electrones significa que el tamaño efectivo de la dimensión compacta debe ser mucho mayor, es 16 decir, del orden de la longitud de onda de Compton de un protón o el radio clásico electrónico. Esto puede ser entendido conceptualmente como un “renormalization”, efecto debido a la energía negativa de la formación de la dimensión quiral. La teoría de TTS así permite, por un pequeño aumento de la dimensionalidad, la aparición explícita de los campos EM, y las partículas con carga y masa, para protones y electrones, junto con la gravedad, desde un principio variacional con σ = mp/me)1/2 = 42.85003. Esto constituye una descripción muy básica del cosmos como un todo, cuyos principales componentes más conocidos son los protones y electrones. Si se concibe que el principio de la acción asume un campo EQ no masivo, entonces la aparición de la quiralidad permite la captura o la dispersión de quantas no masivos que crean masa en reposo, carga, espín y por lo tanto las partículas. La captura de la energía EM quirales en una dimensión compacta puede ser concebida como una imagen compactada del espacio-tiempo. El tamaño de la dimensión compactada puede considerarse que sea del orden del radio clásico del electrón, re = e2/4πε0 m 0 c 2, que es el tamaño aproximado del protón. El carácter de la dimensión compacta debe ser una imagen global del espacio-tiempo, esto significa que el protón, es decir, el espacio, como partícula, debe tener tres subdimensiones para satisfacer la condición de radio clásico y también para la neutralidad del cosmos. Esta combinación es satisfecha por la actual teoría de los quarks, donde el protón está formado por tres quarks que satisfacen qx = q y = 2e/3 y qz = –e/3, es decir, qx + q y + qz = e(2 / 3 + 2 / 3 − 1 / 3) = e (29) qx 2 + q y 2 + qz 2 = e 2 (4 / 9 + 4 / 9 + 1 / 9) = e 2 (30) Donde qx, qx, qz son las cargas de los quarks que componen los protones. Por lo tanto, una imagen global del espaciotiempo, sujeta a la simetría de rotación, significa que la dimensión compacta (T) tiene el carácter de un radio o un intervalo de tiempo y, por tanto, actúa como un escalar, pero puede tener tres espacios internos –como grados de libertad. Las condiciones: la suma de las cargas de los quarks y la de suma de sus cuadrados significa que deben satisfacer una simetría de rotación SO (3). Los protones, por tanto, compuestos de quarks, son, pues, fundamentales en la TTS para nuestro universo diestro. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación Si uno se concentra por un momento en la acción de Hilbert-Einstein, sobre la expansión de la EQ de Lagrange y de la selección de aquellas partes que desaparecen en el marco de la caída libre en el modelo de TTS, obtenemos (en unidades ESU). R E 2 − B2 + 16π G 8π 2 2 S g =− + E = iB 2π G u c 2 (16π G )−1 K field = Donde Fαβ es el tensor de campo electromagnético y jα es la densidad de corriente en 4 dimensiones. Claramente, en un sistema inercial local las ecuaciones anteriores se reducen a las ecuaciones estándares en el vacío. Para simplificarlas, se introduce un sistema de coordenadas ortogonal-temporal en el cual: gλ4 = 0. Se introducen los tensores antisimétricos Hαβ y Bαβ tal E = iB (31) que F αβ = H αβ / − g44 = Bαβ y los vectores D α y E α por F α 4 = − Dα / − g44 = E α / g44 . 0 donde S = 0, se asocia a los campos de la gravedad. Esta expresión cumple el principio de equivalencia, porque ambos términos desaparecen en un sistema de caída libre. Las expresiones covariantes correspondientes son: Fαβ = gαγ gβδ F γδ = gαγ gβδ Bγδ = H αβ = Bαβ − g44 APÉNDICE: ELECTRODINÁMICA QUIRAL Comúnmente, el electromagnetismo de Maxwell es tratado en una aproximación lineal que en muchos casos es suficiente para explicar los resultados de los experimentos. La premisa que en este trabajo de unificación se plantea es que una onda electromagnética propagándose a través de un medio es influenciada por este último y viceversa. La idea anterior se parece al principio de Mach. Se le recuerda al lector que dicho principio sugiere que la masa de un cuerpo es debida a la influencia de todas las estrellas del universo en ese cuerpo. Expresada en términos matemáticos, esta dependencia toma la forma m(x) = ξ[1/T(x)] donde m(x) es la masa de partícula, ξ una constante de acoplamiento y 1/T es la masa generada por el campo a través de la quiralidad. La idea central entonces es no considerar la masa de una partícula como una cantidad fija e intrínseca, sino más bien pensarla como una cantidad variable dependiente del campo en el cual se mueve. En este apéndice se construye la electrodinámica en espacio curvo. Para ello se parte con las ecuaciones de Maxwell en un Sistema Arbitrario de Coordenadas. ∂γ Fαβ + ∂α Fβγ + ∂β Fγα = 0 1 g ∂β (( g ) F ) = J αβ α γδ β Fα 4 = gαγ g4δ F = gαβ − g44 D = − g44 Dα = Eα Esto permite escribir las ecuaciones de Maxwell en la forma 1 −g ∂β ( ∂γ Bαβ + ∂α Bβγ + ∂β Bγα = 0 ) 1 −g 1 − gH αβ − ∂α −g ( ∂t ( ) − gDα = ρuα ) − gDα = ρ Una manera de escribirlas en una forma más familiar, se introducen los vectores duales correspondientes a los tensores respectivos por la prescripción estándar, dando como resultado B1 = H1 = 1 −g 1 −g 1 B23 , B 2 = −g H 23 , H 2 = B3 1, B3 = 1 −g H 31 , H3 = 1 −g B12 1 −g H 12 (1) Finalmente haciendo las sustituciones respectivas se tienen las ecuaciones vectoriales de Maxwell sin cargas (2) ∇×E =− Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 1 −g ∂t ( ) −gB , ∇ ⋅ B = 0 (3) 17 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 ∇×H = 1 −g ∂t ( ) −g D , ∇ ⋅ D = ρ (4) La conexión entre las ondas electromagnéticas en un medio y las mismas ondas en el vacío pero en un espacio curvo emerge claramente. Si g no depende del tiempo y si se tiene µ = ε = –(–g44)-1, entonces el campo, responsable por la curvatura del espacio, se comporta como un medio con la permitividad dieléctrica y susceptibilidad magnética dada por la ecuación anterior. La conjetura que se plantea en esta investigación es que ε, 0 y µ0 en el espacio curvado son definidos como los operadores: ε 0 (1 + T ∇×) y µ0 (1 + T ∇×) donde T es el factor quiral que permite la torsión del campo dando lugar a la creación de las partículas. 0) J ( 0 ) = ε T (−2 B,(00 − T ∇ 2 E,(00 ) ) (11) Las ecuaciones de Maxwell rescritas anteriormente son formalmente similares a las ecuaciones de Maxwell en un medio normal con densidad de corriente J(0) y densidad de carga ρ(0) = 0 que obedece la ecuación de continuidad de la carga ∇ ⋅ J ( 0 ) + ρ,0 ( 0 ) = 0 . Se llamará J(0) a la corriente quiral en el marco de referencia en reposo. En un sistema arbitrario S, las ecuaciones de Maxwell pueden ser escritas ∂a = a , [41]. ,α ∂x α F,ααλ − ( µε − 1) F,γλα uα uγ = µ J λ (12) Las ecuaciones de campo Fαβ ,γ + Fγα ,β + Fβγ ,α = 0 (13) En un sistema de referencia, donde el medio está en reposo, las relaciones constitutivas quirales de BornFederov son: respectivamente. Aquí u α es la velocidad uniforme del medio, Fαβ es el tensor del campo electromagnético con componentes F0 i = Ei Fij = −ε ijk Bk . También se introduce el dual del tensor de campo D(0) = ε E (0) + ε T ∇ × E (0) B ( 0 ) = µ H ( 0 ) + µT ∇ × H ( 0 ) (5) en el sistema en reposo So del medio. Se restringe el estudio a medios homogéneos y no dispersivos donde ε, µ y T son constantes. Las ecuaciones de Maxwell en este marco, en ausencia de cargas son ∇ ⋅ D(0) = 0 ∇ ⋅ B (0) = 0 ∇ × H ( 0 ) = D,(00 ) ∇ × E ( 0 ) = − B,(00 ) (6) (7) ∂a donde a,0 = . Las ecuaciones de Maxwell pueden ser ∂t escritas en términos de los campos E(0) y B(0) ∇ ⋅ E ( 0 ) = 0, ∇ × B ( 0 ) = µ J ( 0 ) + µε E,(00 ) (8) ∇ ⋅ B ( 0 ) = 0, ∇xE ( 0 ) = – B,0(0) (9) 0 ) (10) K ( 0 ) = 2 E,(00 ) + T ∇ × E,(00 ) = 2 E,(00 ) − T B,(00 También se tiene 18 1 Gαβ = ε αβγδ Fγδ 2 con componentes G0 i = Bi Gij = +ε ijk Ek , de modo que la corriente quiral puede ser escrita como J λ = ε T ε αλρσ uα K ρ ,σ . (14) .. con ε 0123 = +1 y K ρ = 2 F ρ − T G ρ . Aquí usamos la definición: F ρ = F ρα uα ; G ρ = G ρα uα y donde la operación punto (.) es definida por a = uα a ,α , la cual se reduce a la derivada temporal ordinaria en el medio en reposo. En este marco Fi se reduce a las componentes del campo eléctrico (y F0 desaparece) y Gi a las del campo magnético (y Go desaparece). La corriente quiral se puede escribir en la forma .. donde J ( 0 ) = ε T ∇ × K ( 0 ) con . J α = ε T (−2 Gα + Th µν F,αµν ) (15) donde h µv está relacionado al tensor métrico gµv por h µυ = g µυ − u µ uυ Se hace notar que la ecuación de continuidad es considerada. Jλ,λ = 0. Efectuando una contracción con uλ y notando que Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación uλ Jλ = 0 se tiene Fα ,α = Fαλ ,α uλ = 0. Este resultado no es nada más que ∇. E ( 0 ) = 0, ∇ × B ( 0 ) = µ J ( 0 ) + εµ E,0 ( 0 ) en el medio en reposo. 1 F αλ = − ε αλβδ Gβδ 2 λα Si se introduce esta relación en Fαλ , α − (εµ − 1) F , γ λ y haciendo la contracción con ε ρλσγ se γ uα u = µ J . . α εT 2 G α = Th µν F,µν En un marco de referencia en reposo Sº, esta ecuación se simplifica a la ecuación de Beltrami si hacemos T≡ , mc obtiene .. α J α = εT ( −2 G α + Th µν F,µν ) =0 .. El inverso de G βδ es o sea ∇ × E (0) + 2 (0) E =0 T (18) . λ λ Gσγ , ρ + Gρσ ,γ + Gγρ ,σ − ( µε − 1)ε ρλσγ F = µε ρλσγ J donde se ha usado la identidad ε λαβµ ε λρσγ = −δ ρα δ βσ δγµ + δσα δ βρδγµ − δγα δ βρδσµ c on σγ = σγ − γσ . L a e cu a c ión homogéne a Fαβ ,γ + Fγα ,β + Fβγ ,α = 0 se transforma en G,γσ γ = 0 que inmediatamente sigue de la contracción de la ecuación homogénea con ελσαβ. Para obtener la ecuación de onda del tensor de campo se diferencia Fαβ ,γ + Fγα ,β + Fβγ ,α = 0 con respecto a γ, y se usa F αλ ,α − (εµ − 1) F λα ,γ uα uγ = µ J λ para obtener .. γ Fαβ ,γ − ( µε − 1) F αβ = − µ ( Jα ,β − J β ,α ) (16) en. este result ado f ina l se ut il iza la relación Fαβ = uγ Fαβ ,γ = Fα.. ,β − Fβ ,α . La ecuación de onda Fαβ ,γ γ + (εµ − 1) Fαβ = − µ ( Jα ,β − Jβ ,α ) es el resultado fundamental de este trabajo de investigación que permite la unificación del electromagnetismo con la gravitación. Esta ecuación de onda de segundo orden en tiempo y espacio permite obtener la propagación de gravitones si ( Jα ,β − Jβ ,α ) = 0 y de fotones si T ≡ 0 respectivamente. Para examinar el caso de gravitones con spin 2 el primer miembro de la ecuación de onda (16) es .. Fαβ ,γ γ + (εµ − 1) Fαβ = 0 (17) que corresponde al caso de corriente quiral igual a cero, esto es es trivial obtener de la ecuación de onda (17) con ∂ / ∂t = iω , −1/ 2 y la velocidad de la luz dada por c = (εµ ) la expresión ω k0 = tal que mcT = 2 . Esto corresponde a partículas c con spin 2. Se observa además que de la ecuación ∇ × E ( 0 ) = − B,(00 ) = −iω B ( 0 ) 1 se tiene entonces que E ( 0 ) = iω B ( 0 ) , o sea los campos son paralelos en el espacio tridimensional con el vector de Poynting E ( 0 ) × B ( 0 ) = 0. Esto implica una gran dificultad en detectar este tipo de partículas con detectores usuales de radiación. El caso de ondas electromagnéticas normales es analizado con la ecuación ∇ × ∇ × (1 − k02T 2 ) E − 2 k02T ∇ × E − k02 E = 0 (19) Si T = 0 se obtiene la usual ecuación de onda en un medio normal y homogéneo que se encuentra en los textos de electromagnetismo, ∇ × ∇ × E − k02 E = 0 , ondas que al ser tratadas como partículas se tiene que el spin es igual a uno. Si k0 T ≤ 1 se obtienen las ondas quirales circularmente polarizadas que se propagan en medios electromagnéticos complejos y en medios biológicos (por ejemplo, ondas en el tejido cerebral debido a las microondas de teléfonos celulares). Si k0 T ≥ 1 o mucho mayor que uno, se obtiene una ecuación de tipo Beltrami que entre otras situaciones físicas puede modelar las ondas en una estrella de neutrones, explicar las llamaradas solares donde la corriente es paralela al campo magnético. Esta relación también permite obtener el radio del universo si T = / mc y µ es la masa del fotón en el espacio curvado de Einstein. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 19 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Usando un modelo de fluido de fotones, permite obtener rotB = λ B que puede calcular la distancia del Sol a cada uno de los planetas del Sistema Solar. Además puede explicar: la generación de bolas de luz, la formación de galaxias en espiral y las ondas EM quirales como autoestados de moléculas de ADN. Se puede demostrar rigurosamente que con ondas electromagnéticas donde E es perpendicular a B, ( E ⊥ B ) la ecuación tensorial de Einstein, con el tensor de Maxwell Tµv es Rµν 1 − gµν R = −κ Tµν 2 (21) Esta es la razón del porqué Einstein no pudo obtener la anhelada unificación del electromagnetismo y la gravitación. Esta formulación es un enlace entre la Teoría Cuántica y la Relatividad General, siendo clave el concepto de campo Beltrami como fundamental en la creación de partículas. En la Física actual, ambas teorías están profundamente cimentadas en marcos espacio-tiempo distintos. La primera en el espacio-tiempo de Minkowski, y la segunda en el espacio-tiempo curvado. Tal como A. Wheeler lo hizo notar, los intentos de unificación y el desafío han sido la introducción de la mecánica cuántica con spin 1/2 en la Relatividad General, por un lado, y la introducción de la curvatura en Mecánica Cuántica por otro. La ecuación de onda .. Fαβ ,γ γ (T ) + (εµ − 1) Fαβ (T ) = − µ ( Jα ,β (T ) − Jβ ,α (T )) que es la generalización de la ecuación de Klein-Gordon permite esta conexión, si la transformamos poniendo en evidencia el factor de spin 1/2. 20 (22) . .. λ Jep = ε ( 1 − O F λ − 2T G λ ) (23) O ≡ 1 + T 2uα (u,αα ),α (24) donde manipulando las ecuaciones (22), (23) y (24), se puede obtener la ecuación de onda gµν = gµν + Fµν ds 2 = gµν dx µ dxν = gµν dx µ dxν λ O( F,ααλ − ( µε − 1) F,γλα uα uγ ) = µ Jep λ donde el tensor corriente, Jep , corresponde a la corriente quiral del electrón (T>0) o positrón (T<0) (20) Ya el d et e r m i n a nt e d e F µ v e s ig u a l a c e r o ( det Fµν = 2 ( E ⋅ B )2 = 0) se tiene que Es transparente al campo de manera que estos modos de propagación no permiten la unificación ya que al hacer lo hecho por primera vez por Einstein para el caso usual de campos de Maxwell ( E ⊥ B ) , o sea (E·B = 0) L a e c u a c i ó n t e n s o r i a l d e M a x w e l l (1 2) F,ααλ − ( µε − 1) F,γλα uα uγ = µ J λ , se puede transformar a .. OFαβ ,γ γ (T ) + O(εµ − 1) Fαβ (T ) = = − µ ( J(ep)α ,β (T ) − J(ep) β ,α (T )) (25) Explícitamente la ecuación de onda puede ser linealizada siguiendo la genial línea de raciocinio de P. Dirac (que a partir de la ecuación de segundo orden de Klein Gordon desarrolla las matrices α, β para obtener la ecuación de primer orden de Dirac, donde el spin ½ aparece en forma precisa). Siguiendo el mismo raciocinio de Dirac, hacemos O=0, y al integrar una vez la ecuación (25) se tiene . .. F λ = 2T G λ (26) que en el sistema de referencia del electrón o positrón corresponde a ∇ × E (0) + 1 (0) E =0 2T donde se ha hecho k0 T = ±1. Aquí se considera el principio de incertidumbre de Heissenberg pT = ± / 2 = mcT . Se hace notar que este resultado general se obtiene también de la ecuación (19) que permite obtener relaciones isomórficas que conducen a una manera inédita de obtener la ecuación de Dirac para una partícula elemental como el electrón o positrón a partir de la obtención de la ecuación de Beltrami (free force). La onda inicialmente con spin 1 y energía ω es transformada en campos Beltrami de spin +1/2 y –1/2. En otras palabras, si el sistema de ecuaciones de Maxwell es multiplicado por la matriz de Pauli permite obtener en forma rigurosa y original Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación la Ecuación de Dirac. Esta deducción se muestra en el artículo correspondiente. Usando álgebra cuaterniónica en un sistema de referencia fijo a la partícula (onda de luz curvada sobre sí misma), de la ecuación anterior se obtiene sin aproximaciones la ecuación de Dirac. En ella aparece en forma explícita el spin de la partícula, cuando k0T = 1. O sea si T = / 2mc entonces k0 T = ω T / c = 1 = ω / 2mc 2 ⇒ E = 2mc 2 . De esta forma, a partir del escalar T, se obtiene la ecuación fundamental de Einstein entre materia y energía. El escalar T se encuentra implícito en universo derecho y uno universo izquierdo, relacionados por un elemento de simetría PCT (paridad, carga, tiempo) a lo largo de la interfaz. Las ecuaciones de EinsteinHilbert fueron estudiadas bajo el enfoque quiral y se han analizado la electrodinámica quiral y la gravedad en la era de Planck. AGRADECIMIENTOS Se agradecen las fructíferas discusiones sobre el tema con los colegas del Instituto de Alta Investigación y de la Escuela Universitaria de Ingeniería Eléctrica - Electrónica de la Universidad de Tarapacá, Arica, Chile. REFERENCIAS .. Fαβ ,γ γ (T ) + (εµ − 1) Fαβ (T ) = − µ ( Jα ,β (T ) − Jβ ,α (T )) [1] H. Torres-Silva. “Chiroplasma surface wave”. Electromagnetic of Chiral Bi-Isotropic and BiAnisotropic Media. CHIRAL ’96. Proceeding of Nato Series, Moscú. 1996. [2] H. Torres-Silva, P. Sakanaka and N. Reggiani. “The Effect of Chirality on a Plasma Media”. Rev. Mex. de Física. Vol. 42, pp. 989-1000. 1996. [3] H. Torres-Silva and C. Villarroel González. “Electromagnetic properties of a Chiral-Plasma Medium”. Pramana-Journal of Physics. Vol. 49, pp. 431-442. 1997. [4] H. Torres-Silva. “Chiroplasma surface wave”. A. Pr iou, editor: Advances in Complex Electromagnetic. Materials. Vol. 28, pp. 249-258. Kluwer Academic Publishers. 1997. [5] H. Torres-Silva. “Electromagnetic Waves in a Chiral Plasma”. Journal of the Physical Soc. of Japan. Vol. 67, pp. 850-857. 1998. [6] H. Torres-Silva. “Propagación de ondas pulsadas en un chiroplasma magnetizado”. Rev. Mex. de Física. Vol. 44, pp. 53-58. 1998. [7] H. Torres-Silva. “Convective Instabilities of Transverse Wave In Magnetized Chiral Media”. J. Plasma Res. Vol. 1, p. 395. 1999. [8] H. Torres-Silva y M. Zamorano Lucero. “Ecuación de Onda de Schrödinger para una fibra Óptica Chiral”. Revista Mexicana de Física Vol. 46, pp. 62-66. 2000. Si T = 0 se tiene el espacio plano de cuatro dimensiones de Minkowski, base del electromagnetismo de Maxwell y de la Relatividad Especial. Recientes modelos que incluyen supercuerdas cuánticas son caminos alternativos que consideran partículas extendidas, es decir, no puntuales que conducen a operadores espaciotiempo no diferenciables y a geometría no conmutativa, pero la teoría propuesta aquí es más económica, más simple en dimensiones y en la potente idea de que los campos electromagnéticos con E B son la verdadera fuente para la gravitación CONCLUSIONES Como una alternativa a la teoría cuántica de la gravedad, aún no descubierta, la TTS ha sido propuesta, que postula unificar la gravedad con el EM teniendo como corolario fundamental la ecuación cuántica de Dirac. En este programa de unificación en el cual el electromagnetismo quiral juega el rol central, la TTS ha sido derivada de las ecuaciones originales de Einstein -Hilbert Gµν = κ Tµν , donde el tensor de Einstein no ha sido modificado. El tensor EM en cambio es quiral y la masa de las partículas es de naturaleza electromagnética. Para el caso del electrón se tiene como consecuencia que por primera vez se obtiene la ecuación de Dirac a partir de ondas EM con el campo eléctrico paralelo espacialmente al campo magnético. Como modelo del universo se propuso una interfaz o membrana de separación entre dos regiones enantioméricas de un universo cerrado, o un Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 21 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 [9] A. Assis and H. Torres-Silva. “Relation between Maxwell Equations and Weber Force”. Pranama Journal of Physics. Vol. 54 Nº 6, pp. 1-12. 2000. [10] H. Torres-Silva and M. Zamorano Lucero. “Polarized spatial solitons in cubic chiral materials”. PIER 2002. Progress In Electromagnetics Research. Cambridge, Massachusetts, USA. July 1-5. 2002. [20] C.W. Misner, K.S. Thorne and J.A. Wheeler. Gravitation, Ch. 13, Freeman, pp. 310-311. 1973. [21] [11] C. Villarroel González y H. Torres-Silva. “Difracción en el borde de un semiplano inmerso en un medio quiral bianisotrópico”. Rev. Mex. de Física. Vol. 47, pp. 136-141. 2001. [12] [13] H. Torres-Silva and M. Zamorano Lucero. “Chiral effects on optical solitons”. Mathematics and Computers in Simulations. Vol. 62, pp. 149-161. 2003. M. Zamorano Lucero y H. Torres-Silva. “Efecto de la quiralidad sobre solitones polarizados en un medio anisotrópico”. Revista Mexicana de Física. Vol. 49 Nº 1, pp. 20-27. 2003. [14] H. Torres-Silva and M. Zamorano Lucero. “Nonlinear polarization and chiral effects in birefringent solitons”. Pramana Journal of Physics. Vol. 62 Nº 1, p. 37. 2004. [15] M. Zamorano Lucero y H. Torres-Silva. “Sar inducido en un modelo bioplasmático quiral por radiación de teléfonos celulares”. Revista Mexicana de Física. Vol. 51 Nº 2, pp. 209-216. 2005. [16] H. Torres-Silva. “FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz”. Phy in Med. and Biol. Vol. 51, pp. 16611672. 2006. [17] [18] [19] 22 L.A. Ambrosio, H.E. Hernández and H. Torres-Silva. “Guided modes in metamaterial slabs”. Ingeniare. Rev. chil. ing. Vol. 14 Nº 3, pp. 291-298. 2006. H. Torres-Silva, C. Villarroel González and F. Jiménez-Muñoz. “Electromagnetic waves at the plane boundary between two chiral media”. Ingeniare. Rev. chil. ing. Vol. 15 Nº 1, pp. 101-110. 2007. T. Appelquist. Modern Kaluza-Klein Theories. Frontier in Physics. Addisson-Wesley. 1987. R. Wald, General Relativity. Cap. 14. Ed. University Chicago Press. 1984. [22] H. Torres-Silva. “A new relativistic field theory of the electron”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 111-118. 2008. [23] H. Torres-Silva. “Spin and relativity: a semiclassical model for electron spin”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 72-77. 2008. [24] H. Torres-Silva. “A metric for a chiral potential field”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 91-98. 2008. [25] H. Torres-Silva. “Maxwell’s theory with chiral currents”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 31-35. 2008. [26] H. Torres-Silva. “The close relation between the Maxwell system and the Dirac equation when the electric field is parallel to the magnetic field”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 43-47. 2008. [27] J. Earman and C. Glymour. “Einstein and Hilbert: Two Months in the History of General Relativity”. Archive for History of Exact Sciences. Vol. 19, p. 291. 1978. [28] L. Corry, J. Renn and J. Stachel. “Belated Decision in the Hilbert-Einstein Priority Dispute”. Science. Vol. 278, p. 1270. 1997. [29] J. Renn and J. Stachel. Hilbert’s Foundation of Physics: From a Theory of Everything to a Constituent of General Relativity. Preprint of Max-Planck-Institut für Wissenschaftsgeschichte. Nº 118. 1999. [30] V.P. Vizgin. “On the discovery of the gravitational field equations by Einstein and Hilbert: new materials”. Physics-Uspekhi. Vol. 44 Nº 12, p. 1283. 2001. [31] A. Einstein. “The Collected Papers of Albert Einstein”. Eds. R. Schulmann. Princeton, N.Y. Princeton Univ. Press. Nº 8. 1998. [32] T. Sauer. “The Relativity of Discovery: Hilbert’s First Note on the Foundations of Physics”. Archive Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación for History of Exact Sciences. Vol. 53, pp. 529-575. 1999. [33] A. Einstein. “Do Gravitational Fields Play an Essential Part in the Structure of the Elementary Particles of Matter? The Principle of Relativity”. Dover, pp. 191-198. 1952. [34] H. Torres-Silva. “Extended Einstein’s theory of waves in the presence of space-time tensions”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 78-84. 2008. [35] H. Torres-Silva. “Einstein equations for tetrad fields”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 85-90. 2008. [36] H. Torres-Silva. “Chiral universes and quantum effects produced by electromagnetic fields”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 99-110. 2008. [37] J.E. Brandenburg. “A model cosmology based on gravity - electromagnetism unification, Astrophys”. Space Sci. Vol. 227 Nº 1/2, pp. 133144. 1995. [38] H.E. Puthoff. “Gravity as a zero-point fluctuation force”. Phys. Rev. A. Gen. Phys. Vol. 39 Nº 5, pp. 2333-2342. 1989. [39] A.D. Sakharov. Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. Vol. 12 Nº 2, pp. 1040-1041. 1967. [40] Y. B. Zel’dovich. Cosmological constant and elementary particles. Sov. Phys. JETP Lett. Vol. 6, pp. 316-317. 1967. [41] S. Ragusa. “First-order conservation Laxs in Chiral medium”. Brazilian Journal of Phycs. Vol. 26, pp. 411-418. 1996. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 23 Ingeniare. Revista chilena de ingeniería, vol. 16 vol. 16 Nº 1, Nº 1, 2008, 2008 pp. 24-30 NEW INTERPRETATION OF THE ATOMIC SPECTRA OF THE HYDROGEN ATOM: A MIXED MECHANISM OF CLASSICAL LC CIRCUITS AND QUANTUM WAVE-PARTICLE DUALITY NUEVA INTERPRETACIÓN DEL ESPECTRO ATÓMICO DEL ÁTOMO DE HIDRÓGENO: UN MECANISMO MIXTO DE CIRCUITOS LC Y LA DUALIDAD ONDA CUÁNTICA-PARTÍCULA H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 12 de diciembre de 2007 Received: September 5, 2007 Accepted: December 12, 2007 RESUMEN En este trabajo se presenta un estudio de las leyes macroscópicas de conversión de energía del oscilador armónico LC, la onda electromagnética (fotones) y el átomo de hidrógeno. Como nuestro análisis indica, las energías de estos aparentemente diferentes sistemas obedecen exactamente la misma ley de conversión de la energía. Sobre la base de nuestros resultados y de la dualidad onda-partícula del electrón, nos encontramos con que el átomo de hidrógeno, de hecho, es un oscilador LC microscópico naturalmente quiral. En el marco de la teoría clásica de campos electromagnéticos se obtiene analíticamente, para el átomo de hidrógeno, el radio cuantizado de la órbita electrónica rn=aon2 y la energía cuantizada En=–R Hhc/n2, (n=1, 2, 3..), donde a 0 es el radio de Bohr y R H es la constante de Rydberg. Sin la adaptación de otros principios fundamentales de la mecánica cuántica, se presenta una explicación razonable de la polarización de los fotones, las reglas de selección y principio de exclusión de Pauli. Los resultados también ponen de manifiesto una conexión esencial entre el espín de electrón y el movimiento helicoidal intrínseco de los electrones e indican que el espín es el efecto de un confinamiento cuántico. Palabras clave: Átomo de Bohr, quiralidad, oscilador LC. ABSTRACT In this paper we study the energy conversion laws of the macroscopic harmonic LC oscillator, the electromagnetic wave (photon) and the hydrogen atom. As our analysis indicates, the energies of these apparently different systems obey exactly the same energy conversion law. Based on our results and the wave-particle duality of electrons, we find that the hydrogen atom is, in fact, a natural chiral microscopic LC oscillator. In the framework of classical electromagnetic field theory we analytically obtain, for the hydrogen atom, the quantized electron orbit radiusr n=aon2, and quantized energy En=–R Hhc/n2, (n = 1, 2, 3, · · ·), where a 0 is the Bohr radius and R H is the Rydberg constant. Without the adaptation of any other fundamental principles of quantum mechanics, we present a reasonable explanation of the polarization of photon, selection rules and Pauli exclusion principle. Our results also reveal an essential connection between electron spin and the intrinsic helical movement of electrons and indicate that the spin itself is the effect of quantum confinement. Keywords: Bohr atom, chirality, LC oscillator. INTRODUCTION No one doubt that twentieth century is the century of quantum theory [1-10]. After 100 years of development quantum physics is no longer just a field, it is the bedrock 1 of all of modern physics. Although the modern quantum theory has provided a beautiful and consistent theory for describing the myriad baffling microphenomena which had previously defied explanation [3], one should not neglect a curious fact that quantum mechanics Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] 24 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: New interpretation of the atomic spectra of the hydrogen atom: a mixed mechanism of classical lc circuits… never take into account the deep structures of atoms. In fact, at the heart of quantum mechanics lies only the Schrödinger equation [5], which is the fundamental equation governing the electron. According to quantum theory, it is the electromagnetic interaction (by the exchange of photons) which hold electrons and nuclei together in the atoms. But, up to now, quantum theory never provides a practical model of how electron and nuclei can absorb and emit photons. In this paper, we investigate the energy relationship of electron in the hydrogen atom. Significantly, we find a process of perfect transformation of two forms of energy (kinetic and field energy) inside the atom and the conservation of energy in the system. By applying the principle of wave-particle duality and comparing to known results of the macroscopic harmonic LC oscillator and microscopic photon, we are assured that electron kinetic energy in fact is a kind of magnetic energy and the atom is a natural microscopic LC oscillator. Moreover, the mixed mechanism (classical LC circuits / quantum wave particle duality) turns out to have remarkably rich and physical properties which can used to describe some important quantum principles and phenomena, for instance, polarization of photon, Zeeman effect, Selection rules, the electron’s mass and spin, zero point energy (ZPE), the Pauli exclusion principle. ENERGY TRANSFORMATION AND CONVERSION IN HYDROGEN ATOM Classically, as shown in figure 1, the hydrogen atom consists of one electron in orbit around one proton with the electron being held in place via the electric Coulomb force. Equation of motion is e 2 2 4πε 0 r 2 = me u r (1) where me is mass of electron. Eq. 1 can be rewritten in the form of kinetic energy Ek and field energy Ef (stored in the capacitor of hydrogen atom) as follows: 2 e 1 = m u2 2Cr 2 e (2) u -e me r +e Cr=4πε0r Figure 1. The diagram illustrating the hydrogen atom. where Cr =4πε0 r is the capacitance of the hydrogen system. Thus the total energy of the hydrogen system is given by Ttotal = 1 e2 e2 me u 2 − = 2 4πε 0 r 2Cr (3) It should be pointed out that Eq. 2 and 3 are the foundation of our study. These two equations together indicate a process of perfect periodically transformation of two 1 forms of energy (kinetic energy Ek = me u 2 and field 2 e2 energy E f = inside the atom and the conservation 2Cr of energy in the system Etotal = E f = Ek (4) Recall the macroscopic harmonic LC oscillator where two Q2 forms of energy, the maximum field energy E f = 0 of 2C the capacitor C (carrying a charge Qo) and the maximum I 02 of the inductor L, are 2L mutually exactly interconvertible ( Etotal = E f = Ek ) with magnetic energy Em = a exchange periodic T = 2π LC . And for a microscopic photon (electromagnetic wave), the maximum field 1 energy E f = ε 0 E02 and the maximum magnetic energy 2 1 2 Em = µ0 H 0 also satisfy Etotal = E f = Ek (See appendix 2 A about E f = − Em ). Based on the above energy relationship for three totally different systems and the requirement of the electromagnetic interaction (by exchanging photon) between electron and nuclei, we assure that the kinetic energy of electron (Eq. 2) is a kind of magnetic energy and the hydrogen atom is a natural microscopic LC oscillator. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 25 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 In 2000, a multinational team of physicists had observed for the first time a process of internal conversion between bound atomic states when the binding energy of the converted electron becomes larger than the nuclear transition energy [11, 12]. This observation indicate that energy can pass resonantly between the nuclear and electronic parts of the atom by a resonant process similar to that which operates between an inductor and a capacitor in an LC circuit. These experimental results can be considered a conclusive evidence of reliability of our LC mechanism. Here raise an important question: how can the electron function as an excellent microscopic inductor? CHIRALITY AND “INDUCTON” OF FREE ELECTRON In 1923, Broglie suggested that all particles, not just photons, have both wave and particle properties [5]. The momentum wavelength relationship for any material particles was given by λ = h / p (5) where λ is called de Broglie wavelength, h is Planck’s constant [1] and p the momentum of the particle. The subsequent experiments established the wave nature of the electron [9, 10]. Eq. 5 implies that, for a particle moving at high speed, the momentum is large and the wavelength is small. In other words, the faster a particle moves, the shorter is its wavelength. Furthermore, it should be noted that any confinement of the studied particle will shorten the λ and help to enhance the so-called quantum confinement effects. As shown in figure 2 (a) and (b), based on Eq. 5 and the demanding that the electron would be a microscopic inductor, we propose that a free electron can move along a helical orbit (the helical pitch is de Broglie wavelength λe) of left-handed or right-handed. In this paper, the corresponding electrons are called “Left-hand” and “Right-hand” electron which are denoted by Chirality Indexes S = 1 and S = −1, respectively. Hence, the electron can now be considered as a periodic-motion quantized inductive particle which is called “inducton” (see figure 2). Moreover, the particle-like kinetic energy of electron can be replaced with a dual magnetic energy carried by a “inducton”. Therefore, we have Ek = 1 1 me u 2 = Le I 2 2 2 (6) where u is the axial velocity of the helical moving electron and Le is the inductance of the quantized “inducton”. Figure 2. A free electron moving along a helical orbit with a helical pitch of de Broglie wavelength λe. The above relation indicates that the mass of electron is associated with an amount of magnetic energy. From figure 2, the electric current, for one de Broglie wavelength, is given by The answer lies in the intrinsic wave-particle duality nature of electron. In our opinion, the wave-particle nature [7] of electron is only a macroscopic behavior of the intrinsic helical motion of electron within its world. 26 I= eu λe (7) From Eq. 7, it is important to note that the electric current should be defined within an integral number of de Broglie Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: New interpretation of the atomic spectra of the hydrogen atom: a mixed mechanism of classical lc circuits… eu (where 2π r r is the electronic orbital radius in the hydrogen atom), which was widely used in the semiclassical Bohr model, may be physically invalid. Collecting Eq. 6 and 7 together, we have the inductance of single “inducton” wavelength. Hence, the electric current I = Le = me λe2 e2 (8) Then the dual nature of electron can be uniquely determined 1 u by Le, the periodic T (or frequency f = = ), the initial T λe phase ϕ0 and the chirality (S = 1 or S = −1). ATOMIC SPECTRA OF HYDROGEN ATOM Quantized radius and energy by the application of helical electron orbit to the hydrogen atom (figure 2), we can explain the stability of the atom but also give a theoretical interpretation of the atomic spectra. Figure 3 shows four possible kinds of stable helical electron orbits in hydrogen atom, and each subgraph corresponds to a electron of different motion manner within the atom. The electrons can be distinguished by the following two aspects. First consider the chirality of electron orbits, as shown in figure 3, the electrons of figure 3(a) and (c) are “Left-hand” labelled by S = 1, while electrons of figure 3(b) and (d) are “Right-hand” labelled by S = −1. Secondly consider the direction of electron orbital magnetic moment µ L, figure 3(a) and (b) show that the µ L are in the Z direction (Up) while (c) and (d) in the −Z direction (Down), the corresponding electrons are labelled by J = 1 and J = −1, respectively, here J is called Magnetic Index. Hence, the electrons of different physical properties become distinguishable, they are Up “Left-hand” (ULH) electron (J = 1, S = 1), Up “Right-hand” (URH) electron (J = 1, S = −1), Down “Left-hand” (DLH) electron (J = −1, S = 1) and Down “Right-hand” (DRH) electron (J = −1, S = −1). As shown in figure 3(a), the helical moving electron around the orbit mean radius r can now be regarded as a quantized “inducton” of λr, thus the hydrogen atom is a natural microscopic LC oscillator. We consider that the physical properties of the hydrogen atom can be uniquely determined by these natural LC parameters. To prove that our theory is valid in explaining the structure of atomic spectra, we study the quantized Figure 3. The quadruple degenerate stable helical electron or-bits in hydrogen atom. orbit radius and the quantized energy of hydrogen atom and make a comparison between our results of LC mechanism and the known results of quantum theory. For the system of λr, the LC parameters of the hydrogen atom is illustrated in figure 3. Then the LC resonant frequency is νr = 1 2π Lr Cr (9) Recall the well-known relationship E=hvr, we have E = hν r = e2 8πε 0 r (10) Combining Eq. 9 and Eq. 10 gives λr = 2h πε 0 r / me e (11) Then the stable electron orbits are determined by 2π r = n , (n = 1, 2, 3 ···), λr (12) where n is called Principal oscillator number. The integer n shows that the orbital allow integer number of “induction” of the de Broglie wavelength λr. From Eq. 11 and Eq. 12, the quantized electron orbit mean radius is given by Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 27 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 rn = ε0 h2 π me e 2 n 2 = a0 n 2 (13) where α0 is the Bohr radius. And the quantized energy is En = − m e4 1 e2 hc = − e2 2 2 = − RH 2 8πε 0 rn n 8ε 0 h n (14) where R H is the Rydberg constant. Surprisingly, the results of Eq. 13 and 14 are in excellent agreement with Bohr model [3]. Besides, taking figure 3 into account, we can conclude that the quantized energies of Eq. 14 are quadruple degenerate. CONCLUDING REMARKS In conclusion, we have found a process of perfect transformation of two forms of energy (kinetic and field energy) inside the hydrogen atom and the conservation of energy in the system. Then, we have shown that the helical moving electron can be regarded as a inductive particle (“inducton”) while atom is regarded as a microscopic LC oscillator, then the indeterministic quantum phenomena can be well explained by the deterministic classical theory. For a microscopic photon (electromagnetic wave), the 1 maximum field energy E f = ε 0 E02 and the maximum 2 1 2 magnetic energy Em = µ0 H 0 are connected so E = iH 2 (see equation (A11) of appendix A). The vector Poyting vanishes and the Hydrogen atom does no radiate and it is stable. In particular, with this approach we can show another phenomena such how a pairing Pauli electron can move closely and steadily in a DNA-like double helical electron orbit. Moreover, we can have pointed out that the mass of electron, the ZPE and what has been called the intrinsic “electron spin” are all really the quantum confinement effects of the intrinsic chirality of the electron of helical motion. We have shown that the quantum mechanism is nothing but an electromagnetic theory (with the radius of the helical orbit re → 0 ) of the LC/wave-particle duality mixed mechanism. Our mixed mechanics force us to rethink the nature and the nature of physical world. We believe all elementary particles, similar to photon and electron, are only some different types of energy representation. 28 Though, the standard quantum mechanics nature is intrinsically probabilistic, permitting only predictions about probabilities of the occurrence of an event. Nevertheless, one century after its birth, it still presents many unclarified issues at its very foundations. Starting from an Einstein’s work [13], many attempts have been devoted to build a deterministic theory reproducing all the results of quantum mechanics. The latter include the de Broglie-Bohm’s hidden variable theory, the most successful attempt in this sense [14]. Recently, a first experimental test of de Broglie-Bohm theory against standard quantum mechanics was reported [15]. In our study, it has been shown definitely that the electron follows a perfectly defined trajectory in its motion, which confirms the de Broglie-Bohm’s prediction. Also in our work, it is found that the known wave-particle duality can be best manifested by showing that the wave motion associated with a electron is just the phenomenon of its complex helical motion in real space. Therefore, the wave-particle duality should lie at the heart of the quantum universe. We are now more and more convinced that the universe was built in the simplest manner and all things in it are unique and definitive. As Albert Einstein one said, “God does not play dice with the universe”. Of course, a more clear understanding of microscopic world is still of the greatest challenge. APPENDIX A It is generally believed that in transverse electromagnetic waves electric field E and magnetic field B are always perpendicular to each other. In this Letter we show that, however, a general class of transverse electromagnetic waves with E||B exists in a chiral media. We show how to obtain these waves in general and give example in vacuum and plasma . All these waves carry magnetic helicity. In a cold collision less chiro-plasma, the magnetostatic mode [16, 17] of this class becomes the more familiar force-free field ∇ × B = k B, k = k0 2 + µT where T is the chiral parameter. We consider transverse electromagnetic waves in a uniform medium. These transverse waves can be described by B = ∇ × F, (A1) E=− 1 ∂F , c ∂t (A2) Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: New interpretation of the atomic spectra of the hydrogen atom: a mixed mechanism of classical lc circuits… in which the vector potential F satisfies ∇⋅ F=0 and the wave equation ∇×∇×F+ 1 ∂2F 4π = ( j + β∇ × J ) c c 2 ∂t 2 E = (ω A / c) sin k0 z , cos k0 z , 0 sin ω t , and j = σ ⋅ E, (A4) where σ is the conductivity tensor operator of the medium under consideration, After Fourier analysis in time, we have F = A sin k0 z , cos k0 z , 0 cos ω t , (A3) Here ( ) ∇ × ∇ × F − ω 2 / c 2 K (ω ) ⋅ F = 0 ) ( ) ( ) ( B = k0 A sin k0 z , cos k0 z , 0 cos ω t . This solution corresponds to two circularly polarized waves [16] propagating opposite to each other in such a way that their Poynting vectors are cancelled out, so (A5) E = icB = iηH (A10) with the dielectric tensor K (ω ) = I − 4πσ (ω ) / iω . (A6) For simplicity, we consider only cases where K (ω ) is independent of wavelength. We first look at the Hydrogen atom in vacuum σ=0, T= ω /c and j + β ∇ × J = 0 and Eq (A3) becomes (∇2 + k02 ) Fk = 0 (A7) with ω 2 = k 2c 2 . This waves equation allows the well 0 known linear polarized plane waves with E B F [18]. For every solution of Eq. (A5), it is straightforward to show that Fk = A k -1 + k 0 ∇x A k (A8) satisfies not only Eq. (A5) but also ∇ × Fk = k Fk . Therefore, a single helical photon with energy ω carries a magnetic helicity of hc, and ACKNOWLEDGEMENT The author would like to thank to Instituto de Alta Investigación (IAI) for the support of this work. REFERENCES [1] M. Planck. Ann. Phys. Vol. 1, p. 69. 1900. [2] A. Einstein. Ann. Phys. Vol. 17, p. 132. 1905. [3] N. Bohr, Phil. Mag. Vol. 26, p. 576. 1913. [4] O. Stern, Z. Phys. Vol. 2, p. 49. 1920. [5] E. Schrodinger. Ann. Phys. Vol. 79, p. 361. 1923. [6] L. de Broglie, Phil. Mag. Vol. 47, p. 446. 1924. [7] W. Pauli. Z. Phys. Vol. 31, p. 373. 1924. [8] W. Heisenberg Z. Phys. Vol. 43, p. 172. 1927. (A9) For those vector potentials F,Tk0 = 1 satisfying Eq. (A7), the electric field E and magnetic field B are parallel to each other and both are perpendicular to the vector k0. Therefore, for every plane wave solution, a wave solution with E B can be constructed with k = k0 ( 0, 0, 1) , so 1 1 E f = E E = ε 0 E02 = − µ0 H o2 = E H = Em (A11) 2 2 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 29 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 [9] G.P. Thomson, Proc. Roy. Soc. Vol. 117, p. 600. 1928. [10] C.N. Yang, Selection Rules for the Dematerialization of a Particle into Two Photons, Phys. Rev. Vol. 77, pp. 242-245. 1950. [11] T. Carreyre. Phys. Rev. C 62. 2000. [12] S. Kishimoto. Phys. Rev. Lett. Vol. 85, p. 1831. 2000. [13] F. Reines and W. H. Sobel. “Test of the Pauli Exclusion Principle for Atomic Electrons”. Phys. Rev. Lett. Vol. 32, p. 954. 1974. 30 [14] D. Bohm. Phys. Rev. Vol. 85, p. 166. 1952. [15] G. Brida. J. Phys. B 35, p. 4751. 2002. [16] C. Chu and T. Ohkawa. Phys Rev. Lett. 48, p. 837. 1982. [17] H. Torres-Silva. “Chiro-plasma surface waves”. A. Priou et al editors: Advances in Complex Electromagnetics Materials, Kruwer Academic Pub. Vol. 28, pp. 249-258. 1997. [18] H. Torres-Silva. Pramana Journal of Physics. Vol. 48, p. 67. 1997. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, pp. 31-35 H. Torres-Silva: Maxwell’s theory with chiral currents MAXWELL’S THEORY WITH CHIRAL CURRENTS TEORÍA DE MAXWELL CON CORRIENTES QUIRALES H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 28 de noviembre de 2007 Received: September 5, 2007 Accepted: November 28, 2007 RESUMEN El contenido de energía y momento de un campo electromagnético puede ser expresado enteramente, en términos de los campos a través del tensor energía momento, sin mención de las fuentes que crean los campos. Este tensor es definido introduciendo corrientes quirales. En el caso de sin fuerza se tiene T 00 = 0 y E x B = 0. Este método permite una muy simétrica derivación del contenido de energía y momento de los campos con E||B. Esta configuración es esencial para la unificación del electromagnetismo y la gravedad, obteniendo una configuración de fuerza cero para el electrón. Para obtener esta unificación se discute la geometrización de Rainich bajo condiciones quirales. Palabras clave: Corrientes quirales, geometrización de Rainich, tensor energía momento, unificación. ABSTRACT The energy and momentum content of an electromagnetic field can be expressed entirely in terms of the fields through the energy-momentum tensor with no mention of the sources creating the fields. This tensor is defined such that chiral currents are introduced. In the case of free force we have T 00 = 0 and E x B = 0. This approach allows for a very symmetric derivation of the energy and momentum content of the fields with E||B. This configuration is essential to the unification of electromagnetism and gravity, obtaining a force-free configuration for the electron. To obtain this unification the Rainich geometrization under chiral conditions is discussed. Keywords: Chiral currents, Rainich geometrization, energy-momentum tensor, unification. INTRODUCTION Although it’s existence in this region of the universe has yet to be confirmed, magnetic charge has a strong theoretical and pedagogical history from Gilbert’s initial magnetic theory to present day unified theories. Maxwell’s equations for electromagnetic theory have source terms for electric charges and currents, but none for their magnetic counterparts. This, of course, reflects the experimental fact that magnetic monopoles have never been discovered [1]. Students however, should not be sheltered from the possible existence of magnetic monopoles. For example, grand unified theories, by definition, admit the existence of magnetic monopoles, and their absence represents a challenge for particle physicists and cosmologists alike [2]. 1 Probably the most famous theoretical use of magnetic monopoles is the Dirac quantization condition [3]. The absence of magnetic source terms from Maxwell’s equations allows the introduction of the electromagnetic potential, which takes on a fundamental role in the quantum theory of electrodynamics. Dirac’s argument then proceeds by requiring the potential to be well defined even in a theory with magnetic monopoles, leading to the quantization of the product of the fundamental electric and magnetic charges. The classical theory of electromagnetism can be formulated using the fields themselves as the fundamental objects and there is no need to invoke the potential formalism. This then leaves the obvious lack of symmetry between the dynamical and non dynamical Maxwell equations Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 31 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 ) that can naturally be filled by postulating the existence of magnetic source terms, thus making all of Maxwell’s equations dynamical [4, 5]. Where Jeµ = ( cρe , Je is the chiral electric 4-current. The electric continuity equation follows from the antisymmetry of Fµv. This short note is intended to show a symmetric derivation of the electromagnetic energy-momentum tensor from the Lorentz force law and Maxwell’s equations, extended to include chiral magnetic as well as chiral electric source terms. The second pair of Maxwell’s equations can be written in 4-vector notation by defining the pseudotensor F µν , the dual of Fµv In section 2 we briefly review Maxwell’s theory of electromagnetism with both electric and magnetic charges and currents displaying it’s full theoretical symmetry. The energy momentum tensor is defined in section 3 and it’s usual form is shown to follow naturally from a theory with both electric and magnetic chiral currents. In section 4, we give the Rainich geometrization under chiral conditions. We close with some discussion of our derivation in connection with unification of electromagnetism and gravity. We will use Gaussian units and a diagonal space-time metric gµv with − g 00 = g11 = g 22 = g33 = 1. Greek indices will take the values 0 through 3 and Roman indices 1 through 3. MAXWELL’S THEORY WITH CHIRAL ELECTRIC AND MAGNETIC CURRENT The equations of electrodynamics can be extended to include chiral magnetic and electric current into Ampère’s law and Faraday’s law respectively. I will use the subscripts e and m to distinguish between the electric and magnetic charges and currents. In 3-vector notation Maxwell’s equations for the case of chiral approach [9] without charges and monopoles (ρe, Je, ρm, Jm = 0 ) are: ∇⋅ E = 0 1 ∂E imc ∇×B− =− E c ∂t ∇⋅B = 0 ∇×E+ 1 ∂B imc = B c ∂t (1a) (1b) (1c) (1d) The Lorentz invariance of the theory can be made manifest by combining the fields into the usual electromagnetic field tensor Fµv F µν = − F νµ , F 0 i = Ei , F ij = ε ijk Bk 32 ∂F µν ∂x ν = imc µ 4π µ J =− E c e e (2) (3) εµvαβ is the completely antisymmetric pseudotensor, = +1 ~,1 or 0, if αβµν is an even, odd, or no, permutation of 0123. Equations (1c) and (1d) then read: ∂F µν ∂x ν = µ W here Jm = ( cρm , Jm 4-current. 4π µ imc µ J = B c m m ) (4) is t he ch i ra l mag net ic Thus the specification of the divergence of an antisymmetric tensor and the divergence of it’s dual completely determines the tensor (and hence in this case, the fields) is a generalization of Helmholtz’s theorem to four dimensional space time [8], the divergence of the dual playing the role of the curl. The Lorentz force per unit volume on an assembly of charges is given by: fµ = ) ( 1 J F µν + Jmν F µν c eν (5) Before we dive into the derivation of the full energymomentum tensor, we will take a moment to derive Poynting’s theorem from (5) using 3-vector notation. The ’zeroth’ component of (5) is: cf 0 = J e ⋅ E + J m ⋅ B which is the work done by the fields on the charges per unit volume per unit time. Using (1b) and (1d) to eliminate the currents leads to: (εijk is the totally antisymmetric Levi-Civita symbol.) The first pair of Maxwell’s equations (1a) and (1b) then become 1 F µν = ε αβµν Fαβ 2 ( ) c ∂ c cf 0 = −∇ ⋅ E × B − E 2 + B2 4π ∂t 8π which has the interpretation of: the energy per unit volume per unit time gained by the charges is equal to the energy lost by the fields through the divergence of the Poynting vector and the time rate of change of the energy density. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Maxwell’s theory with chiral currents Note that the electric and magnetic currents were treated on equal footing, as were equations (1b) and (1d). We now turn to the derivation of the full energy-momentum tensor. We will use 4-vector notation, which may hide some of the details. If so, the reader is encouraged to mimic the above calculation using the 3-vector part of (5) to derive the Maxwell stress tensor. THE ENERGY-MOMENTUM TENSOR fµ ≡ ∂T µν ∂x ν (6) In this note, however, I wish to emphasize the fact that, with the introduction of magnetic source terms, each of Maxwell’s equations is treated on equal footing, and the symmetric form for T µv follows naturally. In a theory with no magnetic charges only the first term in equation (5) exists, and Maxwell’s dynamical equations (2) are used to write the source terms in terms of the derivatives of the fields. The remaining Maxwell equations (4) are then only used as no more than mathematical relations during the derivation. If magnetic charges are admitted to the theory the electric and magnetic source terms are removed from the Lorentz force law (5) using Maxwell’s equations (2) and (4), giving fµ = − g ργ gσδ g µα − g ρδ gσα g µγ − g ρα gσγ g µδ ) gives µ 1 µ ∂F βα ∂F β βα 1 αµ γδ ∂Fγδ + α F + g F f = F 4π β ∂x α 2 ∂x α ∂x µ which can then be written as a total divergence A frequent approach to defining the energy-momentum tensor for the electromagnetic field is to generalize the definition of the Hamiltonian density to a covariant form [7]. This leads to what is called the canonical energymomentum tensor. This has a number of draw backs for our current purpose. Firstly, the Hamiltonian approach requires the definition of the potential, which we do not wish to make and secondly, the canonical form is not symmetric (nor gauge invariant). An alternate method [8], and the approach taken here, of determining the energy-momentum tensor T µv, is to define it such that the Lorentz force per unit volume (5) is the 4-divergence of the energy-momentum tensor ( gνβ ε ρσµν ε γδαβ = − g ρδ gσγ g µα + g ργ gσα g µδ + g ρα gσδ g µγ − 1 µ ∂F βα µ ∂F βα + Fβ F 4π β ∂x α ∂x α Substituting in the definition of the dual field tensor (3) and using the identity fµ = 1 ∂ µ βα 1 αµ γδ F F + g F Fγδ 4π ∂x α β 4 By comparing this with (6), the symmetric energymomentum tensor is obtained T αµ = 1 µ βα 1 αµ γδ F F + g F Fγδ 4π β 4 This ends the calculation, but it is instructive to write out the components of this tensor in the more familiar 3-vector forms whose physical interpretation are given by integrating (6): Energy density: −T 00 = ( 1 E 2 + B2 8π 0i i0 Poynting vector: −cT = −cT = ) c (E × B 4π )i Maxwell stress tensor: T ij = T ji = ( ) 1 1 Ei E j + Bi B j − δ ij E 2 + B 2 4π 2 In the special case where E=iB, we have –T 00 = 0 and c −cT 0 i = −cT i 0 = (E × B i = 0 . 4π ) THE RAINICH GEOMETRIZATION UNDER CHIRAL CONDITIONS In the literature, the algebraic Rainich conditions are obtained using special methods as spinors, duality rotations, eigenvalue problem for certain 4 x 4 matrices or artificial tensors of 4th order. Here we show an elementary procedure for to deduce an identity satisfied by determined class of second order tensors in arbitrary R4, from which the Rainich expressions are immediate. This result is applied to chiral conditions. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 33 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Rainich [10-15] proposed a unified field theory for the geometrization of the electromagnetic field, whose basic relations can be obtained from the Einstein-Maxwell field equations under the Einstein notation: Gµν = Rµν − Tµν = 1 Rg = Tµν 2 µν 1 g F F στ − Fµσ Fντ g σς 4 µν στ (7) If in (1) we contract µ with ν we find that: R = 0 the Maxwell mixed tensor is T µν Maxwell ≡ − (8) 1 Rµν = − gµν Fστ F στ + Fµσ Fντ gσς 4 (9) Rµτ Rντ = 1 ( R R ab ) gµν 4 ab If Fστ is known, then (9) is an equation for gµv and our situation belongs to general relativity. The Rainich theory represents the inverse process: To search a solution of (8) and (10) (plus certain differential restrictions), and after with (9) to construct the corresponding electromagnetic field; from this point of view Fστ is a consequence of the space time geometry. The essence of the chiral argument advanced here is that real world-space is not euclidean and that space is generally curved into the time dimension, consistent with the theory of general relativity. The curvature may not be sufficient to become obvious in a local context. However, it is sufficient to break the time-reversal symmetry that seems to characterize the laws of physics. Not only does it cause perpetual time with respect to all mass, but actually identifies a fixed direction for this It creates an arrow of time and thereby eliminates an inconsistency in the logic of physics: how reversible microscopic laws can underpin an irreversible macroscopic world. General curvature of space breaks the time-reversal symmetry and produces chiral space, manifest in the right-hand force rule of electromagnetism. The presence 34 uσ 1 µ τσ F Fνσ − 4 δ ν F Fτσ (11a) 1 uσ F Fνσ + * F uσ * Fνσ 8π (11b) with iF uσ = * F uσ and iFνσ = * Fνσ . In this case we have T µv Maxwell = 0, then equation (4) is Rµτ Rντ = (10) 1 4π T µν Maxwell ≡ − used by several authors [10-15] to show the identity: ∂Fνσ ∂F ∂ * Fνσ = 0 , νσ = =0 ∂xσ ∂xσ ∂xσ with, µ , σ = 4, Fνσ = * Fνσ and ∂ / ∂t → ∂ / ∂t (1 + T ∇×) , then (1) adopts the form: The fact that most other fundamental laws of physics do not refers the chirality of space, nor the arrow of time, confirms that the curvature on a local scale is barely detectable. Now under chiral conditions where Rµv, R = Rµµ and Fµσ are the Ricci tensor, scalar curvature and Faraday tensor [10], respectively. of matter causes space to curl up and curvature of space generates matter. 1 1 ( Rab R ab ) gµν ⇔ Fµτ Fντ = ( Fab F ab ) gµν (12) 4 4 Only in this case we have a complete unification, ie, a unified field theory between the gravity and the electromagnetism DISCUSSION The energy and momentum content of an electromagnetic field can be expressed entirely in terms of the fields through the energy-momentum tensor with no mention of the sources creating the fields. This tensor is defined such that it’s divergence gives the Lorentz force. That is, any change in the energy and momentum of a charge distribution is given by the (negative of the) change in the energy and momentum of the fields. In the case of free force we have T 00 = 0 and E x B = 0. Here there is no existence of magnetic charges, because they have never been found in nature. This approach allows for a very symmetric derivation of the energy and momentum content of the fields with E||B. This configuration is essential to the unification of electromagnetism and gravity, obtaining a force free configuration for the electron [16]. To obtain this unification, the Rainich geometrization under chiral conditions is discussed. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Maxwell’s theory with chiral currents REFERENCES [1] [2] [3] [8] M.A. Heald and J.B. Ma r ion. Classical Electromagnetic Radiation. 3rd ed. Section 14.12. Saunders College Publishing. Fort Worth. 1995. [9] H. Torres-Silva and M. Zamorano Lucero. “Chiral electrodynamic”. URLs: http://www.chiral.cl A.S. Goldhaber and W.P. Trower. “Resource letter MM-1: Magnetic monopoles”. Am. J. Phys. Vol. 58, pp. 429-439. 1990. [10] G.Y. Rainich. Electrodynamics in the general relativity theory. Trans. Amer. Math. Soc. Vol. 27, p. 106. 1925. P.A.M. Dirac. “Quantized singularities in the electromagnetic field”. Proc. R. Soc. London A133, pp. 60-72. 1931. [11] C.W. Misner and J.A. Wheeler. Classical Physics as geometry. Ann. Phys. Vol. 2, p. 525. 1957. [12] J. López-Bonilla, G. Ovando and J. Rivera. Intrinsic geometry of curves and the Bonnor’s equation, Proc. Indian Acad. Sci. Math. Sci. Vol. 107, p. 43. 1997. [13] L. Witten. Geometry of gravitation and electromagnetism, Phys. Rev. Vol. 115, p. 206. 1959. [14] D. Lovelock. The algebraic Rainich conditions. Gen. Rel. Grav. Vol. 4, p. 149. 1973. B. Cabrera. “First results from a superconductive device for moving magnetic monopoles”. Phys. Rev. Lett. Vol. 48, pp. 1378-1380. 1982. [4] J.A. Heras. “Jefimenko’s, Formulas with Magnetic Monopoles and the Liénard-Wiechert Fields of a Dual-Charged Particle”. Am. J. Phys. Vol. 62, pp. 525-531. 1994. [5] W.B. Zeleny. “Symmetry in electrodynamics: A classical approach to magnetic monopoles”. Am. J. Phys. Vol. 59, pp. 412-415. 1991. [6] D.H. Kobe. “Helmholtz theorem for antisymmetric second-rank tensor fields and electromagnetism with magnetic monopoles”. Am. J. Phys. Vol. 52, pp. 354-358. 1984. [15] R. Penney. Duality invariance and Riemannian geometry. J. Math. Phys. Vol. 5, p. 1431. 1964. [16] [7] J.D. Jackson. Classical Electrodynamics. 3rd ed., Section 12.10. John Wiley & Sons. New York. 1999. H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 35 Ingeniare. Revista chilena de ingeniería, vol. 16 vol. 16 Nº 1, Nº 1, 2008, 2008 pp. 36-42 CHIRAL FIELD IDEAS FOR A THEORY OF MATTER IDEAS DE CAMPO QUIRAL PARA UNA TEORÍA DE LA MATERIA H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 12 de diciembre de 2007 Received: September 5, 2007 Accepted: December 12, 2007 RESUMEN En este trabajo, para el desarrollo de una teoría unificada de campos electromagnéticos y gravitacionales se usa un método quiral. Los fotones que satisfacen las ecuaciones de Maxwell, para una onda electromagnética se consideran como componentes físicos básicos. El objetivo de esta teoría es unificar el fenómeno de la invarianza relativística, mecánica de onda y la creación del par electrón positrón, con las ecuaciones de Maxwell, para obtener una teoría de la materia totalmente electromagnética. Considerando esta teoría se discuten algunos aspectos de los sistemas GPS (Global Positioning Systems). Palabras clave: Potencial quiral, teoría de la materia, onda-partícula. ABSTRACT In this paper, a chiral approach is used for developing a unified theory of electromagnetic and gravity fields. The photons which satisfy Maxwell’s equations for an electromagnetic wave are taken as the basic physical components. The goal of the theory is to unify the phenomena of relativistic invariance, wave mechanics and pair creation with Maxwell’s equation to obtain an electromagnetic field theory of matter. With this theory some aspects of GPS (Global Positioning Systems) systems are discussed. Keywords: Chiral potential, matter theory, wave-particle. INTRODUCTION A chiral approach is suggested for developing a unified theory of electromagnetic and gravity fields. Photons which satisfy Maxwell’s equations for an electromagnetic wave are taken as the basic physical component. The extent of the photon in its direction of travel permits a part of the photon to modify the geodetic of another part. A photon with a self disturbed orbit, for which a centroid can be defined, has the key property by which matter differs from light. Matter has a speed which is less than that of light. The centroid of the orbit has a speed which is less than the speed of the photon which travels with the speed of light. We refer to this chiral approach as the electromagnetic field theory of matter. Chiral approach means that our Universe is observable area of basic space-time where temporal coordinate is positive and all particles bear positive masses (energies). The mirror Universe is an area of the basic space-time, where from viewpoint of regular observer temporal coordinate is negative and all particles bear negative masses. Also, from viewpoint of our-world observer the mirror Universe is a world with reverse flow of time, where particles travel from future into past in respect to us. The two worlds are separated with the membrane - an area of space-time inhabited by light-like particles that travel along light-like right or left-handed (isotropic-chiral) spirals. The goal of the theory is to unify the phenomena of relativistic invariance, wave mechanics and pair creation with Maxwell’s equation for electromagnetic waves. Section 2 enumerates advantages of an electromagnetic field theory of matter. Section 3 considers how the de Broglie relation and the Schrodinger equation might be derived from Maxwell’s wave equation. Section 4 treats the relation between electromagnetic and inertial energy. Section 5 comments on parity failure in weak interactions. Appendix A derives an application on GPS satellites using chiral potential. 1 Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] 36 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral field ideas for a theory of matter ADVANTAGES OF AN ELECTROMAGNETIC FIELD THEORY OF MATTER An electromagnetic field theory should not be confused with an electric charge theory of matter which is not relativistically invariant [1]. An electromagnetic field, however, is relativistically invariant from the start. One simplicity is that special relativity is not a separate hypothesis. The Lorentz contraction of electromagnetic fields was realised before special relativity. If matter is composed only of electromagnetic fields then matter is automatically Lorentz invariant. In particular, matter cannot exceed the speed of light. Another area of simplicity is pair creation where two electromagnetic fields (photons) produce an electron and a positron. If the particles are electromagnetic fields, then pair creation is like the transformation of electromagnetic field from one state of motion to another. We suggest since masses are unique that this should be thought of as the construction of a quantized state of the EM wave (i.e. standing wave a de Broglie type phase relation) [2]. The distinction between matter and antimatter would then be sought as a natural law of conservation of a property inherent in the separate initial photon and divided between the particles. Such a difference is inherent the photon polarization. For example, the photons can have rightand left-handedness. It should be further noted that a fast electron is like an EM wave having a transverse EM field with equal electric magnetic field energies. Also the momentum of fast particles, like EM waves, is the energy divided by c. The uncertainty principle of quantum mechanics would also be more consistent with an electromagnetic theory of matter. That is, particles which have an inherent wave nature would be expected and not a surprise. Also, quantized absorption of EM energy would not be viewed as a charge accelerated by an electric field but a merging of two EM waves. The merged EM fields would have the required frequency and wavelength to be the quantized wave of the electron in the final state. The appearance of the fine structure constant, α = e2 /hc, in the ratio of the masses of fundamental particles would be expected and not a coincidence as in the ratio of the mass of the π meson and the electron. The development of an EM field theory of matter requires the accomplishment of at least two objectives, namely (i) predict the Coulomb force between electron and positron (etc.), and (ii) derive the Schrodinger equation from Maxwell’s equation for an electromagnetic wave. We suggest approaches to these objectives in the next sections. DERIVATION OF THE PARTICLE WAVELENGTH FROM CHIRAL POTENTIAL WAVES We start with the potential vector equation. Assuming ejwot time dependence, Maxwell’s time-harmonic equations [2] for isotropic, homogeneous, linear media (without charges) are ∇ × E = − jω 0 B (1) ∇ × H = jω 0 D (2) ∇•B = 0 (3) ∇•D = 0 (4) Chirality is introduced into the theory by defining the following constitutive relations to describe the isotropic chiral medium [3] D = ε E + εT ∇ × E (5) B = µ H + µ∇ × H (6) Where the chirality factor indicates the degree of chirality of the medium, and the ε y µ are permittivity and permeability of the chiral medium, respectively. Since D and E are polar vectors and B and H are axial vectors, it follows that ε and µ are true scalars and T is a pseudo scalar factor. This means that when the axes of a righthanded Cartesian coordinate system are reversed to form a left-handed Cartesian coordinate system, T changes in sign whereas ε and µ remain unchanged. Since ∇•B = 0 always, this conditions will hold identically if B is expressed as the curl of a vector potential A since the divergence of the curl of a vector is identically zero. Thus B=∇× A (7) And A must be perpendicular to both ∇ and B and lie in ∇ and ∇ x B plane. However, A is not unique since only its components perpendicular to ∇ contribute to the cross product. Therefore, ∇ • A, the component of Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 37 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 A parallel to ∇, must be specified. The curl equation for E, as in Equation, and Equation give ∇ x (E + jwA) = 0 where the quantity in parentheses should be parallel to ∇ and the curl of the gradient of a scalar function φ is identically zero; so the general integral of the above equation is E + jω 0 A = −∇φ Let xˆ ∇ × A = ik x Ax Ay zˆ ik z Az = xˆ (−ik cos θ Ay ) − (8) − yˆ (ik sin θ Az − ik cos θ Ax ) + zˆ(ik sin θ Ay ) Substituting Equation into Equation we obtain yˆ 0 (13) so equation (12) is expressed as ∇ × A = µ H + µT ∇ × H = B (9) Substituting Equation and Equation into Equation gives ∇ × ∇ × A+ j ω 0 µεT 1 − ko2T 2 ∇×E = j ω 0 µε 1 − ko2T 2 E− ω 0 2 µεT 1 − ko2T 2 ∇2 A + +2 k A+ 1− k T 2 ω 02 µε T ω 02 µε T φ j A A ∇ × = ∇ ∇ − • ( ) 1 − k02T 2 1 − k02T 2 B, ∇•A = j ω 0 µεφ 1 − k02T 2 (10) (11) And eliminate the term in parentheses. Then Equation will be simplified to ∇2 A + k02 1 − k02T 2 A+ 2 ω 02 µε T 1 − ko2T 2 (∇ × A) = 0 (12) − k (1 − k02T 2 ) + k02 2ik02 kT sin θ 0 A x Ay = 0 Az −2ik02 kT cos θ − k 2 (1 − k02T 2 ) + k02 k 2 (1 − k02T 2 ) = k02 = ω 02 / c 2 ⇒ k = ± k0 / 1 − k02T 2 (14) {− k (1 − k T ) + k )} 2 2 0 2 2 0 ⇒ k = k0 / (1 ± k0 T ) 2 − 4 k02T 2 (sin 2 θ + cos2 θ ) = 0 (15) for the transverse fields. Our approach to deriving the Schrodinger equation from Maxwell’s equation starts with the assumption that an electron is an electromagnetic ware travelling in a circular orbit in the observer’s rest frame. We suggest that the orbit is a geodetic in a space-time curved by the photon’s own electromagnetic energy. We note that the model of the self- trapped wave must look like an electron to observers in all inertial frames. The observer at rest only sees the static Coulomb field. The moving observer, with speed u, sees (i) some magnetic field from the current associated with the charged particle, and (ii ) (the wave-motion of the particle with a wavelength λm = h/mu. For the observer whose speed relative to the circulating photon approaches the velocity of light, the photon appears as a photon. This is appropriate since the electric and magnetic fields of a fast electron become transverse as its speed approaches c. From equation (14), where k = ± k0 / 1 − k02T 2 , if we The solution of the potential vector equation can be solved as follows: 38 2 for the longitudinal field, and Here ∇ • A is arbitrary, so in order to specify ∇ • A, for unique A, we may define a chiral Lorentz gauge −2ik02 kT cos θ The solution of the determinant is with k0T = w0T/c. Placing the value of ∇xE from equation into the above equation, using the vector identity ∇ x ∇ x A = ∇ (∇ • A) – ∇2 A and equation (8) enables us to write the above equation as 2 0 2 0 − k 2 (1 − k 2T 2 ) + k 2 0 0 2ik02 kT cos θ 0 make k = w/c, k0T = w0 T/c ≡ u/c then particle momentum is consistent with the photon model. The observer with Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral field ideas for a theory of matter speed u in the usual theory of special relativity notes that the electron has energy [3]. E= m0 c 2 1− β2 (16) p= m0 u 1− β2 (17) From equations (16) and (17) as v approaches c and the rest mass becomes a small part of the energy p≈E /c We will try to illustrate how the photon frequency can lead to the appropriate particle wavelength for all inertial observers. For the observer at rest with respect to the circulating photon. The field appears static, the period is infinite, the frequency is zero, and the wavelength infinite. At high speed we will show that the photon’s wavelength in the observer’s frame is consistent with the quantum mechanical expression for the corresponding particle. We relate the photon energy hv0 to the rest mass of the electron m 0 using the special relativity relation E=mc 2, by. hν 0 = m0 c 2 = ω 0 (19) and inverting equation (19) h / m0 c = c / v = λ 0 (20) In the limit of u → c the matter wavelength is the wavelength associated with the photon reduced by the usual special relativity Lorentz contraction factor 1− β2 . Then using equations (20), (19) and (16) in order we obtain λm = λ0 1 − β 2 = c / ν 0 1 − β 2 = h hc 2 hc = ≈ p Eν E p= (22) hc mc 2 = hc (21) E hν u c2 (23) 2 2 2 where hν = E = mc = m0 c / 1 − β . Def ining a wavelength related to the particle (18) In special relativity the frequency transforms as the energy and this is the correct expression for the momentum of a photon. The momentum of a photon in the rest frame is effectively zero because the geodetic closes on itself. λm = More generally, for any value of u from equations (19) and (21) where β = u/c = w0T/c, and momentum This result is the same as obtained from the theory of the electron for v - c using Equation (17) λm = h c2 c c 1− β2 = = λ = λ0 p uν u u (24) In terms of frequencies from equation (24) νm = ν u c (25) We interpret this result as follows. The electron has intrinsically the frequency of its parent photon. The observer going by at the speed of light sees the circulating wave stretched out to its limit and associates the full frequency, v, with the particle frequency. The observer moving more slowly passes the nodes in the EM wave more slowly and interprets this as a lower frequency, vm<v . The observer at rest sees no change and concludes vm=0. These frequencies are consistent with the de Broglie wavelength for matter. The Schrodinger equation describes the wave motion of the centroid of a photon which is a solution of Maxwell’s wave equations in a distorted space time. A word is in order about the problem of interference patterns of scattered electrons such as produced by the diffraction by two slits in a barrier. Margenau [4] considers the difficulties of this problem. He concludes that there are no known interactions that can explain how an electron can go through one slit and be appropriately scattered by the other. An electromagnetic field which acts like a particle, may possible avoid this dilemma by either (i) the electric and magnetic field goings partly through each slit, or (ii) having a scattering which differs from known interactions because of the fluctuating EM field properties of the Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 39 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 electron such as in our photon model. We think that the second possibility is the correct explanation. RELATION BETWEEN ELECTROMAGNETIC AND INERTIAL ENERGY In this section we relate the photon electromagnetic and the elementary charge electric field energies with the inertial and gravitational energies. When an electron positron pair is created we distinguish two changes in energy: (i) the electromagnetic field energy of the photons is transformed into the electric field of the pair, and (ii) the transformed photon which we recognise as a particle has inertia with respect to the cosmology. By special relativity the inertial energy per unit mass is c2. The inertial mass relates to the electrical energy of the charge by m2 = e2/r. Now a more detailed discussion of the effect of the cosmology on inertia and the gravitational red shift are required to clarify the distinctions between the four types of energy. is the photon energy when it is emitted by an atom or produced as a result of pair annihilation. Now hv; depends on the gravitational potential at the location where it is emitted since for atomic radiation hviαe4 mi / h2 and for pair radiation hvi = mic2. In this way we see that hviαmi, and both depend in the same way on the gravitational potential. This is consistent with general relativity [7]. In particular it agrees with the gravitational red shift. For example, a photon radiated from the sun has energy hvsαms, and the corresponding atom on the earth has the transition energy hveαme; vs is to the red of ve as given by general relativity because the masses are related by me = ms 1 − 2 ∆φ c2 (27) where ∆φ. is the difference in the gravitational potential energy per unit mass. Thus the photon energy hvs has not changed energy during its travel from sun to earth. We assume, following E Mach, that the inertia depends on the cosmology. That is, we take inertial energy equal to the negative of the cosmological gravitational potential. From general relativity, then, we assume This is the justification for the assumption that the photon energy does not change as it moves through the cosmology. m 2 MG u2 mc − = 0 ⇔ k 20T 2 = 2 R c We now return to the relation between the electrical energy and inertial energy and compare both with the photon energy. The subscripts relating to location in the gravity field are retained 2 (26) where M is the total mass of the universe (~1056 gm), R is the radius of the universe (~1028 cm) and G is the gravitational constant (0,67x10-8 dynecm2/gm2) [5-7]. Consequently, in pair creation, the inertial energy gained is cancelled exactly by the loss of gravitational potential energy. We note that equation (11) is independent of m. We have assumed c 2 to be invariant and hence the gravitational potential energy per unit mass must also be independent of location in the cosmology. This is consistent with the assumption that every location in the cosmology senses the expansion of the cosmology in the same way and that there is no distinguished location in the cosmology. The next important hypothesis is that the photon energy does not change as it moves through the cosmology. This concept must be distinguished from the dependence of frequency on the local gravitational potential. We use a subscript i to correspond to initial value, i.e. hvi 40 hν i = mi c 2 = e 2 / ri (28) and we must subscript the particle radius for consistency. Thus photons which are produced by annihilation can only receate the correct amount of energy where the gravitational potential is the same as at point of origin. The problem can be solved by special relativity. There are four energies with significant differences. A photon can be transformed into an electron and both photon and electron have equal and positive energy. The photon energy does not change as it traverses the cosmology. The particle energy depends on the local cosmological metric. No net gravitational energy is produced by the creation of the particle since the gain of inertial energy is just cancelled by the loss in gravitational energy. As a particle traverses space the inertial energy is always equal to the electrical energy of the particle Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral field ideas for a theory of matter and the inertial energy is always cancelled by the gravity energy. potential (at distance r from the center of the Earth of mass mE). In the case of a photon, we replace m by E/c2, where E = hf is the photon’s energy. PARITY If the photon travels downward in Earth’s gravitational field, it therefore loses potential energy of (hf/c2)∆V and gains an equal amount of kinetic energy h∆f. We thereby deduce that the falling photon is gravitationally blue-shifted by The photon model of the electron has a natural explanation of the failure of reflection symmetry (parity) in weal interactions. Wigner [8] has given a phenomenological discussion of the implication of the C0β decay experiment in which the spin of the β is determined to be opposite to its momentum. He points that the mirror image of an electron is a positron. We invoke the polarization of the photons the electron positron pair. We assume that one particle has righthanded polarization photon and the other a left- handed one. Thus, the particles are mirror images as required. In fact, it is the difference in handedness which distinguishes two charge states. APPENDIX A: RELATIVISTIC EFFECTS ON CLOCKS ABOARD GPS SATELLITES Consider a clock aboard a satellite orbiting the Earth, such as a Global Positioning System (GPS) transmitter. There are two major relativistic influences upon its rate of timekeeping: a special relativistic correction for its orbital speed and a general relativistic correction for its orbital altitude. Both of these effects can be treated at an introductory level, making for an appealing application of relativity to everyday life. First, as observed by an earthbound receiver, the transmitting clock is subject to time dilation due to its orbital speed. From our results of chiral potential, (14), a clock aboard a spaceship traveling at speed u runs slow (compared to a stationary clock) by a factor of [9] u2 u2 1 = 1− 2 = 1− β2 ≈ 1− 2 γ c 2c (A1) provided u << c, as would be the case for a satellite. Thus when one second of proper time elapses, the moving clock loses u2/2c2 = K/E 0 seconds, where K and E 0 are the kinetic and rest energies of the clock, respectively. Second, a clock at the higher gravitational potential of orbit runs faster than a surface clock. The gravitational potential energy of a body of mass m in Earth’s gravity is U = mV, where V = –GmE/r is Earth’s gravitational ∆f = f ∆f c2 (A2) (This expression can also be straightforwardly deduced [10] using the equivalence principle to treat Earth’s downward gravitational field as an upward accelerating frame, and then calculating the Doppler shift in the light between emission high up and observation low down in this moving frame.) If the clock’s ticking is synchronized to a light wave, the orbiting clock will be observed at Earth’s surface to be ticking faster due to this gravitational frequency shift. Therefore, when one second of Earth time elapses, the clock at high altitude gains ∆V/c2 = ∆U/E 0 seconds, where U is the gravitational potential energy of the clock. The sum of the two relativistic effects can be compactly expressed as ∆t K − U = τ E0 (A3) where ∆t is the time lost by the orbiting clock when a time interval τ elapses on the surface-bound clock. Here K–U is the Lagrangian of the orbiting clock where the reference level for the gravitational potential energy is chosen to lie at Earth’s surface. As a concrete example, let’s calculate the size of these two effects for a GPS satellite, located at an altitude of r = 26,580 km, about four times Earth’s radius of rE = 6380 km. From Newton’s second law, we have a= gr 2 F v 2 GmE ⇒ = 2 ⇒ v2 = E m r r r (A4) where Earth’s surface gravitational fieldis g = GmE / rE2 = 9.8 m/s2. Hence the fractional time loss due to the satellite’s orbital speed is −grE2 / 2c 2 per second, or –7.2 µs/day. Meanwhile, the general relativistic fractional time gain due to the satellite’s altitude is Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 41 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 ∆V c2 = rE 1 GmE GmE grE − + = 2 (1 − ) (A5) 2 r rE c r c which works out to be +45.6 µs/day. Notice that the gravitational effect is more than six times larger than the speed effect: the dominant GPS correction is general, not special relativistic! If we instead consider satellites in progressively lower altitude orbits, their speeds will increase according to Eq. (4), while the gravitational potential difference in Eq. (5) will decrease. Eventually we will reach an altitude at which the two corrections exactly cancel, so that the satellite’s clock will run synchronously with an earthbound clock [10, 11]. Section 5 pointed out that the mirror image property of the positron and electron required by the failure of parity conservation in weal interactions can be attributed to the handedness of the photon which are transformed into the electron positron pair. REFERENCES [1] H.A. Lorentz. “The Theory of Electrons”. B.G. Teubner, Leipzig. 1909. [2] H. Torres-Silva. “New interpretation of the atomic spectra of the hydrogen atom: a mixed mechanism of classical LC circuits and quantum wave-particle duality”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 24-30. 2008. [3] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [4] H Margenau. Open Vistas. Yale Univ. Press, New Haven. 1961. [5] N. Salingaros. “Invariants of the electromagnetic field and electromagnetic waves”. Am. J. Phys. Vol. 53, pp. 361. 1985. [6] C.W. Allen. “Astrophysical Quantities”. 3rd ed. Athlone, London. 1973. [7] A. Einstein. “The Meaning of Relativity”. Princeton Univ. Press. Princeton, New Jersey. 1950. [8] M. Gogberashvili, Octonionic version of Dirac equations, International Journal of Modern Physics A. Vol. 21 Nº 17, pp. 3513-3523. 2006. [9] D.C. Giancoli. “Physics for Scientists and Engineers”. 3rd ed. Chap. 37. Prentice Hall, Upper Saddle River, NJ. 2000. [10] N. Ashby. “Relativity and the Global Positioning System”. Phys. Today. Vol. 55, pp. 41-47. May, 2002. [11] S.P. Drake. “The equivalence principle as a stepping stone from special to general relativity”. Am. J. Phys. Vol. 74, pp. 22-25. January 2006. This occurs when u2 2c 2 = ∆V c2 ⇒ grE2 r = grE (1 − E ) ⇒ r = 1.5rE (A6) r 2r i.e., at an altitude of half an Earth radius. SUMMARY An outline has been presented of an electromagnetic field theory for matter. The advantages of the theory are given in section 2. Their seemingly distinct areas of physics see unified with Maxwell’s equation for EM waves. They are relativistic invariance, pair creation, and wave mechanics. Light is relativistically invariant, hence, particles made out of photon are relativistically invariant. If matter is a form of electromagnetic energy, then pair creation is a transformation from energy. If particles are made out of photons they have an intrinsic wave nature and their wave motion is expected. In section 3 we elaborated on how the wave nature of photon, which forms an electron, leads to wave mechanics of the particle. The full frequency is approached as the velocity of the particle, relative to the observer, approaches the velocity of light. In section 4, we gave the relation between the electromagnetic and inertial energy. No energy is added in pair creation: the electromagnetic energy is transformed between photon and particle states. The inertial energy is a property of the particle in the cosmology. The cosmological gravitational potential is the negative of the inertial energy so that these mutually cancel. Therefore, no net inertial plus gravitational energy is required for pair creation. 42 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Ingeniare. H. Torres-Silva: Revista chilena The de close ingeniería, relation vol. 16 between Nº 1, the 2008, Maxwell pp. 43-47 system and the dirac equation when the electric field is parallel to the magnetic field THE CLOSE RELATION BETWEEN THE MAXWELL SYSTEM AND THE DIRAC EQUATION WHEN THE ELECTRIC FIELD IS PARALLEL TO THE MAGNETIC FIELD LA ESTRECHA RELACIÓN ENTRE EL SISTEMA DE MAXWELL Y LA ECUACIÓN DE DIRAC, CUANDO EL CAMPO ELÉCTRICO ES PARALELO AL CAMPO MAGNÉTICO H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 5 de diciembre de 2007 Received: September 5, 2007 Accepted: December 5, 2007 RESUMEN En el presente artículo se propone una simple igualdad que considera el operador de Dirac y los operadores de Maxwell bajo un enfoque quiral. Esta igualdad establece una conexión directa entre las soluciones de los dos sistemas. Además se muestra que es válida cuando una relación muy natural se cumple entre la frecuencia de la onda electromagnética y la energía de la partícula Dirac, si el campo eléctrico E es paralelo al campo magnético H . Este análisis se basa en la forma cuaterniónica de la ecuación de Dirac y la forma cuaterniónica de las ecuaciones de Maxwell. En ambos casos las reformulaciones con cuaterniones son completamente equivalentes a la forma tradicional de los sistemas de Dirac y Maxwell. Esta teoría es una nueva interpretación de la mecánica cuántica. Este trabajo prueba que la mecánica cuántica representa la electrodinámica de ondas quirales curvilíneas cerradas. Esto está enteramente de acuerdo con la moderna interpretación y resultados de la teoría cuántica de campo. Palabras clave: Cuaternión, ecuación de Dirac, Sistema de Maxwell. ABSTRACT In the present article we propose a simple equality involving the Dirac operator and the Maxwell operators from a chiral approach. This equality establishes a direct connection between solutions of the two systems. Moreover, we show that the connection is valid when a fairly natural relationship between the frequency of the electromagnetic wave and the energy of the Dirac particle is fulfilled, if the electric field E is parallel to the magnetic field H . Our analysis is based on the quaternionic form of the Dirac equation and on the quaternionic form of the Maxwell equations. In both cases the quaternionic reformulations are completely equivalent to the traditional form of the Dirac and Maxwell systems. This theory is a new quantum mechanics (QM) interpretation. The research below shows that the QM represents the electrodynamics of the curvilinear closed chiral waves. This concords entirely with the modern interpretation and results of the quantum field theory. Keywords: Quaternion, Dirac equation, Maxwell system. INTRODUCTION The relation between the two most important in mathematical physics first order systems of partial differential equations is among those topics which attract attention because of their general, even philosophical significance but at the same time do not offer much for 1 the solution of particular problems concerning physical models. The Maxwell equations can be represented in a Dirac like form in different ways (e.g., [3, 5, 9]). Solutions of Maxwell’s system can be related to solutions of the Dirac equation through some nonlinear equations (e.g., [11]). Nevertheless, in spite of these significant efforts there remain some important conceptual questions. Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 43 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 For example, what is the meaning of this close relation between the Maxwell system and the Dirac equation and how this relation is connected with the waveparticle dualism. In the present article we propose a simple equality involving the Dirac operator and the Maxwell operators under chiral approach. This equality establishes a direct connection between solutions of the two systems and moreover, we show that it is valid when a quite natural relation between the frequency of the electromagnetic wave and the energy of the Dirac particle is fulfilled when E is parallel to H . Our analysis is based on the quaternionic form of the Dirac equation obtained in [7] and on the quaternionic form of the Maxwell equations proposed in [6] (see also [8]). In both cases the quaternionic reformulations are completely equivalent to the traditional form of the Dirac and Maxwell systems. Chiral approach means that our Universe is observable area of basic space-time where temporal coordinate is positive and all particles bear positive masses (energies). The mirror Universe is an area of the basic space-time, where from viewpoint of regular observer temporal coordinate is negative and all particles bear negative masses. Also, from viewpoint of our-world observer the mirror Universe is a world with reverse flow of time, where particles travel from future into past in respect to us. The two worlds are separated with the membrane — an area of space-time inhabited by light-like particles that travel along light-like right or left-handed (isotropic-chiral) spirals. On the scales of elementary particles such space can be attributed to particles that possess spirality (e. g. photons). The membrane prevents mixing of positive and negative-mass particles and thus their total annihilation. Exchange interactions between the two worlds can be effected through particles with zero relativistic masses (zeroparticles) under physical conditions that exist on surfaces of collapsers in degenerated spacetime (zero-space). The complex imaginary unit i commutes with ik , k = 0, 3 . We will use the vector representation of complex quaternions: q=Sc(q)+Vec(q), where Sc(q) = q 0 and 3 Vec(q) = q = ∑ k =1 qk ik . That is each complex quaternion is a sum of its scalar part and its vector part. Complex vectors we identify with complex quaternions whose scalar part is equal to zero. In vector terms, the multiplication of two arbitrary complex quaternions q and b can be written as follows: q ⋅ b = q0 b0 − < q , b > + q × b + q0 b + b0 q , where 3 < q , b >:= ∑ qk bk ∈C k =1 and i1 q × b := q1 b1 We shall consider continuously differentiable H(C) -valued functions depending on three real variables x = (x1, x 2, x 3). On this set the well known (see, e.g., [1, 4, 7 and 8]) Moisil-Theodoresco operator is defined by the expression The algebra of complex quaternions is denoted by H(C). Each complex quaternion q is of the form q = ∑ qk i k =0 3 { the quaternionic imaginary units: i02 = i0 = −ik2 ; i0 ik = ik i0 = ik , k = 1, 2, 3; i1i2 = −i2i1 = i3 , i2i3 = − i3i2 = i1; i3i1 = − i1i3 = i2 44 3 D := ∑ ik ∂ k , where ∂ k = k =1 { } i3 q3 ∈C 3 . b3 ∂ . ∂x k The action of the operator D on an H(C) -valued function f can be written in a vector form: PRELIMINARIES where qk ⊂ C , i0 is the unit and ik i2 q2 b2 } k k = 1, 2, 3 are Df = − div f + grad f0 + rot f . (1) That is, Sc( Df ) = − div f and Vec( Df ) = grad f0 + rot f . In a good number of physical applications (see [4 and 8]) the operators D α = D+Mα and D – α = D–Mα are needed, where α is a complex quaternion and Mα denotes the operator of multiplication by α from the right-hand side: Mα f = f⋅α. Here we will be interested in two special cases when α is a scalar, that is α = α0 or when α is a vector α = α . The first case corresponds to the Maxwell equations and the second to the Dirac equation. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: The close relation between the Maxwell system and the dirac equation when the electric field is parallel to the magnetic field THE DIRAC EQUATION and Following [7], we consider the Dirac equation in its covariant form 3 γ 0 ∂ + γ k ∂ k + imc Φ ( t , x = 0 . ∑ t c k =1 ) 0 −i −1 0 F0 −1 0 0 −i F 1 . Φ = −1 F = 1 0 0 −i F2 0 i −1 0 F3 We have the following important equality For a wave function with a given energy we have ) Φ (t , x = a ( x ) ε i t e , where α satisfies the equation 3 iε imc c γ 0 + ∑ γ k ∂ k + a ( x = 0. k =1 ) (2) D := ( ( 3 iε imc . γ 0 + ∑ γ k ∂k + c k =1 ) ) ( ) ) ) 1 −Φ i +i Φ −Φ i − Φ +Φ i +i Φ +Φ i F = Φ = − Φ 1 2 0 0 3 1 0 3 2 1 2 3 2 ( The inverse transformation A-1 ( is defined as follows ( Φ = −1 F = −iF1 − F2 , − F0 − iF3 , F0 − iF3 , iF1 − F2 ) Let us present the introduced transformations in a more explicit matrix form which relates the components of a C4-valued function Φ with the components of an H(C) -valued function F: 0 −1 0 1 i F = Φ = 2 −1 0 0 i (3) 1 ε where α := − i i1 + mci2 . This equality shows us that c instead of equation (2) we can consider the equation Dα f = 0 (4) and the relation between solutions of (2) and (4) is established by means of the invertible transformation : f = q . Let us introduce an auxiliary notation f := f ( t , x1 , x 2 , − x3 ). The transformation which allows us to rewrite the Dirac equation in a quaternionic form we denote as A and define in the following way [7]. A function Φ : R3 → C 4 is transformed into a function F : R3 → H (C ) by the rule Dα = −γ 1γ 2γ 3 D −1 , Denote 1 0 Φ 0 0 −i Φ 1 0 −1 Φ 2 i 0 Φ 3 THE CHIRAL MAXWELL EQUATIONS We will consider the time-harmonic Maxwell equations for a sourceless isotropic chiral homogeneous medium * * with: E = ε −1 D + T ∇ × D and B = µ H + T ∇ × H * * [12], so H = H + T ∇ × H . Then we have rot H = −iωε E , (5) rot E = iωµ H , (6) div E = 0 , (7) div H = 0 . (8) Here T is the chiral scalar parameter, ω is the frequency, ε and µ are the absolute permittivity and permeability respectively. ε = ε0εr and µ = µ 0 µ r, where ε0 and µ 0 are the corresponding parameters of a vacuum and εr, µ r are the relative permittivity and permeability of a medium. Taking into account (1) we can rewrite this system as follows Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 DE = iωµ H , (9) 45 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 DH = −iωε E . (10) This pair of equations can be diagonalized in the following way [6] (see also [8]). Denote ϕ := −iωε E + κ H ψ := iωε E + κ H , (12) ω ε µ is the wave number. c r r Applying the operator D to the functions ϕ and ψ one can see that ϕ satisfies the equation Where κ := ω εµ = ( D − κ )ϕ = 0 , ( D + κ )ψ = 0 . (14) Solutions of (13) and (14) are called the Beltrami fields (see, e.g., [10]). In the preceding sections it was shown that the Dirac equation (2) is equivalent to the equation Dα f = 0 with 1 ε α := − i i1 + mci2 and the Maxwell equations (5)-(8) c are equivalent to the pair of quaternionic equations D−κ ϕ = 0 and Dκ ψ = 0 . Now we will show a simple relation between these objects. Suppose that 2 ω 2 . 2 = = = 2 κ α T2 c (15) L et us i nt roduce t he fol lowi ng operators of multiplication P ± := f = P + iωε E + κ H + P − −iωε E + κ H = iωε P + − P − E + κ P + + P − H ( ) ( iωε = E ⋅α + κ H κ ) ( ( ) ) is a solution of (4) if E and H are solutions of (5)-(8). It should be noticed that (16) works in both directions. We have Dκ = P + Dα + P − D−α and The fact that the Maxwell system reduces to equations (13) and (14), where the functions ϕ and ψ are purely vectorial provokes the natural question whether it had any sense to consider full quaternions ϕ and ψ and hence four-component vectors E and H or the nature definitely eliminated their scalar parts. Some arguments supporting the idea of nonzero scalar parts can be found, for example, in [2]. As we have seen equality (16) is valid under the condition (15). Let us analyze this condition. Note that 1 ε2 α 2 = − < α , α >= 2 2 − m 2c 2 . c Thus, when E is parallel to H , (15) has the form 1 κ ±α M . 2κ It is easy to verify that they are mutually complementary and orthogonal projection operators, and the following equality is valid [8] 46 Where ϕ and ψ are solutions of (13) and (14) respectively but in general can be full quaternions not necessarily purely vectorial. In particular, we have that D−κ = P + Dα + P − D−α . THE RELATION ω (κ) WHEN E IS PARALLEL TO H 1 f = P +ψ + P −ϕ , (13) and ψ satisfies the equation (16) Moreover, as P± commutes with D±κ, we obtain that any solution of (4) is uniquely represented as follows (11) and Dα = P + Dκ + P − D−κ . 1 T 2 =κ2 = Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 1 ε2 − m 2c 2 2 2 c (17) H. Torres-Silva: The close relation between the Maxwell system and the dirac equation when the electric field is parallel to the magnetic field REFERENCES or equivalently ( ω )2 εr µr = ε 2 − m 2c4 . [1] F. Brackx, R. Delanghe and F. Sommen. Clifford analysis. Pitman Res. Notes in Math. 1982. [2] K. Carmody. Circular and hyperbolic quaternions, octonions, and sedenions-further results. Applied Mathematics and Computation. Vol. 84 Nº 1, pp. 27-47. 1997. (18) [3] In general, if in (17) we formally use the de Broglie equality p = κ = / T , we again obtain the fundamental relation (18). W. Greiner. “Relativistic quantum mechanics”. Springer-Verlag. 1990. [4] K. Gürlebeck and W. Sprößig. “Quaternionic analysis and elliptic boundary value problems”. Akademie-Verlag. 1989. [5] K. Imaeda. “A new formulation of classical electrodynamics”. Nuovo Cimento. Vol. 32 B Nº 1, pp. 138-162. 1976. [6] M. Gogberashvili. “Octonionic version of Dirac equations”. International Journal of Modern Physics A. Vol. 21 Nº 17, pp. 3513-3523. 2006. From this equation in the case ε r = µr = 1 , that is for a vacuum, using the well known in quantum mechanics relation between the frequency and the impulse: ω = pc we obtain the equality ε 2 = p2c 2 + m 2c 4 . Thus relation (15) between the Dirac operator and the Maxwell operators is valid if the condition (17) is fulfilled which quite is in agreement with (18), if and only if E is parallel to H . CONCLUSIONS The main result of this paper is that the Dirac equation can be derived from the Maxwell’s equation under a chiral approach (equation 15). The suggested theory is the new quantum mechanics (QM) interpretation. The below research proves that the QM represents the electrodynamics of the curvilinear closed (non-linear) waves. It is entirely according to the modern interpretation and explains the particularities and the results of the quantum field theory. Chiral approach means that our Universe is observable area of basic space-time where temporal coordinate is positive and all particles bear positive masses (electrons). The mirror Universe is an area of the basic space-time, where from viewpoint of regular observer temporal coordinate is negative and all particles bear negative masses (positrons). Also, from viewpoint of our-world observer the mirror Universe is a world with reverse flow of time, where particles travel from future into past in respect to us. The two worlds are separated with the membrane - an area of space-time inhabited by light-like particles that travel along light-like right or left-handed (isotropic) spirals (chiral photons). [7] V.V. Kravchenko. “On a biquaternionic bag model”. Zeitschrift für Analysis und ihre Anwendungen. Vol. 14 Nº 1, pp. 3-14. 1995. [8] V.V. Kravchenko and M.V. Shapiro. “Integral representations for spatial models of mathematical physics”. Addison Wesley Longman Ltd., Pitman Res. Notes in Math. Series. Vol. 351. 1996. [9] I. Yu. Krivsky, V.M. Simulik. “Unitary connection in Maxwell-Dirac isomorphism and the Clifford algebra”. Advances in Applied Clifford Algebras. Vol. 6 Nº 2, pp. 249-259. 1996. [10] A. Lakhtakia. Beltrami fields in chiral media. World Scientific. 1994. [11] J. Vaz, Jr., W. Rodrigues, Jr. “Equivalence of Dirac and Maxwell equations and quantum mechanics”. International Journal of Theoretical Physics. Vol. 32 Nº 6, pp. 945-959. 1993. [12] H. Torres-Silva and M. Zamorano Lucero. Chiral Electrodynamic. URLs: http://www.chiral.cl Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 47 Ingeniare. Revista chilena de ingeniería, vol. 16 vol. 16 Nº 1, Nº 1, 2008, 2008 pp. 48-52 DIRAC MATRICES IN CHIRAL REPRESENTATION AND THE CONNECTION WITH THE ELECTRIC FIELD PARALLEL TO THE MAGNETIC FIELD MATRICES DE DIRAC EN REPRESENTACIÓN QUIRAL Y LA CONEXIÓN CON EL CAMPO ELÉCTRICO PARALELO AL CAMPO MAGNÉTICO H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 5 de diciembre de 2007 Received: September 5, 2007 Accepted: December 5, 2007 RESUMEN En este trabajo se presenta una expresión de la transformación general de Foldy-Wouthuysen a la representación quiral de las matrices de Dirac interactuando con un campo de fermión. La hipótesis es que a través de la multiplicación de la matriz de Pauli por las ecuaciones quirales de Maxwell en el caso de E = iη H , se obtiene la ecuación quiral de Dirac. Esta es la prueba del teorema de que la mecánica de ondas de partícula cuántica representa una electrodinámica especializada. Palabras clave: Transformación de Foldy-Wouthuysen, ecuación quiral de Dirac, electrodinámica. ABSTRACT In this paper we offer an expression of the general Foldy-Wouthuysen transformation in the chiral representation of Dirac matrices interacting with fermion field.Our hypothesis is that through the multiplication of the Pauli matrix and Maxwell’s chiral equations in the case of E = iη H , one obtains the Dirac’s chiral equation. This is the proof of the theorem that the wave mechanics of quantum particles represent a specialized electrodynamic. Keywords: Foldy-Wouthuysen transformation, chiral Dirac equation, electrodynamics. CHIRAL DIRAC MATRICES The paper offers an expression of the general FoldyWouthuysen transformation in the chiral representation of Dirac matrices interacting with fermion field ψ ( x , t . The paper [1, 2] discuss the theory of interacting quantum fields in the Foldy-Wouthuysen representation [3]. These papers offer, in particular, the relativistic nonlocal Hamiltonian HFW in the form of a series in terms of powers of charge e. Quantum electrodynamics in the Foldy-Wouthuysen (FW) representation has been formulated using Halmitonian HFW and some quantum electrodynamics processes have been calculated within the lowest-order perturbation theory. As a result, the conclusion has been made that the FW representation describes some quasi-classic states in the quantum field theories. Both particles and antiparticles are available in these states. Particles, as well as antiparticles, interact ) with each other. However, there is no interaction of real particles with antiparticles – such interaction is possible only in intermediate (virtual) states. The FW representation modification is required to take into a account real particle/antiparticle interactions. In the papers [1, 2] such modification has been made using the symmetry identical to the isotropic spin symmetry owing to invariance of final physical results under change of sings in the mass terms of Dirac Hamiltonian HD and Hamiltonian HFW. In the modified Foldy-Wouthuysen representation, real fermions and antifermions can be in two states characterized by the values of the third 1 component of the isotropic spin S 3f = ± ; real fermions 2 and antifermions interacting with each other must have 3 opposite signs of S f . Quantum electrodynamics in the modified FW representation is invariant under P–, C–, T– transformations. Violations of the introduced 1 Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] 48 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Dirac matrices in chiral representation and the connection with the electric… symmetry of the isotropic spin lead to the corresponding violation of CP– invariance. The standard model in the modified FW representation was formulated in the papers [1, 4]. It has been shown that formulation of the theory in the modified FW representation doesn’t require that Higgs bosons should obligatory interact with fermions to preserve the SU (2)– invariance, whereas all the rest theoretical and experimental implications of the Standard model obtained in the Dirac representation are preserved. In such a case, Higgs bosons are responsible only for the gauge invariance of the boson sector of the ± theory and interact only with gauge bosons Wµ , Z µ , gluons and photons. ) 0 αi = σ i 0 I i I 0 0 ,γ 5 = , γ = γ 0α i (1) ,β = γ = 0 − I I 0 0 σ Here we propose to change the Foldy-Wouthuysen transformation form by using the chiral representation of Dirac matrices. σ i i αc = 0 0 I I 0 i 0 0 ,γ = , γ = γ c0α ci (2) , βc = γ c = I 0 5 0 − I c −σ i The chiral representation (2) is commonly used in the modern gauge field theories and in the Standard Model, in particular. First consider the structure of equations describing the components of the wave functions ψD (x) for the two representation of Dirac matrices considered in the paper. In relations (1), (2) and below the system of units with = c = 1 is used; x, p, are 4-vectors; the inner product is taken as ∂ ; σk xy = xµyµ = x0y0 – xkyk µ = 0,1,2,3, k = 1,2,3; p µ = i ∂x µ 1, µ = 0 are Pauli matrices; α µ = i ; ψD (x) is the α , µ = k , k = 1, 2, 3 ) ) ) four-component wave function, ϕ ( x , χ ( x ,ψ R ( x ,ψ L ( x ) ) ) ) ) ) ) ) ) ; ) (3) With representation (2), relation (3) looks like ) ) ψ ( x p0ψ D ( x = (α ⋅ p + β m ;ψ D ( x = R ; ψ L ( x p0ψ R ( x = σ ⋅ pψ R ( x + mψ L ( x ; p0ψ L ( x = −σ ⋅ pψ L ( x + mψ R ( x (4) p0 − σ ⋅ p −1 ψ L (x = ψ R ( x = ( p0 + σ ⋅ p mψ R ( x ; m p +σ ⋅ p −1 ψ R (x = 0 ψ L ( x = ( p0 − σ ⋅ p mψ L ( x ; m ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) Relations (4) use the operador equality: p02 = E 2 = p2 + m 2 Comparison between relations (3) and (4) shows that with the substitution below, m ↔ σ ⋅ p, β ↔ γ 5 (5) These relations transform into each other. The Foldy-Wouthuysen transformations for the energy and chiral representations of Dirac matrices also transform into each other if the substitution (5) is made. Thus, the general Foldy-Wouthuysen transformation with Dirac matrices in the chiral representation ( ) (1 + δ chir 0 U FW = U FW chir chir 1 ) + δ 2chir + +δ 3chir + .... , as well as the fermion Hamiltonian in the Foldy-Wouthuysen representation are the two-component wave functions. The following operator relations are valid for the free Dirac equation with representation (1): ) ) ) In the papers mentioned above, the energy representation of Dirac matrices derived by Dirac himself is used: i ϕ (x p0ψ D ( x = (α ⋅ p + β m ;ψ D ( x = χ (x p0ϕ ( x = σ ⋅ pχ ( x + mϕ ( x ; p0 χ ( x = σ ⋅ pϕ ( x − m χ ( x −1 χ = ( p0 + m σ ⋅ pϕ ; −1 ϕ = ( p0 − m σ ⋅ pχ; chir H FW = γ 5 E + qK1chir + q 2 K 2chir + + q3 K 3chir + ... can be obtained. From the corresponding expressions for en en with Dirac matrices in the energy representation U FW , H FW (see [1, 2]) with substitution m ↔ σ ⋅ p, β ↔ γ 5 , we have Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 49 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 the relations p0ψ R ( x = σ ⋅ pψ R ( x + mψ L ( x p0ψ L ( x = −σ ⋅ pψ L ( x + mψ R ( x ) ) ) ) ) ) (6) Also the relations (6) can be obtained under the chiral approach of Maxwell’s Equations where the electric field E is parallel to the magnetic field H [5], that is E = iη H , where η = µ0 / ε 0 . If one wanted to describe the hydrogen gas by means of electrodynamics one should start from the firmly established experience that the hydrogen gas may absorb and reemit electromagnetic energy, and that without external intervention there is no indication that the gas to contain electric charges [6-11]. Thus we consider the hypothesis witch visualizes the gas as charge free electromagnetic field as the starting point with the lest number assumptions; and so we try characterize the field by the covariant chiral Maxwell system [5] ∂ rotE + µ (1 + Tm ∇×) H = 0, divε (1 + Te ∇×) E = 0 (7) c∂t ∂ rotH − ε (1 + Te ∇×) E = 0, div µ (1 + Tm ∇×) H = 0 (8) c∂t Here, T is the chiral scalar factor with divTe ,m ∇ × E ( H ) = Te ,m div∇ × E ( H ) = 0, and the condition of charge-free ( ) 1 mc rotE ( H ) = E ( H ) ± E(H ) T (10) Our hypothesis is that through the multiplication of the matrix Pauli for chiral Maxwell’s equations with E = iη H , one obtains the chiral Dirac equation (6). Using the algebraic relation [12] 50 (11) ω mc σˆ ⋅ ∇ ± i c ψ E (ψ H ) = − ψ H (ψ E ) (12) Below the system of units with = c = 1 equation (12) is exactly equal to the chiral Dirac equation (6), if ψ E (ψ H ) = ψ R (ψ L ) . To probe this close connection we can obtain the well known normal Dirac equation, we get for (7, 8) the equations ∂ rotE + µ0 (1 + Tm ∇×) H = 0, divE = 0 c∂t (13) ∂ rotH − ε 0 (1 + Te ∇×) E = 0, divH = 0 c∂t (14) with E ⊥ grad ε , H ⊥ grad µ . Equations (13) and (14) can be transformed as: µ0 (1 + Tm ∇×) → µ (ω , mc 2 ), ε 0 (1 + Tm ∇×) → ε (ω , mc 2 ). So, scalar multiplication of the rot equations in (10, 11) by the Pauli-vector, and using the algebraic relation [12] (σˆ ⋅ ∇ σˆ ⋅ A = divA + iσˆ ⋅ rotA we have )( (9) Solv i ng t h e wave e q u a t io n fo r E H w it h Te = Tm = T = / 2mc , and by considering we have where ψ E (ψ H ) = σˆ ⋅ E (σˆ ⋅ η H ) . by means of divE = 0 besides divH = 0 in equation (10) together with the two div equations (9), transform that system (10) in to CHIRAL APPROACH OF MAXWELL’S EQUATIONS (σˆ ⋅ ∇ ) (σˆ ⋅ A) = divA + iσˆ ⋅ rotA ) ε ∂ (σ ⋅ ∇ σ ⋅ H − c ∂t iσ ⋅ E = 0 µ ∂ σ ⋅H = 0 (σ ⋅ ∇ σ ⋅ E + ∂ c t E ⊥ grad ε , H ⊥ grad µ )( ) ( ) )( ) ( ) (15) Equation (15) can be expressed in terms of in matriz notation this reads 0 σ ε1 0 1 ∂ i σ ⋅ E ⋅ ∇ − 0 µ1 c ∂t σ ⋅ H σ 0 E ⊥ grad ε , H ⊥ grad µ Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 ( ( ) = 0 ) (16) H. Torres-Silva: Dirac matrices in chiral representation and the connection with the electric… Denoting the quantity on witch the differential operators act by ψD, that is i σ ⋅ E σ ⋅ H ) ) ( ( iE3 iE = + H3 H+ ' iH − Ψ 1 −iE3 Ψ '2 = H− Ψ ' 3 − H3 Ψ ' 4 Ψ ''1 Ψ ''2 Ψ ''3 Ψ ''4 0 σ σ 0 = γ ≡ α (17) (18) between the Pauli and Dirac matrices, we get for (13) system ε1 0 1 ∂ γ ⋅ ∇ − Ψ D = 0 0 µ1 c ∂t E ⊥ grad ε , H ⊥ grad µ (19) Ψ D = ψ D e − iω t (21) ω ε1 0 Ψ = 0 γ ⋅ ∇ − i c 0 µ1 D γ ⋅ ∇Ψ + i ω + mc c 0 2 Ψ D = 0 (23) ω − mc 2 0 (23’) And the transformation to a chiral Dirac equation is trivial by using relation (5). The equations (20) as well as (21) or (22), show in addition that the electrodinamical and the wave mechanical field component are connected by simple linear relation, the same holding true for the refraction (ε, µ) in relation to the scalar T. This isomorphism can be checked easily and directly because the eight Eq. (10, 11) may be combined into two systems of four equations each, in the following way: ±i rotH ic −1ε E + divH = 0 3 3 ±i rotH ic −1ε E − rotH + c −1ε E = 0 1 2 2 1 (24) −1 ±idivE − rotE 3 − c µ H3 = 0 −1 −1 ±i rotE 2 ic µ H 2 − rotE 1 + c µ H 1 = 0 ( ( ) ) ( ) ) ) ( ( ) Inserting here the first or second wave function of (21) into the first system (upper signs) or the second one (lower signs), respectively, the wave functions of (20) ends up immediately, in both cases and we are back to Dirac again Using a chiral representation of the Foldy-Wouthuysen transformation for the Dirac equation we show that the same result can be obtained with a chiral electrodynamics using the matrix Pauli. With this we proof the theorem that waves mechanic of quantum particle represents a specialized electrodynamics. The result seems unambiguous and incompatible with the current doctrine which rest on a particle interpretation. (22) If we use equation (13) in (22), it’s agreement with the Dirac amplitude equation ) CONCLUSION finally yields the amplitude equation ) (20) Independently represent a system of functions solving (16). From this, a separation of the time dependence according to ) ( Here one has to bear in mind that each of both columns matrix (14) that is iE1 + E2 iE3 −iE iE − E 3 2 ΨD = 1 and Ψ D = H1 − iH 2 H3 H1 + iH 2 − H3 p0ψ D ( x = (α ⋅ p + β m ;ψ D ( x with X ± = X1 ± iX 2 and considering the well-known connection is complete. Now nor ma l izing eq. (23) wit h = 1, c = 1, γ ⋅ ∇ = α ⋅ p , we can write as REFERENCES [1] V.P. Neznamov. Physics of Elementary Particles and Atomic Nuclei (EPAN). Vol. 37 Nº 1. 2006. [2] V.P. Neznamov. Voprosy Atomnoi Nauki I Tekhniki. Ser: Teoreticheskaya I Prikladnaya Fizika. Issues 1-2, p. 41, hep-th/0411050. 2004. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 51 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 [3] L.L. Foldy and S. A. Wouthuysen, Phys. Tev 78, 29. 1950. [4] V.P. Neznamov. Hep-th/0412047. 2005. [5] H. Torres-Silva and M. Zamorano Lucero. Chiral Electrodynamic. URLs: http://www.chiral.cl [6] J.R. Oppenheimer. Phys. Rev. Vol. 38, p. 725. 1931. [7] H.E. Moses. Sup. Nuovo Cimento. Serie X. Vol. 7. Nº 1. 1958. [8] T. Ohmura Prog. Theor. Phys. Vol. 16, p. 684. 1956. 52 [9] S.N. Gupta. Theory of longitudinal photons in quantum electrodynamics. Proc. Phys. Soc. Vol. 63, pp. 681-691. 1950. [10] F. Reines and W. H. Sobel, Test of the Pauli Exclusion Principle for Atomic Electrons, Phys. Rev. Lett. Vol. 32, pp. 954. 1974. [11] W. Heitler Quantum Theory of Radiation, 2nd Ed., Oxford University Press, Oxford, p. 1. 1944. [12] H. Sallhofer. “Maxwell Dirac isomorphism”. Z. Naturforsch. Vol. 41 a, p 1067. 1986. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, pp. 53-59 H. Torres-Silva: Maxwell equations for a generalised lagrangian functional MAXWELL EQUATIONS FOR A GENERALISED LAGRANGIAN FUNCTIONAL ECUACIONES DE MAXWELL PARA UNA FUNCIONAL DE LAGRANGE GENERALIZADA H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 29 de noviembre de 2007 Received: September 5, 2007 Accepted: November 29, 2007 RESUMEN En este trabajo se aborda el problema de la construcción de la funcional de Lagrange de un campo electromagnético. Se introducen las ecuaciones generalizadas de Maxwell de un campo electromagnético en el espacio libre. La idea principal se basa en el cambio de función de Lagrange en virtud de la acción integral. Por lo general, la funcional de Lagrange, que describe el campo electromagnético, se construye con el cuadrado del tensor de campo electromagnético. Ese término cuadrático es la razón, desde un punto de vista matemático, de la forma lineal de las ecuaciones de Maxwell en el espacio libre. Se obtienen las ecuaciones no lineales de Maxwell sin considerar esta suposición. Las ecuaciones obtenidas son bastante similares a las conocidas ecuaciones de Maxwell. Se analiza el tensor de energía del campo electromagnético en un enfoque quiral de la Lagrangiana de Born Infeld en relación con la constante cosmológica. Palabras clave: Lagrange, acción, ecuaciones de Maxwell, Born Infeld. ABSTRACT This work deals with the problem of the construction of the Lagrange functional for an electromagnetic field. The generalised Maxwell equations for an electromagnetic field in free space are introduced. The main idea relies on the change of Lagrange function under the integral action. Usually, the Lagrange functional which describes the electromagnetic field is built with the quadrate of the electromagnetic field tensor Fik . Such a quadrate term is the reason, from a mathematical point of view, for the linear form of the Maxwell equations in free space. The author does not make this assumption and nonlinear Maxwell equations are obtained. New material parameters of free space are established. The equations obtained are quite similar to the well-known Maxwell equations. The energy tensor of the electromagnetic field from a chiral approach to the Born Infeld Lagrangian is discussed in connection with the cosmological constant. Keywords: Lagrange, action, Maxwell equations, Born Infeld. INTRODUCTION The action integral (built to formulate the least-square principle [1]) for a process in an electromagnetic field has the following form: I= ∫ ∫ ( S ) − ( ρV − j ⋅ A) − 2 ( µ 1 v T V −1 0 B2 − ε 0 E 2 dVdt (1) ) All physical phenomena in the electromagnetic field take place so the action integral has the minimal value δΙ = 0. The theory of the electromagnetic field [1] leads to the 1 Lagrange motion equations for an electric charge in the electromagnetic field and defines the electromagnetic field tensor: Fik = ∂Ak ∂x i ∂Ai − ∂x k (2) Eqns. (2) are equivalent to the first pair of Maxwell equations: ∂Fik ∂x l + ∂Fkl ∂x i + ∂Fli ∂x k =0 for Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 i≠k ≠l ≠i (3) 53 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Or, in three-dimensional notation: curlE = − B speed in free space for these new Maxwell equations will also be equal to “c”. divB = 0 and (4) Making calculations of variation for the functional I with respect to the four-dimensional potential Ai one obtain the second pair of Maxwell equations: ∂F ik ∂x k = − µ0 j i (5) Or in equivalent vector notation: ) div ( ε 0 E = ρ and curl ( I= The second pair of Maxwell equations in the case of the generalised action integral eqn. (8) is obtained after evaluating the variation of the action with respect to the four-dimensional potential Ai. We can denote µ0−1 B ) = j + ε 0 E (6) From the mathematical point of view, the demand for a linear form of Maxwell equations for free space compels one to assume that the field term (the third in integral eqn. (1)) must be built with the electromagnetic field tensor Fik second power (the exponent of any power function under the action integral is one less after calculating the variation). So, the equations obtained are linear with respect to the electromagnetic field tensor Fik. The action integral I could be rewritten in the following form: MAXWELL EQUATIONS FOR THE GENERALISED FUNCTIONAL ∫ ∫ ( Sv − ( ρV − j ⋅ A) − ∆eV ) dVdt (7) TV 1 1 1 ∆ = ∆eV = µ0−1 B2 − ε 0 E 2 = µ0−1F ik Fik 2 2 4 The linear form of the Maxwell equations, from the mathematical point of view, is arbitrarily assumed by eqn. (7). In addition the linear character of Maxwell equations for free space (as well as for air) has been confirmed by many experiments. There is no doubt that linear Maxwell equations, within experimental precision, are satisfied, however, we could not reject other mathematical forms of the electromagnetic field equations. Is we assume, more generally, that the action integral is built with the help of a function f (·), it could be written: 1 1 I = ∫ ∫ Sv − ( ρV − jA − f µ0−1 B 2 − ε 0 E 2 dVdt (8) 2 2 TV ) (the codomain for the function f (·) is the real set). Under this assumption new Maxwell equations having the same mathematical structure are obtained. The wave 54 ) ( ) 1 = ∫ ∫ − j iδ Ai − f ′ ( ∆ 2 µ0−1F ik δ Fik dVdt 4 TV ) According to eqn. (2) we could write 0 = δI 1 ∂δ Ak ∂δ Ai = − ∫ ∫ j iδ Ai + f ′ ( ∆ µ0−1F ik − k dVdt ∂x i ∂x 2 TV )) ( After interchanging the indices ‘i’ and ‘k’ in the final term we obtain: Where ( 1 δ I = ∫ ∫ − j iδ Ai − δ f µ0−1F ik Fik dVdt 4 TV ( )) ( )) 1 ∂δ A ∂δ Ai 0 = ∫ ∫ j iδ Ai + f ′ ( ∆ µ0−1F ik ( i k − F ik ) dVdt 2 ∂x ∂x k TV ∂δ Ak = ∫ ∫ j k δ Ak + f ′ ( ∆ µ0−1F ik dVdt ∂x i TV Hence: ) ) ∂f ′ ( ∆ µ0−1F ik δ Ak ∂f ′ ( ∆ µ0−1F ik − 0 = ∫ ∫ j k δ Ak + δ Ak dVdt i i ∂x ∂x TV Using the Gauss theorem and taking into account the fact of the disappearance of the four-dimensional potential at the boundary of the four-dimensional space we obtain ) ∂f ′ ( ∆ F ik ∂x k = − µ0 j i (9) Eqns. (9) include the second pair of Maxwell equations in the form eqns. (5) and (6). Whereas, on using the function f (·) as the identify function, its derivative will be equal to one; i.e. 1 f ′ µ0−1F ik Fik = f ′ ( ∆ = 1 4 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 ) H. Torres-Silva: Maxwell equations for a generalised lagrangian functional This means that the Maxwell equations in the form eqn. (9) include the classical Maxwell equations in the form of eqn. (5) and (6). INTERPRETATION OF THE ESTABLISHED EQUATIONS In three-dimensional notation, eqn. (9) has the following form: 1 1 div ε 0 f ′ µ0−1 B2 − ε 0 E 2 E = ρ 2 2 1 1 curl v0 f ′ µ0−1 B2 − ε 0 E 2 B 2 2 1 1 ∂ ε 0 f ′ µ0−1 B2 − ε 0 E 2 E 2 ∂t 2 The second pair of Maxwell equations could be rewritten in the same form as the well-known Maxwell equations (eqns. (5) and (6)): ) ) div ( ε E = ρ curl ( vB = j + ∂ (ε E ∂t ) (10) Where it was denoted: 1 1 ε = ε 0 f ′ µ0−1 B2 − ε 0 E 2 2 2 1 1 µ 0−1 = µ0−1 f ′ µ0−1 B2 − ε 0 E 2 2 2 (11) ) ) ) f (⋅ = (⋅ + (− k 0 2 T 2 ) (⋅ ) ) ⇒ f ′ (⋅ = 1 + κ (⋅ Thus: ( ε = ε 0 1 + κµ0−1 B2 − κε 0 E 2 µ 0−1 = µ0−1 ( 1 + κµ0−1 B2 ( ) curl µ 0−1 B = j + curlE = − B divB = 0 ∂ (ε E (13) ∂t ) With modern levels of measurement accuracy, we are able to use laboratory devices that enable determination of the value of magnetic flux density (or electric field strength) with very high accuracy (0.01%), and the material parameters with the same relative error. In a magnetic field B=2T the variation of this material parameter will not be observed according to eqn. if: κ < π × 10 −11 J −1 (14) The constant ‘κ’ is so small only in the case of strong magnetic or electric fields may the linear Maxwell equations deformation be observed and detected. GENERALIZATIONS OF MAXWELL THEORY FROM BORN-INFELD THEORY There are nonlinear electromagnetic field theories, e.g. Born-Infeld theory of the charged particle [2, 3]. In this Born-Infeld theory the nonlinear Maxwell equations are obtained from the following action integral: c2 c2 I = ∫ ∫ b 2 1 − 1 + 2 I1 − 4 I 22 , dVdt = ∫ ∫ b 2 (1 − R dVdt b b TV TV ) ) − κε 0 E ) div ( ε E = ρ The derivative f’(·) which appears in the Maxwell equations is the reason for the nonlinear character of the generalised Maxwell equations with respect to electric field strength and magnetic flux density. The level of ‘deformation’ of the Maxwell equations in comparison with the linear Maxwell equations is determined by the constant ‘κ’. The less is the value of constant ‘κ’, the less is the influence of the nonlinear term in eqn. (12). We may evaluate (roughly) the value of this unknown constant. Lets us assume that the function f (·) can be almost linear or linear. Many experiments confirm that if the nonlinear character of the electromagnetic field equations exists, it cannot be strong; it must be weak. It seems to be reasonable to consider only the first nonlinear term of the Taylor series. Here we propose that: = ε 0 µ0 εµ The Maxwell equations (in spite of their nonlinear character) still have the same form: And = j+ According to eqn. (11) and (12) the permittivity and reluctivity (or permeability) for free space have been changed with respect to the strong electric or magnetic field. The strong electromagnetic field causes a change of the free space coefficients. The multiplication ‘ε’ by ‘µ’ is independent of the function f (·) and equal to ε0µ0: 2 ) (12) (15) On this basis, the equations obtained are supposed to be valid inside the electric particle. For fields that are weak compared to the critical strength b, the Born- Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 55 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Infeld Lagrangian becomes the Lagrangian of classical Maxwell theory. So the energy, the momentum, and the Poynting vector, are now given, respectively, by The well-known Born-Infeld Lagrangian is usually written as E 2 + ( E ⋅ B / a) 2 2 2 2 1 + B − E − ( E ⋅ B) (21) 3 2 4 = ∫d x a a 2 2 2 − ( ⋅ ) +a2 ( 1 + B E − E B ) a2 a4 L BI = b2 µ0 c (1 − R ) , 2 R = 1+ c2 b 2 I1 − c2 b I 22 , (15’) 4 ε field Where I1 = B2 − 1 c2 E2 = c 1 F F ik , I 2 = B ⋅ E = Fik F ik , b i s a 2 ik 4 maximum electric field strength (in the absence of magnetic field). If b2 is very much larger than E2 and c2 B2, then LBI ≈ − (1 / 2 µ0 I1 and we recover linear Maxwell theory. We remark here that in the limit as c → ∞, LBI tend to zero, while cLBI approach a well-defined, non-zero limit. Pfield = ∫ d 3 x E×B 1+ ) F= 1 F F ik = B2 − E 2 2 ik 1 G 2 = ( Fik* F ik )2 = ( B ⋅ E )2 4 LBI = a 2 (1 − R ) , R = 1+ F a − 2 G , a4 F ik - * F ik G/a 2 ∂ν =0, R ∂ j Fik + ∂ k Fji + ∂i Fkj = 0 T ik = F µ j Fjk + G 2ηik / a 2 R + ηik a 2 R 1+ B − E 2 ( E ⋅ B)2 − a2 a4 2 (23) The volume density of the Lagrangian function in a region outside the electrical charges and currents is equal to (15) ( ) f ∆ (24) Where ∆=− v0 4 Fαβ F αβ = − v0 F F gαγ g βδ 4 αβ γδ = a0 Fαβ Fλγδ gαγ g βδ (25) And gik means the second-order metric tensor of space [1, 3, 4]. (18) Let us evaluate the energy tensor T ik by the definition [1, 5] in the following form: (19) (20) In deriving this result, use has been made of the identity * Fµν Fνρ = −Gδ ρν . 56 a4 (17) Here, we find that the symmetric energy-momentum tensor for that theory is given by (22) ENERGY TENSOR OF THE ELECTROMAGNETIC FIELD The field equations for Born-Infeld theory are ( E ⋅ B)2 (16) 1 ik ρσ * Fρσ is the dual field strength tensor, Where Fik = ε 2 Making c=1 we have that equation (15) can be expressed as 2 a2 − E×B S= Since the Lagrangian density must be a Lorentz scalar, the electromagnetic field has only two gauge invariant Lorentz scalars, namely B2 − E 2 1 − gTik = 2 ( ∂ f (∆ ) −g ∂gik ) ∂ ∂ f (∆ −g − l gik ∂x ∂ l ∂x ( ) ) (26) The tensor satisfies the energy conservation law in the tour-dimensional form: Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Ti k, k = 0 (27) H. Torres-Silva: Maxwell equations for a generalised lagrangian functional Substituting eqn. (20) into eqn. (26) one obtains: ( 2 ∂ f (∆ Tik = ) −g ∂gik −g ) Because function f (∆) is independent of the derivatives of the metric tensor. Thus one obtains: Tik = 4 a0 ∂f δ F F − gik f ( ∆ ∂∆ i kδ ) (28) For the function f (·) given by the first two Taylor series terms we could write: ) f ( ∆ = ∆ + κ∆ Thus the energy tensor is equal to: ( Tki = Tki |κ = 0 +2κ∆ Tki |κ = 0 +δ ki ∆ T = Tαα = Tαα κ =0 ( + κ Tαα κ =0 c2 κ∆ (32) The sign of constant k thus, take into account an electrostatic field forced by one charged particle. Such a field has spherical symmetry. The Riemannian curvature scalar for two-dimensional space, where only one external charge is situated, must be non-negative, R ≥ 0. Is not, the Riemannian curvature scalar tensor is negative, the space would have two radii of curvature, one positive and the other negative. This is impossible with respect to the assumed spherical symmetry of the electric field (forced by one electric charge), therefore: κ ≤ 0 (33) We can obtain an especial result. Und er a chiral approach, using equations (21, 22) with E = iB ,we obtain S = 0 and an electromagnetic term which correspond to a cosmological constant given by 8π Gε 0 / c 4 = 1.8382 ⋅ 10 −54 Volt −2 . This allows the close connection between the electromagnetism and the gravitation (see annex). ) The trace of this energy tensor is equal to: 32π G In the case of a nonlinear electromagnetic field theories, e.g. Born-Infeld theory of the electromagnetic particle [5]. ) f ′(∆ = 1+κ ⇒ R=− ) + 4 ∆ = 4κ∆ (29) because, in the case κ = 0, the trace of the covariantcontravariant energy tensor disappears: CONCLUSIONS According to the main Einstein equations, for energy field for which one can introduce the energy tensor [1, 3, 5] it could be written: Generalised Maxwell equations include the classical Maxwell equations of the electromagnetic field for weak fields. The reluctivity and permittivity of free space are changed. If the constant ‘κ’ cannot be omitted, the Riemannian-Christoffel curvature tensor is not equal to zero. The constant ‘κ’ is not positive: κ ≤ 0. In the case of a nonlinear electromagnetic field theory, e.g. BornInfeld theory of the electromagnetic particle [5], we can obtain an especial result. Under a chiral approach, with E = iB, we obtain S = 0 and an electromagnetic term which correspond to a cosmological constant. 1 8π G Rik − gik R = − 2 Tik 2 c ANNEX Tαα |κ = 0 = 4 a0 F ij Fij − δαα ∆ = 0 The trace of the energy tensor is not negative. The trace is equal to zero if and only if the constant ‘κ’ vanishes. (30) Contraction with respect to the indices ‘i’ and ‘k’ gives the Riemannian curvatura scalar of the electromagnetic field: R=− 8π G c2 T (31) Substituting eqn. (29) into eqn. (31) one finally obtains This work discovers the space-time curvature carried by the electromagnetic field and provides a new unification of geometry and classical electromagnetism. The new unification contains the Einstein equations to handle the mechanics and permits the derivation of the Maxwell equations from the full second Bianchi identities. This is a purely classical work and quantum considerations are merely mentioned. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 57 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Central to this work are the requirements that the electromagnetic field be expressed as a two form F and fit into general relativity under the demand that the total stress-energy tensor used in the Einstein equations contain the Maxwell stress-energy tensor T Max. In the notation with the conventions of [1] and in S.I. units T Max is i TMax k = ε 0 ji ( F Fjk + *F ji * Fjk ) 2 −12 where ε 0 = 8.85418782 ⋅ 10 farad/meter is the electric vacuum permittivity. Originally [2] general relativity was conceived as a unification of mechanics and geometry that explained gravitation. It was just a bonus [3] that electromagnetism also entered the unification via equation. If the Maxwell stress-energy tensor carried all the properties of the electromagnetic field, showing electromagnetism to be entirely reducible to mechanics, that would have been the end of the story. However, the electromagnetic field has polarization or phase information that is not contained in the Maxwell stress-energy tensor [4]. Since Weyl’s conformal tensor, the totally traceless piece of Riemann curvature, is supposed to contain the phase or polarization information carried by gravitational radiation, one should expect it to do the same for electromagnetic radiation. This is born out by the discovery of a piece of the Weyl conformal tensor that depends explicitly on the electromagnetic field and contains this polarization or phase information. It is denoted by TMax CF, called “the local gravitational field of the electromagnetic field’’, and given by: C ikjl = 8π Gε 0 3 ik 1 ( F Fjl − *F ik * Fjl ) − δ ikjl F ik Fik + 4 2 4 c 1 + ηikjl F ik Fik 4 where G = 6.6726 ⋅ 10 −11 Newton-meter2/kilogram 2 is Newton’s gravitational constant, c = 2.99792458 ⋅ 108 meter/second is the speed of light, is a fully antisymmetric tensor. The traces in the expression for CF are the Lorentz invariants of the electromagnetic field FikFik = –2 (E2– c2B2) and * FikFik = 4c (E∙B), where E is the electric field strength in Volt/meter and B is the magnetic field strength in Tesla. 58 The major discovery of this work is the expression for CF. The arguments that led to that expression are quite general and should defeat the criticism that CF was built on algebraically special black holes and will fail elsewhere. It would be useful to have a physical solution to the Einstein-Maxwell equations with non-zero currents that were not overwhelmed by symmetry. Then one could extend this analysis into the currents and see how the full second Bianchi identity works there. Further successful examples will give knowledge and comfort; but will not prove the generality for CF that is claimed here. However, a single credible counterexample or the observation of a magnetic monopole will vitiate this work. The small coupling constant required by the Einstein Gε equations, 8π 40 = 1.8382 ⋅ 10 −54 Volt −2 , permits the c superposition of electromagnetic fields. It has also led many to believe that the gravitational consequences of electromagnetism are insignificant. Nothing could be further from the truth. It is a matter of principle to unify classical electromagnetism and gravitation and the curvature-based unification presented here allows the electromagnetic field to appear as an algebraically special piece of curvature. This fulfills the nineteenth century speculation that gravity and electromagnetism are both aspects of Riemann curvature. This theory is not experimentally vacuous. The smallness of the coupling constant merely means that it could be along time before curvature detectors are sufficiently sensitive while withstanding an intense electromagnetic field; or sufficiently sensitive over very long distances having less intense fields. One wonders about the consequences of CF in the environment around very strongly magnetised neutron stars [7]. Further, what are its consequences in the Jacobi equation for geodesic separation that might apply to trans galactic travel? When two electromagnetic fields are superposed could the interaction terms in the curvature have any bearing on the problem of emission or absorption? The physical geometry of space-time is determined by specifying the metric tensor or the full curvature tensor [6]. The Einstein equations, which link classical mechanics to physical geometry, may be written as M1αβ γδ = 8π G 1 αβγ ρ 1 ρ − δγδρ Tλ − 4 δ λ T c4 2 and M 2αβγδ = Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 8π G 1 αβ − δγδ T c 4 12 H. Torres-Silva: Maxwell equations for a generalised lagrangian functional where T is the total stress-energy tensor and T its trace. There is no mention of Weyl’s conformal tensor that would complete the specification of the physical geometry. Placing constraints on Weyl’s conformal tensor is the novel feature of this work. Such constraints are meant to limit the solutions to those with a physical gravitational field. If the constraints are too limiting and they forbid physical solutions, then they will have to be altered. Similar constraints might deal with the embarrassing number of Ricci flat universes, which may or may not describe gravitational radiation. It is an open question whether the Einstein equations will have to be extended to the full curvature to handle gravitational radiation. [2] A. Einstein. “The Principle of Relativity”. Dover Publications, New York. 1952. [3] D. Jackson. Classical Electrodynamics. 3rd ed, pp. 273280, John Wiley & Sons, New York. 1998 [4] T.T. Wu and C.N. Yang. Concept of Non integrable Phase Factors and Global Formulation of Gauge Fields. Phys. Rev. D. Vol. 12, pp. 3845-3857. 1975. [5] H. Torres-Silva. “A new relativistic field theory of the electron”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 111-118. 2008. [6] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [7] W. E. Thirring. “An alternative approach to the theory of gravitation”. Ann. Phys. USA. Vol. 16, pp. 96-117. 1961. REFERENCES [1] C. W. Misner, K. S. Thorne, and J.A. Wheeler. Gravitation. W. H. Freeman, San Francisco. 1973. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 59 Ingeniare. Revista chilena de ingeniería, vol. 16 vol. 16 Nº 1, Nº 1, 2008, 2008 pp. 60-64 ASYMMETRICAL CHIRAL GAUGING TO INCREASE THE COEFFICIENT OF PERFORMANCE OF MAGNETIC MOTORS CALIBRE QUIRAL PARA AUMENTAR EL COEFICIENTE DE RENDIMIENTO DE MOTORES MAGNÉTICOS H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 29 de noviembre de 2007 Received: September 5, 2007 Accepted: November 29, 2007 RESUMEN Este trabajo introduce un recalibre físico quiral asimétrico usado para aumentar el coeficiente de rendimiento de un motor eléctrico. Se presenta una revisión de la teoría de calibres y se examina el descarte de la condición de Lorentz para obtener el recalibrado quiral. Se introduce el coeficiente de rendimiento y se analiza un motor magnético bajo el enfoque quiral que permite un proceso Beltrami. Palabras clave: Calibre quiral, motor magnético, Lorentz. ABSTRACT This paper introduces a physical chiral asymmetrical regauging to increase the coefficient of performance of an electric motor. A review of gauge theory and a consideration of the disposal of the Lorentz condition to achieve the chiral regauging are presented. The coefficient of performance terminology is introduced. A magnetic motor is discussed under a chiral approach which gives a Beltrami process. Keywords: Chiral gauge, magnetic motor, Lorentz. INTRODUCTION In this paper we investigate a process referenced in recent permanent magnet (PM) motor patents [1]. These specially designed PM motors claim to capture and use environmental energy as an additional energy input. The technique that allows this energy transfer to occur is called asymmetrical regauging (ASR). The physics behind the ASR process will be examined by reviewing gauge theory, the Lorentz gauge, and the effect of discarding the Lorentz gauge to include the vacuum chiral current density. The term coefficient of performance (COP) is introduced to adequately describe the energy transfer of these motors. REVIEW OF THE LORENTZ GAUGE To understand how environmental energy may be utilized in a motor, to theoretically gain a COP >1, a review of the Lorentz gauge is first presented. The equations used in standard practice to design motors are derived from 1 Maxwell’s equations. It has been accepted practice, to apply the Lorentz gauge to these equations to make them simpler. In abbreviated steps, we start with Maxwell’s equations [14]. All the information in Maxwell’s four equations can be reduced to the following equation: 2 ∂V ∂2 A ∇ A − µ0 ε 0 2 − ∇ ∇ • A + µ0 ε 0 ∂t = − µ0 ε 0 J (1) ∂t The Lorentz gauge is then applied to reduce the complexity of these two equations. Mathematically, applying any gauge, is represented by (2,3) where gamma is an arbitrary, differentiable scalar function called the gauge function [5]. ) V (t , x ) V ′(t , x ) = V ( t , x − (2) ) (3) A(t , x ) A'(t , x ) = A(t , x ) + ∇Γ ( t , x Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 60 ∂Γ (t , x ) ∂t H. Torres-Silva: Asymmetrical chiral gauging to increase the coefficient of performance of magnetic motors To specifically apply the Lorentz gauge, the “Lorentz Condition” is imposed by choosing a set of potentials (A, V) such that ∇ • A = µ0 ε 0 ∂V ∂t (4) Equations (4) are the ones on which all the equations for motor design are currently based. Since the magnetic vector field and the voltage scalar field are both changed at the same time, this can be referred to as symmetrical gauging, so 2 ∇ A − µ0 ε 0 ∇ 2V − µ0 ε 0 ∂2 A = − µ0 J ∂t 2 ∂2V ∂t 2 =− 1 ρ ε0 (5) ) −∇ ( ∇ • A + µ0 ε 0 (6) ∂V ∂t (7) ASYMMETRICAL REGAUGING ∂V −∇ ( ∇ • A + µ0 ε 0 = µ0 j ∂t (8) and JA = σEA (9) Asymmetrical regauging is the equivalent of discarding the Lorentz condition. Further ASR is any process that changes the potential energy of a system and also produces a net force in the process [6]. Understanding the vacuum and its polarization are essential steps to utilizing energy from the environment. According to T.D. Lee, he define the vacuum state as the lowest energy state of the system [7]. Hence, the vacuum is considered to be the worst case model of the environment. Maxwell’s equations must be modified, in the vacuum, since ρ and J vanish. Classically, this causes the Ampere-Maxwell law to be revised. ∇ × B = µ0 ε 0 ∂E ∂t ∂D , ∂t (11) where D = ε0E + PA and B = µ0H + µ0M . (12) This leads to the result that ∂PA ∂(ε T ∇ × E) = jA = . ∂t ∂t (13) (10) D = D = ε 0 E + PA = ε 0 E + ε T ∇ × E (14) B = µ0 H + µ0 M = µ0 H + µ0 T ∇ × H. (15) and Hence, T is the chiral factor which allows to extract vacuum energy, Thus discarding the Lorentz condition in classical electrodynamics leads to new equations that include the effect of the vacuum polarization. Invoking the Lorentz condition in classical electromagnetics discards the vacuum polarization component that exists in quantum electrodynamics [6] since ) ∇ × H = jA + Here we are considered for D, B a chiral term so, [14] Notice that (5) is (1) with the middle term, (7), eliminated. In [6, 8], the authors show that if the vacuum current density factor is included, the above equation changes to COEFFICIENT OF PERFORMANCE The energy transfer of electrical machinery is generally described using the term “efficiency”. Efficiency is defined as the power output divided by the total power input from all sources. The underlying assumption when defining the energy of any system is that all the energy input is from an identifiable and measurable energy sources(s). In an ideal system the efficiency would be one. The equation for efficiency (η) is normally stated [2] as η= POut [ Watts]. PIn (16) Coefficient of performance is a broader energy transfer term that defines the measure of energy output divided by the operator’s energy input. COP is used to describe any machinery that has additional energy input from the environment. For example, COP is commonly used to describe the energy exchange of heat pumps [3] or solar collectors. Unlike the term “efficiency”, the COP can be greater than one. See figure 1 for the energy flow diagram. The following equation defines COP mathematically. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 61 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 COP ≡ POut PIn (Operator ) [ Watts] (17) B= ∇× A Energy Input from the Environment Energy Input from Operator Heaviside theory the magnetic field B is connected with its generating vector potential A by the relation (18) In TTS theory this law has to be replaced in the simplest case by [14-16]. Dissipative Elements Energy Output Figure 1. Energy flow for machines described by COP. CHIRAL MAGNETIC RESONANCE EFFECTS Besides electrical spacetime devices, self-running magnetic motors have been constructed in a repeatable and reproducible way ([4], see also figure 2, [1, 2]). The functioning of these devices cannot be explained by Maxwell-Heaviside electrodynamics but it can be explained with the chiral electrodynamics. B = ∇ × (1 + T ∇×) A (19) where ω is the spin connection vector again. In the following we discern between the magnetic field of the assembly and the magnetic field of the surrounding spacetime itself, denoted by Bs. The torque T acting on the magnetic dipolo moment m of the assembly due to the external field Bs is T = m × Bs (20) Under normal conditions there is no resulting torque because of Bs = 0. Spacetime is force free and does not bear a magnetic field. So there is no rotation of stationary magnets. The situation becomes different if it were possible to create a magnetic field from spacetime. In order to understand how this can be achieved we have first to look closer on the fields of the surrounding spacetime. In case of Bs = 0 it follows from Eq. (19) that ∇× A=− 1 A T (21) where A is the vector potential of the spacetime itself. In contrast at Maxwell-Heaviside theory, this is no gaugable quantity but is uniquely defined and has a physical meaning. In case of A consisting of plane waves, ω takes a special form and Eq. (21) can be expressed as ∇ × A = kBA with a wavelength kB = 1/T, [14]. Figure 2. Johnson magnetic motor [1] Schematic representation of spacetime vector potential for a magnetic assembly: magnet stator including rotor magnets, flow with vortices (force field). As was described in the preceding section of this edition, the Cartan torsion of spacetime introduces the spin connection as an additional quantity occurring in the laws of nature so that they take a generally covariant form. In particular this holds for the magnetic field. In Maxwell 62 This equation is known as Beltrami equation in the literature [7]. It describes a flow with longitudinal vortices where streamlines have a helical form. In the case of chiral potential this means that there is no force field present, in accordance with our prior assumption. Taking the curl at both sides of Eq. (21) gives ∇ × (∇ × A) = ∇ × (− 1 A) ⇒ (∇ 2 + k B2 ) A = 0 (22) T This is a Helmholtz equation for the spacetime surrounding the magnetic assembly. Because of the assumption of Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Asymmetrical chiral gauging to increase the coefficient of performance of magnetic motors Bs = 0 there is no torque on the magnets, they remain at rest. Torque can be created by disturbing the Beltrami flow. For the Helmholtz equation this means that the balance to zero is no more fulfilled. Assuming a periodic imbalance leads to (∇ 2 + 1 T2 ) A = Rcos( k ⋅ r ) (23) with a vector R having units of inverse square meters, therefore it can be interpreted as a curvature. κ is a wave vector and can be interpreted as the frequency of a driving force which the right hand side of the equation constitutes. If restricted to one coordinate (x) the equation reads ( ∂2 ∂x 2 + 1 T2 ) Ax = Rx cos( kr ) (24) It can be seen that this is a differential equation for a resonance without damping (α = 0). The resonant oscillation occurs in case k = 1/T with A x going to infinity. Because of violating the Beltrami condition, A creates a force field according to Eq. (24), which creates a torque being big enough to spin the magnetic assembly and to maintain the rotation. This is the mechanism how spacetime is able to do work via a resonance mechanism. In total we have shown qualitatively how energy can be obtained from spacetime via magnetic assemblies. This could be the basis for development of an engineering for such devices. It has already been shown in quantum electrodynamics that the vacuum behaves like a dielectric [9]. The vacuum sprouts positron-electron pairs as shown in the Feynman diagram. It has been shown that by discarding the Lorentz gauge, the Ampere-Maxwell law equation evolves to include the current density of the vacuum. Also, the task remains to develop the equation and determine the process to apply it to magnetic motors. Future work is planned to study the magnetic motor to ascertain the exact mechanism involved that allows this motor to exchange energy with the vacuum. CONCLUSION It has been suggested in at least one recent patent that it is possible to make use of energy from the environment as an extra source in permanent magnet motors. This paper presents a new term “coefficient of performance’ which may be used to more adequately describe the energy transfer of such an electromechanical system. This paper also shows the physics behind one possible explanation for this phenomenon. The physics is explained by first considering how the Lorentz gauge is used to give us the design equations used today. The Lorentz gauge is then discarded to show how the current density of the vacuum may be included in the Maxwell-Ampere equation. They term asymmetrical regauging is introduced for this procedure. The particle physics explaining the vacuum polarity is introduced. A thorough investigation for practical application of this new equation is encouraged by suggestion that further study be applied to the “Wankel motor”. Future work is planned to study the magnetic motor to ascertain the exact mechanism involved that allows this motor to exchange energy with the vacuum. REFERENCES [1] J. Bedini. “Device and Method of a Back EMF Permanent Electromagnetic Motor Generator”. US: Bedini Technology, Inc. 2002. [2] A. Trzynadlowski. “Introduction to Modern Power Electronics”. New York: John Wiley & Sons. Inc. 1998. [3] K. Annamalai and I. Puri, “Advanced Thermodynamics Engineering”. New York. CRC Press. 2002. [4] D. Griffiths. “Introduction to Electrodynamics”. New York. Prentice-Hall. 1999. [5] B. Thide. “Electromagnetic Field Theory”. Uppsala: Upsilon Books. 2004. [6] P.K. Anastasovski. “Classical Electrodynamics without the Lorentz Condition: Extracting Energy from the Vacuum”, Physica Scripta. Vol. 61, p. 513. 1999. [7] T.D. Lee. “Particle Physics and Introduction to user Field Theory”. New York: Harwood Academic Publishers. 1981. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 63 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 [8] B. Lehnert and S. Roy. “Extended Electromagnetic Theory”. Singapore: World Scientific. 1998. [9] D. Griffiths. “Introduction to Elementary Particles”. New York. John Wiley & Sons, Inc. 1987. [10] [11] [12] 64 M.W. Evans and H. Eckardt. “Spin connection resonance in magnetic motors”. Documento 74 en la serie sobre ECE. URLs: www.aias.us D. Reed. “Beltrami vector fields in electrodynamics – a reason for reexamining the structural foundations of classical field physics?” Modern Nonlinear Optics, Part 3. Second Edition. Advances in Chemical Physics. Vol. 119. Recopilado por Myron W. Evans. John Wiley & Sons. 2001. G. Kasyanov. Phenomenon of electrical current rotation in nonlinear electric systems, Comment on the Violation of the law of charge conservation in the system, New Energy Technologies. Vol. 2 Nº 21, pp. 28-30. 2005. [13] “Motor de Johnson de imanes permanentes”. US Patent 4151431. 1979. [14] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [15] H. Torres-Silva. “Chiral field ideas for a theory of matter”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 36-42. 2008. [16] H. Torres-Silva. “A metric for a chiral potential field”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 91-98. 2008. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, pp. 65-71 H. Torres-Silva: Podolsky’s electrodynamics under a chiral approach PODOLSKY’S ELECTRODYNAMICS UNDER A CHIRAL APPROACH ELECTRODINÁMICA DE PODOLSKY BAJO UN ENFOQUE QUIRAL H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 12 de diciembre de 2007 Received: September 5, 2007 Accepted: December 12, 2007 RESUMEN En este trabajo se muestra que un nuevo esquema conduce a la electrodinámica de Maxwell y a la electrodinámica de Podolsky, partiendo con relaciones constitutivas quirales en lugar de la usual ley de Coulomb. Palabras clave: Electrodinámica de Podolsky, ecuaciones de Maxwell. ABSTRACT In this paper we show that a new approach leads to Maxwell’s and Podolsky’s electrodynamics, provided we start from chiral constitutive relations instead of the usual Coulomb’s law. Keywords: Podolsky’s electrodynamics, Maxwell’s equations. INTRODUCTION “On the Question of Obtaining the Magnetic Field, Magnetic Force, and the Maxwell Equations from Coulomb’s Law and Special Relativity”, where it can be shown that any attempt to derive Maxwell equations from Coulomb’s law of electrostatics and the laws of special relativity ends in failure unless one makes use of additional assumptions. Kobe [1] gave the answer: all one needs to arrive at Maxwell equations is (i) Coulomb’s law; (ii) the principle of superposition; (iii) the assumption that electric charge is a conserved scalar (which amounts to assuming the independence of the observed charge of a particle on its speed [2]; (iv) the requirement of form invariance of the electrostatic field equations under Lorentz transformations, i.e. the electrostatic field equations are thought as covariant space-space components of covariant field equations. Neuenschwander and Turner [3] obtained Maxwell equations by generalizing the laws of magnetostatics, which follow from the Biot-Savart law and magnetostatics, to be consistent with special relativity. 1 The preceding considerations leads us to the interesting question: what would happen if we followed the same route as Kobe did, using an electrostatic force law other than the usual Coulomb’s one? We shall show that if we start from the force law proposed by Podolsky [4], i.e., F( r) = QQ ' 4πε 0 1 − er / a e − r / a r − ra r r2 (1) where a is a positive parameter with dimension of length, Q and Q’ are the charges at r and r = 0, respectively, and F(r) is the force on the particle with charge Q due to the particle with charge Q’ and if we follow the steps previously outlined, we arrive at the outstanding electrodynamics derived by Podolsky in the early 40 s. In other words, we shall show that the same route that leads to Maxwell equations leads also to Podolsky equations. A notable feature of Podolsky’s generalized electrodynamics is that it is free of those infinities which are usually associated with a point source. For instance, (1) approaches a finite value QQ’/8πε0 a2 as r approaches zero. Thus, unlike Coulomb’s law, Podolsky’s electrostatic force law is finite in the whole space. Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 65 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 In Sec. II we derive the equations that make up Podolsky’s electrodynamic under the chiral approach [5, 7, 11]. In Sec. III we arrive at Podolsky’s field equations by generalizing the equations of Sec. II, so that they are form invariant under Lorentz transformations. For consistency, we show in Sec. IV that (1) is indeed the electrostatic force law related to Podolsky’s theory. The conclusions are presented in Sec. V. Natural units = c = 1,are used throughout. As far as the electromagnetic theories are concerned, we will use the Heaviside-Lorentz units with c = 1. To begin with let us establish some conventions and notations to be used from now on. We use the metric tensor 1 0 0 0 0 −1 0 0 = 0 0 −1 0 0 0 0 −1 with Greek indices running over 0, 1, 2, 3. Roman indices i, j etc, - denote only the three spatial components. Repeated indices are summed in all cases. The space-time four vectors (contravariant vectors) are x µ = (t , x ) , and the covariant vectors, as a consequences are x µ = (t , − x ) . The four-velocities are found, according to dx µ = γ (1, v ) dτ uµ = γ (1, − v ) uµ = where τ is the proper time (dτ2 = dt 2 – dx2), and γ denotes dt / dτ = (1–v2) –1/2. Let us then generalize (6) so that it satisfies the requirement of form invariance under Lorentz transformations. To do that, we write the mentioned equation in terms of the Levi-Civita density εnml, which equals +1 (–1) if n, m, l is an even(odd) permutation of 1, 2, 3, and vanish if two indices are equal. The curl equation becomes εjkl∂El = 0 (2) It we define the quantities 66 F0i = -F0i = Ei = –Ei εjkl∂kF0l = 0 We imagine now the curl law to be the space-space components of a manifestly covariant field equation (invariance under Lorentz transformations). As a result, we get εµαvαβ ∂vFαβ = 0 (4) where Fαβ is a completely antisymmetric tensor of rank four with ε0123 = + 1. CHIRAL FIELD EQUATIONS η µν = ηµν Equation (10) can be rewritten as (3) Of course, this generalization introduces the components F00, F01, and Flk, for which at this point we lack a physical interpretation. Note that the F0i are not necessarily static anymore. On the other hand, as is well-known, the charge density ρ is defined as the charge per unit of volume, which has as a consequence that the charge dq in an element of volume d 3 x is dq = ρd 3x. Since dq is a Lorentz scalar [3], ρ transforms as the time-component of a four-vector, namely, the time-component of the charge-current four-vector u = ( ρ, j ) . The electric charge, in turn, is conserved locally [3], which implies that it obeys a continuity equation ∂µ j µ = 0 (5) Assuming e jω t time dependence, Maxwell’s time-harmonic equations [1] for isotropic, homogeneous, linear media are ∇ × E = –jωB ∇ • B = 0 (6) ∇ × H = –jωD + J ∇ • D = ρ (7) Chirality is introduced into the theory by defining the following constitutive relations to describe the isotropic chiral medium [5, 7] D = ε E + εT ∇ × E (8) B = µ H + µT ∇ × H (9) Where the chirality admittance T indicates the degree of chirality of the medium, and the ε y µ are permittivity and permeability of the chiral medium, respectively. In natural units ε = 1, µ = 1 (the factor 1/4 is absorved in Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Podolsky’s electrodynamics under a chiral approach the current value). Since D and E are polar vectors and B and H are axial vectors, it follows that ε and µ are true scalars and T is a pseudoscalar. This means that when the axes of a right-handed Cartesian coordinate system are reversed to form a left-handed Cartesian coordinate system, T changes in sign whereas ε and µ remain unchanged. Since ∇ • B = 0 always, this conditions will hold identically if B is expressed as the curl of a vector potential A since the divergence of the curl of a vector is identically zero. Thus by rearranging equation (7) we have (1 − ko2T 2 )∇ × B = jω E + ( J + T ∇ × J ) (1 + T 2 )∂ν F µν = j µ 0 0 0 + jordinary ≈ jordinary Now if j 0 = jchiral , we can imagine now a particle of mass m and charge Q at rest in a lab frame where there is an electrostatic field E. Newton’s second law allows us to write dp = QE dt dp = Qγ E = Qu 0 E dτ where u 0 is the time part of the velocity four-vector u µ. For the component along de xi direction, we have (1 + T 2 ∂t 2 )∇ × B = jω E + ( J + T ∇ × J ) dpi = Qu 0 F 0 i dτ or (1 + T 2 ∂t 2 )(∇ × B − ∂E ∂ ∂2 ) = (−T 2 2 E + 2T ∇ × E ) + ( J + T ∇ × J) ∂t ∂t ∂t (11) In order that the right-hand side of this equation transforms like a space-component of a four-vector, it must be rewritten as dpi = Quν F ν i dτ In relativistic form we have (1 + T 2 ∂i ∂i )∂ j E j = j 0 (12) 0 0 where j 0 = jchiral is given by a chiral current + jordinary plus a ordinary current of electrons and protons, the chiral current is given in ref [1], ∂i = ∂ / ∂x i and ∂i = ∂ / ∂xi . Note 2 i 0j 0 that ∂i = −∂i Using (11), yields (1 + T ∂i ∂ )∂ j F = j In order that the left-hand side of the preceding equation transforms as the time-component of a four-vector, we must write it as (1 + T 2 )∂ j F 0 j = j 0 whose covariant generalization is dp µ (16) = Quν F νµ dτ If (16) is multiplied by p µ = muµ, where m is the rest mass, the result is 1 d ( p p µ ) = Qmuµ u µ F νµ 2 dτ µ However, 2 pµ p µ = m 2γ 2 (1 − v ) = m 2γ 2γ −2 = m 2 where (15) In terms of the proper time this becomes (10) In terms of (3) can now be rewritten as (14) Therefore, we come to the conclusion that i µν 2 2 2 = ∂i ∂ = η ∂ µ ∂ν = ∂ / ∂t − ∇ (13) The requirement of form invariance of this equation under Lorentz transformations leads then to the following result uµ u µ F νµ = 0 Using this result Kobe [1] and Neuenschwander and Turner [3] showed that Fvµ is an antisymmetric tensor Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 67 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (Fvµ = –Fµv). Since Fvµ is an antisymmetric tensor of second rank, it has only six independent components, three of which have already been specified. We name therefore the remaining components containing the Lorentz force. For v = 0, (15) assumes the form dU = Qv ⋅ E dt 1 B = ε ilm Flm 2 (23) i (17) Note that F kl = −klj B j . Writing out the components of (17) explicitly, B1 = F23 = F 23 = − B1 B 2 = − F13 = − F 13 = − B2 B 3 = F12 = F 12 = − B3 Hence, a clever physicist who were only familiar with Podolsky’s electrostatics and special relativity could predict the existence of the magnetic field B , which naturally still lacks physical interpretation. The content of (12) and (14) can now be seen. For µ = 0, (12) gives ∇ ⋅ B = 0 (18) where U = p 0 is the particle’s energy. Accordingly, our smart physicist, who was able to predict the B field only from its knowledge of electrostatics and special relativity, can now-by making judicious use of (22) and (23) - observe, measure and distinguish the B field from the E field of (15). The new field couples to moving electric charge, does not act on a static charged particle, and, unlike the electrostatic field, is capable only of changing the particle’s momentum direction. Equations (18-21) make up Podolsky’s higher-order field equations. Of course, in the limit T = 0, all the preceding arguments apply equally well to Maxwell’s theory. Two comments fit in here: (1) Equation (14) is consistent with the continuity equation (13). In fact, if the divergence of (14) is taken, we obtain (1 + T 2 )∂ µ ∂ν F µν = ∂ µ j µ showing that there are no magnetic monopoles in Podolsky’s electrodynamics, while for µ = i we obtain ∂B ∇×E=− ∂t (19) which says that time-varying magnetic fields can be produced be B fields with circulation. The components µ = 0 and µ = i of (14) give, respectively, (1 + T 2 )∇ ⋅ E = ρ (1 + T 2 )(∇ × B − ∂E )= j dt (20) (21) For v = i, (16) becomes 68 (2) As was recently shown [8], it is not necessary to introduce a formula for the force density fµ representing the action of the field on a text particle. We have only to assume that (– fµ) is the simplest contravariant vector constructed with the current jµ and a suitable derivative of the field Fµv. Applying this simplicity criterion to Podolsky’s electrodynamics, we promptly obtain f µ = − F µν jν which are nothing but a generalization of Gauss and Ampère- Maxwell laws in this order. Since Fµv is an antisymmetric tensor ∂ µ ∂ν F µν is identically µ zero. On the other hand, according to (14) ∂ µ j . Thus, the equation in hand is identically zero; where, as we have already mentioned, j µ = ( ρ, j ) . Therefore, f 0 = − F 0 i ji = E ⋅ j and dp = Q( E + v × B) dt (22) f k = − F k β jβ = F 0 k j0 + F ik ji = ( ρ E + j × B) k Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Podolsky’s electrodynamics under a chiral approach Thus, the force density for Podolsky’s electrodynamics is the same as that for Maxwell’s electrodynamics, namely, the well-known Lorentz force density. THE FORCE LAW FOR PODOLSKY’S ELECTROSTATICS V ( k ) = (2π )3 / 2 T 2 k 2 ( k 2 + So, V (r ) = We show now that (1) is indeed the force law for Podolsky’s electrostatics. It follows That F = QE E = −∇V V (r ) = (1 − T 2 ∇ 2 )∇ 2V (r ) = − ρ(r ) For a charge Q at the origin of the radius vector this equation reduces to (1 − T 2 ∇ 2 )∇ 2V (r ) = −Qδ 3 (r ) V ( k ) = − i k ⋅r ∫ d ke V (k ) 3 (2π )3 / 2 1 (2π )3 / 2 3 ik ⋅r d re V (r ) ∫ (26) (27) where d 3 k and d 3r , respectively, stands for volumes in the three-dimensional k-space and the coordinate space. If we substitute (26) into (25) and take into account that δ 3 (r ) = we obtain 1 (2π )3 / 2 ) e − i k ⋅r k 2 (k 2 + 1 T2 ) 1 − e−r / T ) r (2π )2 r Q ( 1 − e−r / T e−r / T r E = −∇V (r ) = Q / 4π ( − ) rT r (28) r2 It follows then the force law for Podolsky’s electrostatics is QQ ' 1 − er / a e − r / a r ( − ) 4πε 0 ra r r2 F( r) = (25) We solve this equation using the Fourier transform method. First we define V ( k ) as follows: 1 T2 Accordingly, the electric field due to a charge Q at the origin is given by Eq. (20) can then be rewritten as V (r ) = ∫d k 3 (2π )3 T 2 (24) ρ(r ')(1 − e − R / T ) V (r ) = ∫ d 3r ' 4π R Q 1 Integral (28) may be found in any textbook on the theory of functions of a complex variable [8]. As a result, where Q which is nothing but the force law for which we were looking (see Eq. (1)). Recently an algorithm was devised which allows one to obtain the energy and momentum related to a given field in a simple way [8]. Using this prescription we can show that in the framework of Podolsky’s electrostatics the energy is given by ε field = 1 3 2 d x E + T 2 (∇ ⋅ E ) 2 2∫ Making use of the expression for the electrostatic field we have just found, we promptly obtain 3 − i k ⋅r d ke ∫ ε field = Q2 2T which tells us that the energy for the field of a point charge has a finite value in the whole space. This is indeed a important feature of Podolsky’s generalized electrodynamics. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 69 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Equations (28) and ∇ × E = 0 are the fundamental laws of Podolsky’s electrostatics. We will slightly analyze an interesting feature of Podolsky’s electrostatics by computing the flux of the electrostatic field across a spherical surface of radius R with a charge Q at its center. Using (28) we arrive at the result ∫ E ⋅ dS = Q(1 − (1 + R / T )e R/T ) Rs = 2mGN / c 2 = T which tells us that ∫ E ⋅ dS = 0, ∫ E ⋅ dS = Q, R << T R >> T Therefore, a sphere of radius R << T, unlike what happens in Maxwell’s theory, shields its exterior from the field due to a charge placed at its center. We remark that in Maxwell’s electrostatics a closed hollow conductor shields its interior from fields due to charges outside, but does not shield its interior from the field due to charges placed inside it [6]. Note, however, that in order not to conflict with well established results of quantum electrodynamics, the parameter a must be small. Incidentally, it was shown recently that this parameter is of the order of magnitude of the Compton wavelength of the neutral vector boson z, λ ≈ 2.15 × 1016 cm, which mediates the unified and electromagnetic interactions [7]. ABOUT ELECTRON SIZE In actuality, we don’t know how big the electron is. All of our measurements point to the electron having no size, but we haven’t measured down far enough. The electron, if it were a black hole, would have to be smaller than 1x10 -57 meters, quite a bit smaller than we’ve ever measured! But, another reason that the electron is not considered a black hole, even assuming that its radius is infinitely small, is that it obeys the laws of quantum field theory. Normally, when one speaks about black holes, one is talking about them in terms of Einstein’s theory of general relativity. No one is sure how nature merges Einstein’s theory with quantum field theory. So we aren’t really sure if the idea of a black hole makes sense on distance scales as small as the (possible) radius of the electron.. Our best idea to unify general relativity with quantum field theory is an idea called string theory, but string theory still appears to be a long way from being put to any experimental tests. 70 According to general relativity all massive objects possess an event horizon known as the Schwarzschild radius. This is a surface in three-dimensional space surrounding the object. Any light rays emitted from within this radius are unable to escape. If an object exists entirely within its Schwarzschild radius then it is referred to as a black hole. This radius grows with the mass of the object according to the formula: Notice that for our sun we obtain a radius of 2.95 kilometers. This is well within the interior of the sun so it is not a black hole. For an electron we would obtain 1.35 x10 -51 m. If the electron were a point particle, it seems it would be within even this fantastically small radius and would indeed be a black hole! However, as a subatomic particle the electron is also a quantum-mechanical object. Recall the wave-particle duality hypothesis of de Broglie. All objects have a wave function which represents the probability of locating that object at a particular point in space. During a collision this wave function momentarily collapses and the particle is truly at one ‘point’ in space, but it immediately starts to spread out again after the instant of collision. The typical spread of the wave-function of a point particle is given by the Compton wavelength: λ = h / mc = 2π / mc = 4π T , in according with our chiral theory and this can be considered the true quantum-mechanical “size” of the object [7]. Notice that this size gets smaller as the mass gets larger. For you or I or the sun this quantum-mechanical size is essentially zero (there’s not much uncertainty as to where the sun is!) but for an electron the size is 2.42 x10 -12 m. Though still small, this is much, much larger than the Schwarzschild radius. So quantum-mechanically most of the electron is ‘outside’ its event horizon. That’s why it and other subatomic particles are not black. FINAL REMARKS Despite the simplicity of its fundamental assumptions, Podolsky’s model has been little noticed. Currently some of its aspects have been further studied in the literature [7, 8, 12, 13]. In particular, the classical self-force acting on a point charge in Podolsky’s model was evaluated and it was shown that in this model, unlike what happens in Maxwell’s electrodynamics, the electromagnetic mass is finite and enters the particle’s equation of motion in a form consistent with special relativity. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Podolsky’s electrodynamics under a chiral approach To conclude we call attention to the fact the same assumptions that lead to Maxwell’s equations lead also to Podolsky’s equations and our chiral equations, provided we start from a generalization of the Coulomb’s law instead of the usual Coulomb’s law. Yet, in spite of the great similarity between the three theories, Podolsky’s generalized electrodynamics and chiral electrodynamics lead to results that are free of those infinities which are usually associated with a point source. [7] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [8] Antonio Accioly, Am. J. Phys. Vol. 65, p. 882. 1997. [9] F.W. Byron, Jr. and R.W. Fuller. “Mathematics of Classical and Quantum Physics”. Addison-Wesley Publishing Company. New York. Vol. 2, pp. 366367. 1970. [10] Jon Mathews and R.L. Walker. “Mathematical Methods of Physics. W.A. Benjamin, Inc. New York, p. 58. 1965. [11] H. Torres-Silva. “A new relativistic field theory of the electron”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 111-118. 2008. REFERENCES [1] D. H. Kobe. Am. J. Phys. Vol. 54, p. 631. 1986. [2] A. Accioly, Brazilian Journal of Physics. Vol. 28, p. 35, 1998. [3] D. E. Neuenschwander and B. N. Turner, Am. J. Phys. Vol. 60, p. 35. 1992. [4] B. Podolsky, Phys. Rev. Vol. 62, p. 66. 1942. [12] L.V. Belvedere, C.P. Natividade, C.A.P. Galvão, Z. Phys. C56, p. 609. 1992. [5] H. Torres-Silva. “A metric for a chiral potential field”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 91-98. 2008. [13] A.J. Accioly and H. Mukai, Z. Phys. C 75, p. 187. 1997. [6] B. Podolsky and P. Schwed, Rev. Mod. Phys. Vol. 20, p. 40. 1948. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 71 Ingeniare. Revista chilena de ingeniería, vol. 16 vol. 16 Nº 1, Nº 1, 2008, 2008 pp. 72-77 SPIN AND RELATIVITY: A SEMICLASSICAL MODEL FOR ELECTRON SPIN ESPÍN Y RELATIVIDAD: UN MODELO SEMICLÁSICO PARA EL ESPÍN DEL ELECTRÓN H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 12 de diciembre de 2007 Received: September 5, 2007 Accepted: December 12, 2007 RESUMEN La relación cuántica m0 c 2 = ω 0 puede ser considerada como la equivalencia entre dos expresiones para la energía en reposo de la partícula, si ω0 se considera la velocidad angular de giro de partículas en su marco en reposo. La invariancia del intervalo relativista espacio- tiempo ds 2 = c 2 dt 2 − dr 2 para tal movimiento de espín (isotropía espacial) conduce al impulso de espín Sz = / 2 para todas las partículas sin estructura, independientemente de sus valores de masa. La inercia es una propiedad intrínseca debido al movimiento de spin de las partículas. Los signos de los valores de masa que se producen en las soluciones de la ecuación de Dirac podrían estar relacionados con la orientación del espín, según lo sugerido por la relación fundamental ± m0 c 2 = ± ω 0 . Además se refiere al electrón, y más concretamente con dos de las principales propiedades: su función de onda compleja, y su giro intrínseco. En su interpretación estándar no hay una clara imagen del espacio real de lo que es oscilante en la onda, o lo que está girando en el espín. De hecho, es la creencia generalizada de que ningún modelo sencillo puede dar cuenta de la rotación de espín de los electrones. Por el contrario, en el presente trabajo se muestra que un crudo modelo mecánico de rotación de vórtices coherentes explica cuantitativamente no sólo el espín, sino también la propia función de onda. Las consecuencias de esto son examinadas en este trabajo. Palabras clave: Espín, relatividad, ecuación de Dirac, función de onda, modelo semiclásico. ABSTRACT The quantum relationship m0 c 2 = ω 0 may be regarded as the equivalence between two expressions for the rest energy of the particle, if ω0 is considered as the spin angular velocity of the particle in its rest frame. The invariance of the relativistic space-time interval ds 2 = c 2 dt 2 − dr 2 to such a spin motion (space isotropy) leads to the spin momentum Sz = / 2 for all structureless particles irrespective of their mass values. The inertia is an intrinsic property due to the spin motion of the particles. The signs of the mass values occurring in the solutions of the Dirac equation might be related to the orientation of the spin motion, as suggested by the fundamental relationship ± m0 c 2 = ± ω 0 . In addition, it deals with the electron, and more specifically with two key properties: its complex wavefunction and its intrinsic spin. In the standard interpretation, there is no clear real-space picture of what is oscillating in the wave, or what is rotating in the spin. Indeed, it is generally believed that no simple model of rotation can account for the spin of the electron. On the contrary, the present paper shows that a crude mechanical model of coherently rotating vortices can account quantitatively not only for spin, but also for the wavefunction itself. The implications of this are discussed in this paper. Keywords: Spin, relativity, Dirac equation, wavefunction, semiclassical model. SPIN AND RELATIVITY As we know, the spin cannot be motivated in the frame of classical mechanics. Even in the nonrelativistic quantum 1 theory, the nature of spin remains unclear. The spin results solely from Dirac’s equation [1]. Although the Pauli and Dirac matrices undoubtedly show the spin existence, there is some mystery as to the physical origins of and Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 72 H. Torres-Silva: Spin and relativity: a semiclassical model for electron spin in the visualization of the spin [2, 3]. One may says that spin is an intrinsic property of the matter. It must have to do with relativity even though this connection is not entirely understood [4]. In this paper, I shall try to sketch a simple motivation for the existence of spin starting from the fundamental relationship, and namely: m0 c 2 = ω 0 (1) where m 0 is the rest mass and m 0 c2 the rest energy of the particle. If the particle is considered as being a physical torus spinning with angular velocity ω0 (Figure 1a, and 1b), the right-hand side of equation (1) should be regarded as another relativistic expression for the rest energy. ds 2 = c 2 dt 2 − dr 2 (2) Every physical process, such as translation, rotation, etc., must be related to expression (2). The invariance of ds2 to uniform translation (space homogeneity) leads to the Lorentz corrections [6]. D T P x The particle as a moving object must also obey another fundamental relationship, namely the relativistic elementary “space-time interval” between the physical events of the particle: Let us now consider the uniform rotation (spin) of the reference frame, with angular velocity ω0 in x,y-plane around the z-axis, as shown in Figure 1. In this case, we have z ω0 Therefore, it is reasonable to assume that the rest energy of a particle is related to its spin motion, which is only allowed in that system [3]. This reasoning allows us to regard ω 0 as an equivalent expression for the rest energy of the particle. P’ y x → x '; y → y '; z = z '; dϕ t → t ' = t + dt; ω 0 = = const; dt and ds2 (equation 2) becomes r⊥2 = x2 + y2 (a) rp (b) Figure 1. a) A spinning reference frame. b) A torus electron model We may argue the existence of the spin motion in the space-time frame of the particle as follows: unlike space coordinates, time is not directly measurable (observable). The simplest way to estimate time is to consider uniform motion. One can obtain time by comparing covered distances ([5]: time is the number of motion). This leads to the necessity of introducing motion in the space-time reference frame. The only allowed motion in the rest frame of the particle should be that of rotation (spin). 2 ds '2 = (c 2 − r⊥2 ω 0 ) − 2ω 0 ( ydx − xdy)dt − dr 2 (3) where r⊥2 = x 2 + y 2 represents the radius perpendicular to the rotation z-axis, i.e. the distance from origin to the points P, P’, etc. (Figure 1 ). Expression (3) can easily be derived.[7] Note that the linear velocity u = r⊥ ω 0 must obey the restriction imposed by 2 the special relativity, i.e. c 2 > r⊥2 ω 0 . For the limit case c = r⊥ ω 0 , the rotating space becomes ‘closed’ with the lateral radius r⊥ . This is all what Fock mentioned [7]. But such a rotating empty space is physically meaningless. We must therefore actually ascribe this rotation to the particle situated in the origin of this space. For that particle, the set of points P, P’, etc. for which c = r⊥ ω 0 , should be considered the closure (frontier) of the particle. We do not know too much about the shape of a spinning particle, considered as being structureless, but we can at least define for it a radial extension equal to: Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 73 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 r⊥ = c / ω 0 (4) From equations (1) and (4), we have: r⊥ = / m0 c = c (Compton radius). (5) This result shows that all structureless particles with rest mass cannot be pointlike. For the limit case, c = r⊥ ω 0 , expression (3) becomes: ds '2 = 2ω 0 ( xdy / dt − ydx / dt )dt 2 − dr 2 2 ω 0 ( xdy / dt − ydx / dt ) = c 2 . (7) If we use now the fundamental relationship from equation (1), we have Sz = m0 ( xdy / dt − ydx / dt ) = m0 r × u = / 2 , (8) z where Sz is the classical expression for the z-component of angular momentum. The result is interesting. This mainly shows that the / 2 value of the angular (spin) momentum preserves the space isotropy. It must be universal and characteristic for all structureless particles with finite rest mass, independent of their mass values. If the two possible rotations around z-axis are considered { } (ω 0 ∈ + ω 0 ; − ω 0 ) corresponding to x → y and y →x rotations, both the ± / 2 values conserve the space isotropy. The time reversal t→-t in (8) leads to − / 2 value. Note that for ± ω 0 values equation (1) becomes ± ω 0 = ± mo c 2 . The mass values ±m 0 occurring in 74 sense of the spin angular velocity ω 0 . Moreover, according to (1) the rest mass m 0 is tightly connected with the spin motion represented by ω 0. Therefore, a structureless elementary particle with a finite rest mass and radial extension behaves as a small mechanical top, its inertial properties not necessarily being conditioned by the gravitational interaction with the matter in universe (Mach’s principle). (6) We have already mentioned the invariance of to the uniform translation (space homogeneity). Let us now consider the invariance of ds2 to the uniform rotation (space isotropy). In other words, for a noninteracting spinning particle, space must remain unaffected by the uniform rotation. From the invariance condition ds’2 (equation 6) ≡ ds2 (equation 2), we obtain: Dirac’s equation might actually be related to the rotation A SEMICLASSICAL MODEL FOR ELECTRON SPIN First, consider an electron with its center of mass at rest, but spinning. The simplest possible model is a spinning solid torus (figure 1b). Based on the goal of having this describe the electron wavefunction, one expects that the angular velocity is given by the PlanckEinstein relation E = ω . Since this is a real physical rotation, the zero of energy is not arbitrary as in standard nonrelativistic quantum mechanics, but must be given by the relativistic rest energy E = mc 2 . (This also has the property of being relativistically covariant when we transform later to a moving reference frame.) For rotation of a solid torus of radius R, the linear velocity on the equator is u = Rω = Rmc 2 / . But clearly, u can be no greater than the speed of light c. This is a natural cutoff, and provides an estimate of the maximum size of this spinning ball: Rmax = c / ω = / mc = Rc (9) This is the Compton wavelength Rc of the electron ˜0.4pm, which is much smaller than the typical å scale that characterizes atomic orbitals (1å=100pm). If we want to model an extended electron state, then clearly Rc is too small. Consider instead an extended state consisting of a parallel array of torus vortices (see figure 1), each a solid body of radius Rc rotating around its axis at ω = mc 2 / . For simplicity here, assume that there are N identical vortices, each of mass mv = m/N. The angular momentum of each vortex is then given by Lv = Iω = Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 1 m R 2ω = / 2 N , 2 v c (10) H. Torres-Silva: Spin and relativity: a semiclassical model for electron spin 1 mR 2 2 for a cylinder of uniform mass density. This is a crude semi-relativistic model, but it does in fact give the proper value for the total angular momentum for the electron, S =/2. where we have taken the moment of inertia I = One can also estimate the magnetic moment of the electron from this model. Treating the rotating charge per vortex qv = e / N as a current iv = qvω / 2π , one obtains simply ( ) µ = Niv Av = ( eω / 2π ) π Rc 2 = e / 2m = µ B (11) where µB is the Bohr magneton and Av is the cylindrical cross sectional area per vortex. Again, this is the correct result, perhaps fortuitously, but it does suggest that this crude model may incorporate much of the essential physics. These calculations require only that all of the torus are rotating at the same frequency around parallel axes. But in addition, it is reasonable to assume a coherent state where all of them are rotating in-phase as well, as suggested in figure 1. This requires a rotating vector field A(r,t). Furthermore, it is not necessary to assume that the vortices have identical masses. More generally, one could have a density function ρ(r), which would go as the square of the field amplitude A(r), analogously to the energy density in electromagnetic waves. Now the phase angle θ (t ) = Et / is constant across the entire electron, but that can also be relaxed. Consider what happens when we Lorentz-transform to a reference frame moving with velocity v. Locations that are in phase in the rest frame will not in general be in phase in the moving frame. The proper way to deal with this is to make the phase angle relativistically invariant, so that Et ⇒ E ′t ′ − p ′ ⋅ r ′ (12) 1 where in the usual way E ′ = γ mc 2 ≈ mc 2 + mv 2 , 2 ( 2 p ′ = γ mv ≈ mv is the momentum, γ = 1 − v / c 2 ) −1/ 2 , and the approximate forms are for v << c. This is invariant because (E/c, p) and (ct, r) are relativistic 4-vectors, and the phase angle goes as their inner product. So now the rotating phase angle takes the form θ (r , t ) = ( Et − p ⋅ r ) / (13) This corresponds to a plane wave with wavelength λ = h/p, which is well known as the de Broglie wavelength. Note that this follows directly from the earlier assumption that the rotation frequency is given by mc 2 / . Once we have a wave satisfying the Einstein-deBroglie relations, the rest of quantum mechanics follows naturally. We have a rotating vector field given by a spin axis (assumed to be uniform), an amplitude A(r,t), and a rotating phase angle θ(r,t). If we compare to the standard complex wavefunction in quantum mechanics, Ψ(r,t) = •Ψ•exp(iφ), and map A and θ onto •Ψ• and φ, we have a rotating wavefunction which satisfies the time-dependent Schrödinger equation. For example, consider a rotating vector field of the form A(r , t ) = A0 ux cos( kz − ω t ) ± u y sin( kz − ω t ) , (14) (ux and uy are the unit vectors in the x- and y-directions), which represents a plane wave traveling in the z-direction with spin also in the z-direction (figure 2). This is a circularly polarized transverse wave, with either positive or negative helicity depending on whether the plus or minus sign is chosen. For fixed t, the tip of the vector follows a helix; for fixed z, circular rotation at an angular frequency ω of a vector of length A0. ) ( Now define θ = arctan Ay / Ax = kz − ω t , and Ψ(r , t ) = A exp(iθ ) = A exp i( kz − ω t ) , (15) and substitute this into the time-dependent Schrödinger equation with the rest-energy explicitly added: ( ) i∂Ψ / ∂t = H Ψ = − 2 / 2m ∇ 2 Ψ + mc 2 + V (r ) Ψ (16) The result is the simple, correct relation (for v<<c) that ω = 2 k 2 / 2m + mc 2 . Note also that the complex conjugate of Ψ might seem to yield negative energy, but really just represents the spin of the opposite sign. Thus far the model has been limited to a single plane wave, but electrons are generally present in bound states, with standing waves instead of travelling waves. Consider for simplicity the one-dimensional particle-in-a-box, Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 75 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 with the electron confined between z = 0 and z = L. The solution takes the form of discrete bound states given by the complex wavefunctions Ψn and equivalent vector fields An: Ψ n = sin(nπ z / L ) exp(−iω t ) )( (17) ) An = sin ( nπ z / L ux cos ω t ± u y sin ω t x (18) Here n=1 corresponds to the ground state and n=2, 3,... to the excited states, and the quantized energies En are given as usual (but with the mc2 offset) by En = ω n = mc 2 + 2 k 2 / 2m = mc 2 + 2 (nπ / L )2 / 2m (19) and as before the ± corresponds to the two spin states. Note that this vector wavefunction has separated into two factors, the usual standing-wave envelope and the rotating λ = 2π/κ = h/p z Ψ0 y Figure 2. Picture of real-space helical wave representing electron with spin. Evolution of helix for wave propagating in z-direction. phase vector. The negative values of the sine (for n>1) correspond to 180º shifts of the rotating phase. It is likely that the spins of the constituent components contribute their angular phase references to the composite system, even if the total spin cancels out. DISCUSSION AND CONCLUSIONS The wave example given above is based on a helical transverse wave, which is similar in form to a transverse electromagnetic wave which is circularly polarized like a chiral wave. Indeed, such a helical TEM wave carries angular momentum, and forms the classical limit of a photon [9, 10], with spin ± pointing along the direction of motion. However, unlike the case of the photon, one can transform to the rest frame of the electron, and from there to any other direction. In general, the electron spin axis would not be parallel to the momentum, and the rotating spin field vector would follow a general cycloidal motion rather than a simple helix. The spin and translational motions are essentially decoupled in this model (no spinorbit interaction). This model of coherently rotating vortices appears to account for the complex wavefunction of the electron [6]. This suggests that the spin picture may be substantially more general than simply a single electron, and that spin is fundamental to all of quantum mechanics. In that regard, it may not be a coincidence that all fundamental quantum particles seem to have spin. Certain mesons have spin-0, but they can be regarded as composites of spin-½ quarks. And certainly atoms with spin-0 show quantum effects. 76 One may speculate as to the physical basis for such a coherent vortex model. It seems to correspond to a very rigid state of an intrinsically rotating fluid. Such a rigid state may indicate a very strong cohesive energy associated with long-range phase coherence among the vortices. Since the lowest excitation of an electron involves creation of an electron-positron pair, this cohesive energy might be expected to be ~1MeV, larger than the rest energy of the electron itself. Speculating even further, the existence of such a highly rigid state would have important implications for quantum measurement. Any local interaction that would alter the energy of part of an electron wavefunction would jeopardize this cohesive energy. This, in turn, would create an instability leading either to the rest of the electron being pulled into the interaction region, or alternatively to the expulsion of the electron from this region. This suggests a real dynamical process which may provide a physical basis for the “collapse of the wavefunction” in quantum measurement. Finally, if this rotating spin field is mathematically equivalent to the usual Schrödinger equation, is it really just a matter of preference which representation we Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Spin and relativity: a semiclassical model for electron spin choose? Not entirely, because a real physical rotation, with a definite frequency and spatial fine structure, should be measurable. If one probes the behavior of electrons at frequencies ~1020 Hz = mc 2/h, particularly with a circularly polarized probe, one should expect to see a sharp resonance in some sort of spectral response, perhaps associated with spin-flip of the electron in a large magnetic field. Furthermore, the fine structure of the spin model identified a periodicity on the scale of 2 Rc = 2 / mc , which would correspond to a momentum transfer k = π mc 1.5 MeV / c . It would be interesting to see whether relevant measurements are consistent with the model described in this paper. possible to remove much of the abstraction and mystery from quantum theory. It is somewhat surprising that a simple mechanical model for spin was not presented in the early days of quantum mechanics. It seems that early researchers were discouraged by apparent rotation velocities greater than c [8]. It may be that the distributed coherent vortex model provides a way around these difficulties. More recently, Ohanian [9] showed that the relativistic Dirac equation is consistent with a distributed circular energy flow on a scale larger than Rc, which provides the basis for the electron spin and magnetic moment. The present semiclassical model is certainly cruder than the Dirac equation, but also reproduces these results within a more intuitive physical picture. In conclusion, a new semiclassical picture for electron spin is presented, in which a spinning vector field, rotating at mc 2/h, is organized into a coherent array of rigidly rotating vortices on the scale of Rc = / mc . The vector field F maps onto the quantum wavefunction Ψ, providing for a unification of spin and quantum mechanics. It is further suggested that the coherent nature of this spin field may be associated with a cohesive energy, which in turn may play a key role in quantum measurement. While the specific details of this model remain crude, its clear intuitive physical picture may help to stimulate further research along similar lines. By dealing with specific real-space models, it may be REFERENCES [1] P.A.M. Dirac. “Principles of Quantum Mechanics”. Clarendon Press. Oxford. 1958. [2] H. Torres-Silva. “The close relation between the Maxwell system and the Dirac equation when the electric field is parallel to the magnetic field”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 43-47. 2008. [3] H. Torres-Silva. “A new relativistic field theory of the electron”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 111-118. 2008. [4] M. Gogberashvili. “Octonionic electrodynamics”. Journal of Physics A. Vol. 39 Nº 22, pp. 7099-7104. 2006. [5] J.M. Lévy-Leblond. “Non-relativistic particles and wave equations”. Communications in Mathematical Physics. Vol. 6, pp. 286-311. 1967. [6] C. Moller. “The Theory of Relativity”. Clarendon Press. Oxford. 1964. [7] V. Fock. “Theory of Space, Time and Gravitation”. Pergamon Press. Oxford. 1964. [8] Eugen Merzbacher. “Quantum Mechanics”. 3rd ed. John Wiley. New York. 1997. [9] Hans C. Ohanian. “What is Spin?”. Am. J. Phys. Vol. 54, pp. 500-505. 1986. [10] H. Torres-Silva. “A metric for a chiral potential field”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 91-98. 2008. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 77 Ingeniare. Revista chilena de ingeniería, vol. 16 vol. 16 Nº 1, Nº 1, 2008, 2008 pp. 78-84 EXTENDED EINSTEIN’S THEORY OF WAVES IN THE PRESENCE OF SPACE-TIME TENSIONS TEORÍA EXTENDIDA DE ONDAS DE EINSTEIN EN LA PRESENCIA DE TENSIONES EN EL ESPACIO-TIEMPO H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 5 de diciembre de 2007 Received: September 5, 2007 Accepted: December 5, 2007 RESUMEN Se propone una modificación a la dinámica de Einstein en presencia de ciertos tipos de tensión del espacio-tiempo. La estructura de las ecuaciones de movimiento para las perturbaciones gravitacionales es muy similar a las ecuaciones de Maxwell para cuerpos quirales micro y macroscópicos caracterizados por T, cuando los operadores de µ y ε son como µ(ε)→ µ(ε) (1+T ∇×). Se discute el límite de unificación del electromagnetismo y la gravitación en el tiempo de Planck. Como aplicación de esta teoría se menciona el efecto de la birrefringencia en sistemas GPS (Global Positioning Systems). Palabras clave: Tensiones, espacio-tiempo, electrodinámica, quiralidad. ABSTRACT A modification of Einstein’s dynamics in the presence of certain states of space-time tension is proposed. The structure of the equations of motion for gravitational disturbances is very similar to Maxwell’s equations for micro and macroscopic chiral bodies characterized by T, when the operators ε and µ are like µ(ε)→ µ(ε) (1+T∇×). The unification limit between the electromagnetism and gravity is discussed. As an application of this theory we mention the birefringence effect in Global Positioning Systems (GPS). Keywords: Tensions, space-time, electrodynamic, chirality. INTRODUCTION Electrodynamics is perhaps the most successful theory physicists have constructed. Its theoretical and experimental properties have been simulated and sought for in many others theories, such as the analysis of gravitational phenomena. Much work has been done in this direction and many authors have discussed the resemblance between electrodynamics and gravidynamics [1]. However, it appears to us that it is not difficult to improve the theoretical aspects of this similarity more that has been done I the past. We intend to make a small contribution to this problem here. In this vein, we shall propose a modification of Einstein’s theory of general relativity under certain special states of space-time. Since the brilliant 1916 proposal of Einstein’s geometrization of gravitational phenomena, many physicists 1 78 have discussed alternative models of gravitation. These can be divided into two classes: i. Geometrical models. ii. Non-geometrical models. The first group accepts Einstein’s idea of geometrization of gravity but denies (under certain circumstances) the validity of the equations of motion proposed by Einstein’s. The second group contains all attempts to construct a model in which gravity has no direct link with the structure of space-time. It is not our intention to discuss these models here. We merely state their existence. The king of theory we shall advocate here may be classified as being of type i. Indeed, we shall assume that gravitational phenomena is described by the structure of space-time. This will be given by means of its metric Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Extended Einstein’s theory of waves in the presence of space-time tensions properties – represented by a symmetrical metric tensor gµv (x) and by two others functions, like operators ε (x) and µ(x), which are independent of the metric [2] and intimate characteristics of space-time. We think it will be convenient, for pedagogical reasons, to limit our considerations in the present paper to the case in which both ε and µ are constants in time, but ε, µ are function of 3-D space. The meaning we would like to propose for these two constants is obtained by a direct analogy with the dielectric and permeability constants of a given medium in electrodynamics like a Born Fedorov approach [4]. However, we shall simplify our model by merely stating that ε and µ can be provisionally identified with the characteristics of certain states of tensions, is free space-time, due to an average procedure on quantum properties of gravitation [3]. This is perhaps not difficult to assume if we can say exactly how the equations of motion of gravity phenomena must be modified by them, as we shall go later. In sec. II we shall describe gravitational interaction by means of a fourth-rank tensor R αβµν. We shall set up its algebraic properties and give its dynamics. It is possible to separate this tensor, for an observer moving with four-velocity u µ, into four second-order symmetric trace-free tensors E αβ, B αβ, D αβ and Hαβ. Our principal result is then obtained by showing that we can select a class of observers with velocity u µ in such a way as to have the equations of motion for B αβµν. That is, for E αβ , B αβ , D αβ and H αβ separated into two groups: one containing only E αβ and B αβ (and their derivatives) and the others containing only D αβ and H αβ (and their derivatives). These equations have the same formal structure of Maxwell’s equations in a given general medium. So, we arrived at the conclusion that in our theory there is a class of privileged observers in which gravitational field equations admit the above simple separated form. Any others observers, which is in motion with respect to u µ, mixes the terms E αβ , H αβ, B αβ and H αβ into the equations. This situation could be thought of as defining a new type of ether but it is only a preferred frame of observation. In the remainder of the paper we discuss in some detail a very particular situation of the above tensors, that is, the case in which they can be reduced to two tensors plus two operators: the above ε and µ. The we show that Einstein’s theory is obtained from ours for a particular set of values of ε and µ, that is, the case ε = µ = 1. It is in this sense that we have called our theory a generalization of Einstein’s dynamics. THE R-FIELD Definitions Let us define in a four-dimensional Riemannian manifold a fourth-rank tensor Rαβµν given in term of four second-order tensors E αβ, Bαβ, D αβ and Hαβ as viewed by an observer with velocity tangent vector (time-like and normalized uµuµ = + 1). We set Rαβ µν = V[α Dβ ][µV ν ] + V[α Eβ ][µV ν ] + δ [µ E ν ] [α ρ σ [µ − ηαβρσ V B V ν] −η αβρσ β] (1) Vρ H σ [α Vβ ] In which the bracket means anti-symmetrization and ηαβ µν = − gε αβ µν ; g is the determinant of g µν and εαβµν is the totally anti-symmetric Levi-Civita symbol. The tensors E αβ, Bαβ, D αβ and Hαβ satisfy the following properties: Dα α = 0 , Dαβ = Dβα , DαβVα = 0 (2) E α α = 0, Eαβ = Eβα , E αβVα = 0 (3) H α α = 0, Hαβ = H βα , H αβVα = 0 (4) Bα α = 0, Bα α = 0, BαβVα = 0 (5) We lower and raise the co-ordinate indices by means of the metric tensors gµν (x). Greek indices run from 0 to 3, in our units we set ≡ velocity of light = 1. We can write D αβ, E αβ, etc, in terms of Rαβµν and projections on uµ, by using properties that will be given below. Algebraic properties From definition of Rαβµν it is easy to prove the following properties [5]: Rαβ µν = − Rβα µν (6) Rαβ µν = − Rαβ ν µ (7) Rα βαν = Eβν − Dβν (8) Rα α = 0 (9) Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 79 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Dynamics By analogy with Einstein’s equations in vacuum we shall impose on Rαβµν the equations of motion [4] αβµν R ;ν =0 (10) (where the semicolon means the covariant derivative). Now, we shall use the properties given in subsection 1 above for projecting the system of Eq. (10) parallel and orthogonal to the rest frame of a selected observer uµ from the whole class of ν µ. We impose that the congruence generated by u µ satisfy the properties: u µu µ = + 1 (a) 1 λ ε h h u = 0 (b) 2 [α β ] λ ; ε 1 = h[ µ λ hν ]ε uλ ; ε = 0 (c) 2 uα = uα ; λ u λ = 0 (d) wαβ = θ µν (11) hµν = g µν − u µ uν (12) So, the congruence generated by uµ is geodesic, irrotational, non-expanding and shear-free. The reason for selecting such a particular class of observers will appear clear later. Then, Eq. (10) assumes the form: Dα µ;ν h µν hαε = 0 D α µ h(ασ hεµ) + h(ασ ηε )νρτ uρ Hτα;ν = 0 µν α Bα µ;ν h h ε =0 B µν hµ(σ hλ )ν − h(ασ ηλ )νρτ uρ Eτα;ν = 0 (13) (14) In which a round bracket means symmetrization. This set of equations has a striking resemblance with Maxwell’s macroscopic equations of electrodynamics. Indeed, we can formally understand the above set as being [4] 80 ∇D = 0 D − ∇ × H = 0 (14a) (14b) Where the symbol ↔ is put over D, E, etc. only to represent its tensorial character; ∇• and ∇× son generalizations of the usual well-known operators ∇• and ∇×. So, we can understand the reason for selecting the above privileged set of observers, given by the tangential vectoruµ. Eqs. (13)-(14) takes the form-only for this class of frame. Any others observer which is in motion with respect to lµ will mix into the equations of motion the set of tensors (Eαβ , Bαβ) with the set (Dαβ , Hαβ). So, it is in this sense that there is a natural selection of all observers in the Universe, with respect to the equation of motion satisfied by Rαβµν. ε and µ states of tension A particular class of states of space-time is that in which there is a specific linear function relating the tensors Bαβ with Hαβ and E αβ with D αβ by means of two operators, ε and µ. Where h µν is the projector in the plane orthogonal to uµ, that is ∇•B = 0 B + ∇ × E = 0 (13a) (13b) We set Bαλ = µHαλ , Dαλ = ε Eαλ (15) If we put expressions (15) into definition (1) of Rαβµν, a straightforward calculation shows that it is possible to write Rαβµν in terms of the Weyl tensor Cαβµν and its “electric” and “magnetic” parts E αβ and Hαβ , if we identify the tensor E αβ with Eαβ and Hαβ with Hαβ . Eαµ;ν h µν hαε = 0 (a) ε Eα µ h(ασ hεµ) + h(ασ ηε )νρτ uρ Hτα;ν = 0 (b) Hα µ;ν h µν hαε = 0 (a) µH α µ h(ασ hεµ) + h(ασ ηε )νρτ uρ Eτα;ν = 0 (b) (16) (17) By the same argument that guided us to Eqs. (13)-(14) we see from the above set that we can identify ε as being the gravitational analogue of the dielectric constant of electrodynamics, and µ as being the permeability of space-time. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Extended Einstein’s theory of waves in the presence of space-time tensions Now, we recognize in Eqs (16)-(17) Einstein’s equations for the free gravitational field for the particular case in which ε = µ = 1. [4] This Tαβµν tensor has properties very similar indeed to the Minkowski energy-momentum tensor of electrodynamics. So, we propose to interpret Eqs (16)-(17) for the general case (ε, µ different from unity) as the equations for the gravitational fields for states of space-time that are characterized macroscopically (in the sense discussed in the introduction) by the operators ε and µ. The scalar constructed with Tαβµν and the tangent vector uµ, for instance, takes the form u(T ) = T αβ µν uα uβ u µ uν (20) And gives the ‘energy’ of the field GRAVITATIONAL ENERGY IN AN ε-µ STATE OF TENSION There have been many discussions, since Einstein’s 1916 paper, concerning the definition of the energy of a given gravitational field. We do not intend to comment hare on this subject but we shall limit ourselves to considering one reasonably successful suggestion of Bel [3] for the form of the energy-momentum tensor of gravitational radiation. The point of departure come from the supposed resemblance of gravitational and electromagnetic effects. So, he defines a fourth-rank tensor Tαβµν given in terms of quadratic components of the field (identified with the Riemann tensor) and written in terms of the Weyl tensor Cαβµν. T αβ µν (18) C αβ µν 1 = ηαβρσ C ρσ µν 2 (19) α β µν * αβ µ ν = C αβ µν . This property does not hold for Rαβµν. This is related to the lack of symmetry: Rαβ µν ≠ Rµναβ . Indeed, we have * u β uν = C αβ µν u β uν = Hα µ αβ µ ν R * u β uσ = µHαε R * α β µν β ν * * 1 θ αβ µν = Rαρ µσ C β ρ ν σ + Rα ρ µσ C ρ σ (23) 2 1 U(ε , µ) = θ αβ µν uα uβ u µ uν = (ε E 2 + µH 2 ) 2 (24) We would like to make an additional remark by presenting to special properties of θαβµν * =C (b) in complete analogy with the electrodynamical case in a general medium. Due to the symmetric properties of the Weyl tensor, we have C * (22) (a) Then, the energy U(ε, µ) as viewer by an observer uµ will be given by * ∗ E 2 = Eαβ E αβ H 2 = Hαβ H αβ In the context f our theory, for a space-time in the states ε–µ of tension, we propose to modify Tαβµν into θαβµν defined in an analogous manner by Where the definitions of the dual C αβ µν is the usual: (21) Where Bel’s super-energy tensor takes the form: αρ µσ * β ν * 1 = C αρ µσ C β ρ ν σ + C C ρ σ 2 1 u(T ) = ( E 2 + H 2 ) 2 1 θ α βα µ = (1 − ε ) E ρσ Cβρ µσ 2 θ =θ α µα µ (a) (25) (b) Property (25a) states that not all traces of θαβµν are null for a general states of tension of space-time that the nonnull parts of the contracted tensor are independent of the ‘permeability’ µ. The second property (25b) states that the scalar obtained by taking the trace of θαβµν twice is null, independent of the states of tension of the space-time. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 81 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 `THE VELOCITY OF PROPAGATION OF GRAVITATIONAL WAVES IN ε–µ STATES OF TENSION Subtituting Eq. (30) in (29) and using (28b) we finally find In order to know the velocity of gravitational waves in ε–µ states of space-time let us perturb the set of equations (15) and (16). The perturbation will be represented by the map: E µν → E µν + δ E µν H µν → H µν + δ H µν (a) (b) (26) In which δ Eµν , δ H µν are null quantities. Then, Eqs. (15) and (16) go into the perturbed set of equations: δE β α ;β ≈0 (a) 1 εδ E + h(α λ η µ) ρστ uρδ Hτλ ;ρ ≈ 0 (b) 2 δH β α ;β (a) ≈0 1 λ ρστ µδ H − h(α η µ) uρδ Eτλ ;ρ ≈ 0 (b) 2 (27) (28) Now, let us specialize the background to be a Minkowaki (flat) space-time with µ (ε ) → µ (ε )(1 + T ∇×) In this case the covariant derivatives are the usual derivatives and we can use the commutative property in order to write: 1 ε (1 + T ∇×)δ Eαβ + h(α λ ηβ ) ρστ uσ δ H τλ ; ρ ≈ 0 (29) 2 By taking the derivative of Eq. (27b) projected in the privileged direction uµ. Now, multiplying Eq. (27b) by the factor 1 ∂ h(α ν ηβ )στγ uτ 2µ ∂x σ We find 1 ν στγ 1 h η uτ δ Hγν ;σ − h ν η στγ uτ uρ hε (γ ην )ψρψ δ Eρε |ψ |σ ≈ 0 2 (α β ) 4 µ (α β ) 82 (30) (31) Where ∇2 is the Laplacion operator defined in the threedimensional space orthogonal to u µ. In the same way an analogous wave equation can be obtained for Hα µ . From Eq. (31) we obtain the expected result: the velocity of propagation of gravitational waves in ε–µ states of tension of space-time is equal to 1 / ε µ when T → 0. Thus we are shown that the point of departure, from the supposed resemblance of gravitational and electromagnetic effects turns a truly unification when T → / 2 M P c well (Planck limit) [6], where Rµν ≡ Tµmax ν E = iη H = 0. At the Planck scale both EM and gravity have the same equations. Because of the ultra strong nature of EM fields at the Planck scale, self-cancellation occurs and the equations for both gravity and EM are the vacuum equations: Where the covariant derivative is taken in the background and we limit ourselves to the linear terms of perturbation. 1 (1 + T ∇×)2 δ Eα µ − ∇ 2δ Eα µ = 0 εµ 1 G µν = Rµν − Rg µν = 0 2 (32) But the zero is a result of cancelling terms, G µν = 8π G / c 4 ( Aµν − T0 g µν ) (33) where Aµν, is the first part of the Maxwell stress tensor, which we will call the action stress, and where T0 is the normalization stress scalar. The tensor T0gµν, will be called the reaction stress. We can calculate the value of T0 approximately: T0 = M pc 2 / (2π 2rp3 ) = c 4 Λ / 8π G where we have defined the “cosmological constant” Λ = rp−2 Tp−2 , which was first proposed by Einstein. Since at this scale we have gµν = Αg ην / T0 , we can simplify the vacuum equation: G µν = Λg µν – Λg µν) This equation is of the form first proposed by Einstein [7] with the cancellation of terms first proposed by Zeldovich [8]. At the Planck scale the first “action” term and the second “reaction” term cancel exactly to make a vacuum equation. It is here that the GEM splitting occurs; the terms cease to cancel with the Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Extended Einstein’s theory of waves in the presence of space-time tensions parameters of the reaction term changing. We have then a splitting into two equations, the first being the action term equation G µν = ΛTµν / T0 (34) which becomes the standard non vacuum equation of GR: G µν = 8π G / c 4 Tµν where Tµν, is now the stress tensor due to presence of electrons and protons that have now appeared due to splitting. The second equation, the reaction portion with its negative sign will become the EM equation. It splits again to form two equations of the form Gµν = –Λ' Tµν /T'0. The new parameters Λ' and T'0 are no longer quantities associated with the Planck scale but a new scale associated with particles such that T'0 = q2/8πr 04 and Λ' = r 0 –2 where q is a particle charge and r 0 has changed from the Planck length to a particle classical radius. In the chiral approach we have ∂ / ∂t → ∂ / ∂t (1 + T ∇×) so we have ± ∇ 2 + ω 2 (1 + T ∇×)2 ε 2 − 2iω (1 + T ∇×)G ⋅ ∇ E = 0 (32) αµ the solution of the wave equation can give relative retardation of right- and left-handed circularly polarized waves like was observed in the experiments with “Pioneer-6”, whereas in the case of linearly polarized waves the effect was practically zero. If such birefringent effects like polarisation dependent bending of light by the Sun, the Earth or time delay of pulsar signals are observed with other measurements, they will signal new physics beyond Einstein’s gravity [5-7]. As application of this theory in the future, will be the potential designs to improve the Global Positioning System (GPS). The variety of GPS applications is astonishing. In addition to the more obvious civilian and military applications, the system’s uses include synchronizing of power-line nodes to detect faults, very-large-baseline interferometry, monitoring of plate tectonics, navigation in deep space, time tamping of financial transactions, and tests of fundamental physics. Two years ago, the value of the GPS to the general community had already become so great that USA turned off “selective availability”-the system by which the highest GPS precision was available only to the military. At the Arecibo radio telescope in the 1970s and 1980s, Joseph Taylor and colleagues verified the general-relativistic prediction for the loss of energy by a binary pulsar through gravitational radiation. Their exquisitely precise long-term timing measurements made use of the GPS to transfer time from the Naval Observatory and NIST to the local reference clock at Arecibo. The GPS constellation of highly stable clocks in rapid motion will doubtless provide new opportunities for tests of relativity. More than 50 manufacturers produce more than 500 different GPS products for commercial, private, and military use. More than 2 million receivers are manufactured each year. New applications are continually being invented. Relativity issues are only a small –but essential– part of this extremely complex system. Numerous other issues must also be considered, including ionospheric and tropospheric delay effects, cycle slips, noise, multipath transmission, radiation pressure, orbit and attitude determination, and the possibility of malevolent interference. Relativistic coordinate time is deeply embedded in the GPS. Millions of receivers have software that applies relativistic corrections. Orbiting GPS clocks have been modified to more closely realize coordinate time. Ordinary users of the GPS, though they may not need to be aware of it, have thus become dependent on Einstein’s conception of space and time. CONCLUSION This theory deserves further investigation. In any case, the model we are proposing on gravitational interaction has many intriguing consequences that should be carefully examined. Among these, we would like to point out the possibility of avoiding collapse either locally (starts) or globally (the Universe). The gravitational optic approximation should be changed accordingly and many qualitatively new gravitational phenomena are to be expected to appear. We intend to come black to these problems elsewhere. REFERENCES [1] J.A. Wheeler. “Geometrodynamics”. Academic Press Inc. New York. 1960. [2] H. Endo. “On Ricci curvatures of certain submanifolds in contact metric”. Tensor. Vol. 49, pp. 146-153. 1990. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 83 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 [3] M. Novello. “Generalization of Einstein’s theory of gravity in the presence of tensions in space time”. IC/75/61. International Centre For Theoretical Physics. 1975. [6] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [4] S.N. Gupta. “Einstein’s and other theories of gravitation”. Rev. Mod. Phys. Vol. 29, pp. 337-350. 1957. [7] H. Torres-Silva. “Maxwell equations for generalised lagrangian functional”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 53-59. 2008. [5] N. Rosen. “A bi-metric theory of gravitation”. General Relativity Gravitation. Vol. 4 Nº 6, pp. 435-447. 1973. [8] H. Torres-Silva. “Einstein equations for tetrad fields”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 85-90. 2008. 84 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Einstein equations for tetrad fields Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, pp. 85-90 EINSTEIN EQUATIONS FOR TETRAD FIELDS ECUACIONES DE EINSTEIN PARA CAMPOS TETRADOS H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 29 de noviembre de 2007 Received: September 5, 2007 Accepted: November 29, 2007 RESUMEN Todo tensor métrico puede ser expresado por el producto interno de campos tetrados. Se prueba que las ecuaciones de Einstein para esos campos tienen la misma forma que el tensor electromagnético de momento-energía si la corriente externa total es igual a cero. Usando la teoría de campo unificado de Evans se muestra que la verdadera unificación de la gravedad y el electromagnetismo es con las ecuaciones de Maxwell sin fuentes. Palabras clave: Ecuaciones de Einstein, campos tetrados, tensor de momento-energía, geometría Riemann-Cartan, sistemas Einstein-Maxwell. ABSTRACT Every metric tensor can be expressed by the inner product of tetrad fields. We prove that Einstein’s equations for these fields have the same form as the stress-energy tensor of electromagnetism if the total external current jα = 0. Using the Evans’ unified field theory, we show that the true unification of gravity and electromagnetism is with source-free Maxwell equations Keywords: Einstein equations, tetrad fields, metric tensor, energy tensor, electromagnetism, Riemann-Cartan geometry; Einstein–Maxwell system. INTRODUCTION It is agreed that gravitation can be best described by general relativity and that it cannot be explained by using fields as in electromagnetism or as in the case of any other interaction. Furthermore, it has been assumed that the metric tensor is the best mathematical argument to use to study on gravitation. Such opinions lead physicists to concentrate more on only the metric tensor and, hence, to change it according to circumstances. As a result, this method provides some important results about gravitation. However, it is also obvious that these results are not enough to understand gravitation as well as, perhaps, other interactions. In the present paper, instead of concentrating on the metric tensor, we shall focus on tetrad fields. Our first objective will be to find some reasonable mathematical results with these fields. The complete interpretation of the results will be out of the scope of this paper. 1 Gravitation curves the space-time and this effect is related to the line element or invariant interval as ds2 = gµν dxµ dxν where gµν is the metric tensor and its elements are some functions of the space-time. The metric tensor with tetrad fields is given by [1, 2] gµν = eµ • eν (1) where eµ are basis vectors or tetrad fields, and these are some functions of the space-time also (µ, ν = 0, 1, 2, 3). Similar to (1), the inverse metric tensor can be written as gµν = eµ • eν where eµ are basis vectors of the dual space or cotetrad fields. However, we will refer to these fields as inverse fields throughout this work. Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 85 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 There are some useful features of and equations for the tetrad fields and inverse fields. First g µα gαν = δ µν e µ • eα gαν = δ µν (2) e µ • eν = δ µν Other equations and all detailed calculations are given in the appendix section. If the metric tensor is determined, it is well-known that it is demanding work to find the Einstein equations. The Christoffel symbols for the metric tensor (1) are Γα µν = 1 α 1 f • e = fα • e 2 ν µ 2 µ ν where f α ν = ∂α eν − ∂ν eα . The Riemann tensor for the above Christoffel symbols is 1 α 1 1 ∂ fβν • e µ + f α ν • fβµ + f α β • fµν , 2 4 4 the Ricci tensor is 1 Rµν = jν • e µ + f α ν •fαµ , 4 and the Ricci scalar is 1 R = jβ •e + f αβ • fαβ 8 1 α ∂ fαν = ∂α ∂α eν is the non homogeneous 2 Maxwell equation. where jν = Finally the Einstein Tensor can be expressed as Gµν = 1 αβ 1 α α f • f − gµν f • fαβ + jα • e . (3) 4 ν αµ 4 The expression in square brackets is the same as the stress-energy tensor of electromagnetism except for the inner products. Despite this difference, the equations of motion of the tetrad fields have the same form as the 86 1 αβ 1 α F ν • Fαµ − gµν F • Fαβ 4 4 (4) Several results can be obtained from (3). However, the most significant of these is that the Einstein equations for the tetrad fields certainly give the electromagnetic stress-energy tensor. More precisely, the general relativity reveals that there are some inherent constraints for tetrad fields. This means there are also definite limits for the metric tensor. Since every metric tensor can be written in terms of tetrad fields, metric tensors cannot be chosen or adjusted arbitrarily. Instead, metric tensors must be found as inner products of tetrad fields after these fields are determined to be consistent with ∂α ∂α eν = jν = 0. Another formalism to obtain this result is with the unified field theory of Evans [3, 4]. We take the notation and the conventions from [1], where also more references to Evans’ work can be found. We assume that the reader is familiar with the main content of tetrad formalism. Here we were able to reduce Evans’ theory to just nine equations, which we will list again for convenience. Spacetime obeys in Evans’ theory a Riemann-Cartan geometry (RC-geometry) that can be described by an orthonormal coframe eα , a metric gαβ = diag (+1,–1,–1,–1), and a Lorentz connection Γαβ = Γβα . In terms of these quantities, we can define torsion and curvature, respectively: T α := Deα , (5) Rα β := d Γα β − Γα γ ∧ Γ γ β . (6) β Gµν = EINSTEIN TETRAD EQUATIONS Rα µβν = Maxwell equations; that is ∂α∂α eν = jν, with jα = 0 and is the Maxwell electromagnetic tensor The Bianchi identities and their contractions follow there from. The extended homogeneous and inhomogeneous Maxwell equations read in Lorentz covariant form DF α = Rβ α ∧ β D * F α = * Rβ α ∧ β , (7) respectively. Alternatively, with Lorentz non-covariant sources and with partial substitution of (7), they can be rewritten as ( ) d F α = κ 0 Rβ α ∧ e β − Γ β α ∧ T β , Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (8) H. Torres-Silva: Einstein equations for tetrad fields ) ( d *F α = κ 0 *Rβ α ∧ e β − Γ β α ∧ *T β . (9) In the gravitational sector of Evans’ theory, the EinsteinCartan theory of gravity (EC-theory) was adopted by Evans. Thus, the field equations are those of Sciama [5], which were discovered in 1961: ) ( 1 η ∧ R βγ = κ Σα = κ Σαmat + Σαelmg , 2 αβγ 1 mat elmg η ∧ T γ = κ τ αβ = κ τ αβ + τ αβ . 2 αβγ ( ( ) (10) (11) ) Here ηαβγ = * eα ∧ eβ ∧ eγ . The total energy-momentum of matter plus electromagnetic field is denoted by Σα , the corresponding total spin by ταβ. What we will do here is to set a new principle where mat elmg τ αβ + τ αβ = 0 , so that describes the truly unification of electromagnetism and gravitation. The derivation of the field equations and their properties are discussed in [7]. Now we have conditions to discuss the Unification of Electromagnetism and Gravitation through “Generalized Einstein tetrads” who H. Akbar-Zadeh has proposed [6] a new geometric formulation of Einstein–Maxwell system with source in terms of what are called “Generalized Einstein manifolds”. We show that, contrary to the claim, Maxwell equations have not been derived in this formulation and that, the assumed equations can be identified only as source free Maxwell equations in the proposed geometric set up. A genuine derivation of source-free Maxwell equations is presented within the same framework. We draw a conclusion that the proposed unification scheme can pertain only to sourcefree situations. In a recent article [6], using the tangent bundle approach to Finsler Geometry, H. Akbar-Zadeh has introduced a class of Finslerian manifolds called “Generalized Einstein manifolds’. These manifolds are obtained through some constrained metric variations on an action functional depending on the curvature tensors. The author has then proposed a new scheme for the unification of electromagnetism and gravitation, in which the spacetime manifold, M, with its usual pseudo-Riemannian metric, gµν (x), is endowed with a Finslerian connection containing the Maxwell tensor, Fµν (x). Following this scheme, the author arrives at a class of Generalized Einstein manifolds containing the solutions of Einstein–Maxwell equations. As for Maxwell equations, they are declared [1] to have been obtained by means of Bianchi identities. We wish to point out the following flaws in the treatment of Einstein-Maxwell system. First consider the treatment of Maxwell equations. Through some constrained metric variations, and the use of Bianchi identities, the author arrives at [1, eq (5.55)]: ∇ µ F µν = µ1uν , (12) where µ1 and µν = jν are defined by [1, eqs (5.14) and (2.7)]: using notations of [3] µ1 = −ur ∇i Fri , ur = v r . F (13) Using notations of [1] throughout, νr are fiber coordinates of the tangent bundle over M and ∇i is the usual Riemannian covariant derivative defined through gij (x). Assuming that µ1 is the proper charge density [1], the author then identifies (1) as the Maxwell equations with source. The author has, therefore, assumed that: µ1 = µ1 ( x ) (14) However, this assumption, together with definition (13), already implies equation (12). To see this, differentiate (13) with respect to ν j and then use (12) to obtain: ∇ i Fj j = u r ∂F ∂v j ∇i Fr i ∂F = u j , and using (13) again, we arrive at ∂v j (12). Therefore, rather than being derived, (1) has in fact been merely assumed. noting that More importantly, assumption (12) implies that µ1 = 0, so that the assumed equations can be identified only as source-free Maxwell equations. However, for a system of charged particles, for which we can write Maxwell equations, the velocity vector is a function of x. Therefore (12) can not be identified as Maxwell equations with source because µ j in this equation are independent of x and (contrary to [6]) cannot be considered as a velocity field. There is, in fact, a genuine derivation of sourcefree. Consequently the proposed geometric formulation of Einstein–Maxwell system can pertain only to sourcefree situations. However if we include chiral currents Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 87 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (appendix 1) the truly unification of electromagnetism and gravitation is obtained [7]. We have shown that every metric tensor can be expressed by the inner product of tetrad fields. We have proved that Einstein equations for these fields have the same form as the stress-energy tensor of electromagnetism if the total external current jα = 0. Besides, using the unified field theory of Evans we show that the truly unification of gravity and electromagnetism is with the source free Maxwell equations. However a truly unification of electromagnetism and gravitation is obtained if chiral currents are included. APPENDIX 1 In his 1916 paper on The Foundation of the General Theory of Relativity [8], Albert Einstein demonstrates the conservation of energy by relating the total energy 1 tensor Tµv to the Bianchi identity R µν − δ µν R = 0 , ;µ 2 the Maxwell energy tensor Tµv Maxwell, the field strength tensor F µv, and the energy tensor tµv of the gravitational field are related according to: ) µ µ µ −κ T ν ; µ = −κ T ν Maxwell + t ν ;µ µ 1 µ = R ν − δ ν R = 0 2 ;µ ) ( 1 = κ F uσ Fµν ;σ + Fνσ ; µ + Fσµ;ν (1.1) 2 1 µ σµ = κ F uσ Fνσ − δ ν F τσ Fτσ − Fνµ F ;σ 4 ;µ 1 uσ σµ σ u = κ F Fνσ + *F * Fνσ − Fνµ F ;σ = 0 ;µ 2 ) ( The “dual” of the field strength tensor above is defined 1 as *F στ ≡ ε δγστ Fδγ using the Levi-Civita formalism, 2! see, for example, [9, 10 and 12]. This also employs ε δγµσ εαβνσ = −δ δγµσ αβνσ , see [11-12]. Integral to the identity of Tµν;µ with zero and thus to energy conservation is the second of Maxwell’s equations: 88 ( ) 1 + Fσν ;τ + Fντ ;σ = 0 F 4 τσ ;ν (1.2) which in turn has its identity to zero ensured by the Abelian relationship: CONCLUSION ( Fµν = Aν ; µ − Aµ;ν (1.3) between the four-vector potential Au and Fuv. Absent (1.3) above, or, if (1.3) above were to instead be replaced by the non-Abelian (Yang-Mills) relationship of the general form: Fi µν = Aiν ; µ − Aiµ;ν − gfijk A j µ Ak ν , (1.4) where i is an internal symmetry index, f ijk are group structure constants, and g is an interaction charge, then (1.2) would no longer be assured to vanish identically, and so the total energy tensor as specified in (1.1) would no longer be assured to be conserved, Tµv;µ ≠ 0. More to the point, the total energy Tµv would no longer be “total”, but would need to be exchanged with additional energy terms not appearing in (1.1). It is to be observed that non-linear A∙A interaction terms such as in (1.4) are also central to modern particle physics, and so must eventually be accommodated by an equation of the form (1.1) if we are ever to understand weak and strong quantum interactions in a gravitational, geometrodynamic framework. The set of connections in (1.1) do, of course, underlie the successful identification of the Maxwell – Poynting tensor for “matter” with the integrable terms in (1.1), according to: 1 1 T µν Maxwell ≡ − F uσ Fνσ − δ µν F τσ Fτσ = − F uσ Fνσ + *F uσ * Fνσ 1 4 2 (1.5) as well as the identification of the non-integrable energy tensor tµv of the “gravitational field”: κ ν ≡ t µ ν ;µ = Fµν F σµ ;σ = Fµν J µ , (1.6) which represents the density of energy-momentum exchanged per unit of time, between the electric current density Jµ and electromagnetic field Fµv (see [12], following equation (65a)). In the above, we have employed Maxwell’s remaining equation Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Einstein equations for tetrad fields J ν = F µν ; µ (1.7) However, if we set: 1 −κ T ν Maxwell = R ν − δ µν R 2 1 = κ F uσ Fνσ − δ µν F τσ Fτσ (1.8) 4 µ ( κ uσ F Fνσ + *F uσ * Fνσ 2 ) 1 κ TMaxwell = R = −κ F µσ Fµσ − δ µ µ F τσ Fτσ 4 (1.9) κ = − F τσ Fτσ + *F τσ * Fτσ = 0 2 ( ) on account of the photon mediators of the electromagnetic interaction being massless, and therefore traveling at the speed of light. Thus, as stated by Einstein in 1919, “we cannot arrive at a theory of the electron [and matter generally] by restricting ourselves to the electromagnetic components of the Maxwell-Lorentz theory, as has long been known” [13]. In addition to the problem of matter, there are other problems which arise from equation (1.1). Because (1.1) relies upon the Abelian field (1.3), it is simply not valid for non-Abelian fields. Thus, without a reconsideration of (1.1), one cannot apply the General Theory of Relativity to non-Abelian interactions. This immediately bars understanding SU(2)W weak interactions, or SU(3)QCD interactions, for example, in connection with Einstein’s theory of gravitation. Additionally, (1.1) excludes, a priori, the possibility that magnetic and electric current of electromagnetic nature might actually exist in nature. Here Einstein does not considerer chiral electric and magnetic currents. Our conjecture is that without particle current, Jµ = 0, we can take into account chiral currents produced by the µ µ electromagnetic field, so we have Jchielectric ≡ J(ce) ≠ 0 . Besides we considerer no magnetic monopoles but we µ include chiral magnetic currents, Jchimagnetic ≡ J(µcm ) ≠ 0 [15]. (1.10) and because the current four-vector for chiral magnetic currents may be specified in terms of J (cm)τνσ and *Fµv by J(σcm ) = * J(σcm ) = then, on account of (1.1), we find that κν = 0 in (1.6) and so the current is thought to vanish, Jµ = 0. Additionally, the trace equation vanishes: ) ( J(cm )τσν ≡ Fτσ ;ν + Fσν ;τ + Fντ ;σ , µ = In particular, if we define the third-rank antisymmetric tensor (following and extending the Yablon’ approach [12]): 1 ατγσ ε J(cm )ατγ = *F µν ; µ (1.11) 3! we see that (1.1), as it stands, expressly forecloses the existence of magnetic monopoles and chiral magnetic currents, because the vanishing of J(cm)τσν in (1.10) σ causes J(cm ) in (1.11) to vanish as well. Any theory which allows chiral currents by using a non-Abelian field (1.4), requires that (1.1) be suitably-modified for total energy to be properly conserved, because Fµν ;o + Fνσ ; µ + Fσµ;ν ) ( will no longer be identical to zero. For completeness, we also define (see [5]): ) ( J(ce)τσν ≡ − *Fτσ ;ν + *Fσν ;τ + *Fντ ;σ = 1 ε Jγ 3! γτσν ce (1.12) As we shall demonstrate, all of theses problems stem from the fact that (1.1) relies upon the vanishing of the antisymmetric combination of terms in (1.2) to enforce the conservation of total energy. The term Tµν;µ = 0 is solidly-grounded: it is the quintessential statement that total energy must be conserved. The Bianchi identity R µν − 1 δ µν R = 0 is equally 2 ;µ solid: although one can also add a “cosmological” term µ 1 µ µ R ν − 2 δ ν R + Λδ ν = 0 , one is assured by the very ;µ nature of Riemannian geometry that either combination of terms will always be zero. Not so, however, for 1 uσ F Fµν ;o + Fνσ ; µ + Fσµ;ν = 0 . T h is ter m relies 2 ( ) directly on the Abelian field (1.3) and on the supposition that chiral magnetic currents (1.11) vanish. Absent this supposition, Tµν is no longer conserved, and so can no longer be regarded as the “total” energy tensor. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 89 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 REFERENCES [1] [2] [3] 1916. The Principle of Relativity. Dover, pp. 111164. 1952. C.W. Misner, K.S. Thorne and J.A. Wheeler. “Gravitation”. Freeman, pp. 310-378. 1973. A. Waldyr, Jr. Rodrigues, Quintino A.G. de Souza. “An Ambiguous Statement Called ‘Tetrad Postulate’ and the Correct Field Equations Satisfied by the Tetrad Fields”. Int. J. Mod. Phys. D14, pp. 20952150. 2005. M.W. Evans. “Spin connection resonance in gravitational general relativity”. Acta Physica Polonica B38, pp. 2211-2220. 2007. [4] M.W. Evans. “Generally Covariant Unified Field Theory: The Geometrization of Physics”. Vols. 1 to 5. Abramis Academic. 2005. [5] D.W. Sciama. “The physical structure of general relativity”. Rev. Mod. Phys. 36, pp. 463-469. 1964. [6] H. Akbar-Zadeh. “Generalized Einstein manifolds”. J. Geom. Phys. 17, p. 342. 1995. [7] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [8] A. Einstein. “The Foundation of the General Theory of Relativity”. Annalen der Physik 49. [9] G.Y. Reinich. “Electrodynamics in the General Relativity Theory”. Trans. Am. Math. Soc. Vol. 27, pp. 106-136. 1925. [10] J.A. Wheeler. “Geometrodynamics”. Academic Press, pp. 225-253. 1962. [11] C.W. Misner, K.S. Thorne and J.A. Wheeler. “Gravitation”. W.H. Freeman & Co. 1973. [12] J.R. Yablon. “Magnetic Monopoles a nd Duality Symmetry Breaking in Maxwell’s Electrodynamics”. arXiv:hep-ph/0508257v1. August 24, 2005. [13] [14] J.R. Yablon. “Magnetic Monopole Interactions, Chiral Symmetries, and the NuTeV Anomaly”. a rXiv:hep-ph /0509223v1. September 21, 2005. [15] 90 A. Einstein. “Do Gravitational Fields Play an Essential Part in The Structure of the Elementary Particles of Matter?”. Sitzungsberichte der Preussischen Akad. d. Wissenschafter. 1919. The Principle of Relativity. Dover, pp. 191-198. 1952. H. Torres-Silva. “Maxwell’s theory with chiral currents”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 31-35. 2008. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: A metric for a chiral potential field Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, pp. 91-98 A METRIC FOR A CHIRAL POTENTIAL FIELD UNA MÉTRICA PARA UN CAMPO POTENCIAL QUIRAL H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 12 de diciembre de 2007 Received: September 5, 2007 Accepted: December 12, 2007 RESUMEN En este trabajo se presenta un ejemplo de una métrica específica que geometriza explícitamente un potencial cuadrivector tipo luz (campo quiral). La geometrización muestra que tal vector tiene la misma estructura geométrica que un campo gravitacional Kerr. Se discute una proposición teórica que un cuerpo rotante genera, su gravitación y el calibre de campo tipo magnético que puede ser identificado con un campo quiral geometrizado. Este campo quiral representa un tipo novedoso de campo que no puede ser identificado con alguno de los campos electromagnéticos conocidos. Como aplicación de esta teoría se discute la morfología de los planetas alrededor del sol. Palabras clave: Potencial vector, campo de fuerza cero, campo quiral, geometrización espacio tiempo, morfología. ABSTRACT In this paper we present an example of a specific metric which geometrizes explicitly a light-like four-vector potential (chiral field). The geometrization shows that such a vector has the same geometrical structure as a gravitational Kerr field. We discuss a theoretical proposition that a rotating body generates, besides a special gravitational field, a magnetictype gauge field which might be identified with a chiral geometrized field. This chiral field represents a novel type of field because we cannot identify it with any of the known electromagnetic fields. As an application of this theory we discuss the morphology of the planets around the sun. Keywords:Light-like vector potential, force-free field, complete geometrization spacetime, morphology. INTRODUCTION In this contribution, we construct a metric which appears appropriate for a geometrization, within the framework of a Riemannian spacetime, of a light-like 4-vector potential field which can be assigned to an electromagnetic-type field. Such field with a 4-vector potential Aα satisfies the relation Aα Aα = 0, Aα Aα = 0, Aα Aα ⊥ = 0 ⇒ Aα Aα = 0, (1) and Aα is denoted by us as a chiral field. In accordance with our information something emerged for the first time in the work of M Evans in connection with the hypothesis of the existence of a special kind of magnetic field (see, for instance [1]). The starting point is the well known approach to the geometrization of physical fields involving the construction 1 of spacetime geometries (the so called force-free geometries) within which the geodesic equation proves to be identical to the equation of motion of a particle when interacting with such (nongravitational) fields. This method derives in fact from the generalized Einstein’s equivalence principle which asserts that “any trajectory is a geodesic of some geometry” [2]. Furthermore, the laws of motion, in the case of interacting particles, are given by the differential equations of the geodesics for the metric in question at the instantaneous position of each particle [3]. Pursuing this subject, we observe that for the formulation of the geodesic equations also in the presence of nongravitational forces, some efforts have been directed towards applying changes to the metric and other efforts to modifications of the connection [4], in a Riemann or a Riemann-Cartan spacetime. There appeared also papers Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 91 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 which consider the possibility of applying a Finsler or a Randers geometry or a fractal spacetime geometry in order to establish unitary theories of gravitation and electromagnetism in conjunction with a probabilistic interpretation of the geometry of the background spacetime [4]. However, all these alternative interpretations of force-free geometries have not yet reached the same level of elaboration and experimental verification as is the case for Einstein’s general theory of relativity the formal structure of which has continuously invited the development of gauge theories. These are reasons that why we maintain in the present work the framework of a Riemannian spacetime which helps us to geometrize a vectorial field. We propose a geometrization of a vectorial field in the sense that the associated physical quantity (e.g., the four-vector potential Aα) enters directly into the metric which may be interpreted, alternatively, as an ‘interior’ (Tαβ = 0, to obtain the microscopic Dirac equation) or ‘exterior’ (Tαβ = 0, to obtain the classical solution of Mercury’s orbit) solution of Einstein’s equations. However, from an Einsteinian point of view, the field defined by Aα is completely (truly) geometrized (like the gravitational field itself) if it leads to a determination of the geometry of the (curved) vacuum spacetime in which no other (non-geometrized) matter manifests its presence in conjunction with a non-zero energy-momentum tensor. We emphasize that the physical quantities (e.g., density, pressure, electromagnetic field tensor, etc.) which generally appear on the right hand side of Einstein’s equations represent non-geometrized quantities, i.e., the source of the (geometrized) gravitational field. Our conjecture is that if Tαβ = 0, det Fαβ ≠ 0, then, Aα is completely (truly) geometrized [5]. In the present paper we adhere to the Einstein’s general relativity and thus the energy and momentum of the geometrized chiral field are encapsuled solely in the pseudotensor tαb on the same geometrical footing as any gravitational field. We recollect that the general relativity is a very special non-Abelian gauge theory and thus it is possible that a truly spacetime geometrization can be applied also to a non-Abelian analogue of the electromagnetic field. The Yang-Mills field may serve as such a field. general relativity, Schwarzschild and Kerr solutions, (which in Eddington coordinates are described also by light-like four vectors) have an electromagnetic analogue. Thus, the Kerr metric, which represents the gravitational field exterior to a spinning source which ‘drags’ space around with it, has the same geometrical structure as a geometrized chiral field like an Evans-Vigier field. On a microscopic level, the Evans’ optical (light) magnet [6] produced by a circulary polarised light beam appears as a natural and physically possible hypothesis. A search for cyclically symmetric equations, similar to spin angular momentum relations but now refering to a magnetic-type field, seems also tempting from a geometrical point of view. Of course, as for gravitation or perhaps for the entire field of physics we do not yet know the physical intrinsic mechanism of such a magneto-rotation induction: ‘rotation generates magnetic-type field and magnetic field generates rotation’, and yet we attempt to model and describe it here. A simple experimental proposal for the verification of these hypotheses may be the detection of an AharonovBohm effect as arising, for example, in the usual two-slit electron diffraction experiment in which the solenoid is replaced by a rotating body. Indeed, the gravitational field of a rotating astrophysical lens object plays the role of both a double slit (by its electriclike and curvature inducing effects by gravity) and an ‘external’ field (with a magneticlike contribution of the gravitation). A proposal for a laboratory experiment for an observation of a gravitational Aharonov-Bohm effect in conjunction with photons is described in [6]. In the final section we present a discussion on the possibility of identifying a chiral field like an a modified Evans-Vigier field within the set of known electromagnetic fields. SPECIAL METRIC AND BASIC RELATIONS Let us consider a null-like four-vector with components ( ) ) ) Aα x β ≡ ( A0 , A1 , A2 , A3 = ( A0 , A (2) We denote by A2 = ηαβ Aα Aβ = 0 Attempts have also been made to mix directly the standard symmetric Riemannian metric tensor with an antisymmetric (electromagnetic) field tensor, but the new nonsymmetric metric cannot achieve a real geometrization of the electromagnetic field [6]. A possible existence of a light-like 4-vector electromagnetic field would be a proof that the most important metrics of is the Minkowski (flat) diagonal metric [8]. We should mention that A α (x β) is here a standard spacetime 92 (3) its Minkowskian module in which ηαβ = +1, −1, −1, −1 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (4) H. Torres-Silva: A metric for a chiral potential field vector which may represent the vector potential of an electromagnetic-type gauge field. For the moment, we cannot foresee if Aα may be associated with a massive or zero-mass field or if we must include the subject of a gauge invariance. Consequently, all the calculations are given in the tangent bundle of spacetime. We propose to study under which conditions a metric gαβ having the special form and [βγ, σ] is the Christoffel symbol of the first kind. Because, g = constants = –1, it follows that gαβ = ηαβ + KAα Aβ (5) Γαβγ = gασ βγ , σ 1 = Kgασ Aσ Aβ 2 ( ) +(A A ) −(A A ) ,γ σ γ ,β β γ ,σ (12) Γαβα = 0 (13) where k ∝ t is a constant still to be determined, can define a chiral field like an Evans-Vigier field, A chiral field is defined as and thus following [8] the Ricci tensor is given by A → (1 + T ∇×) A Rβγ = −ηασ βγ ,σ ,α + K Aα Aσ βγ ,σ ,α + A,αα Aσ + Aα A,σα βγ ,σ + ηαµησν βσ , µ γα ,ν (6) ( ) ( ( ) det gαβ ≡g = − 1 + KA2 = −1 (7) g =η α β − KA A FORCE-FREE CHIRAL FIELD Introducing the parameter s defined by and thus, the inverse (contravariant) metric is αβ (14) ≡ KR1 + K 2 R2 + K 3 R3 + K 4 R4 The determinant of the metric tensor gαβ is given by αβ ) ( − K ηαµ Aσ Aν + ησν Aα Aµ βσ , µ γα ,ν + K 2 Aα Aµ Aσ Aν βσ , µ γα ,ν (T is the chiral factor). ) (8) ds 2 = gαβ dx α dx β (15) the equations of geodesics, The metric (5) is similar to the one which describes a weak gravitational field, i.e., gµν = ηµν + hµν , g µν = η µν − h µν (9) However, for the time being we do not impose yet any condition on the value or the strength of the term KAα Aβ. There follows that α αβ αβ αβ duα dx µ + Γαβγ u β uγ = 0, u µ = ds ds (16) duα dC + KAα − KCηασ Bσγ uγ ds ds (17) C = Aβ u β . (18) become where αβ A = g Aβ = η Aβ , η Aα Aβ − g Aα Aβ = 0 (10) Aα and thus the indices of may be raised and lowered with either the metric gαβ or the Lorentz metric ηαβ. It is easy to show that Aα Aα ;β = Aα Aα ,β = 0 (11) where the ordinary partial derivatives are denoted by commas (or alternatively by ∂α and ∂/∂χα), and covariant derivatives by semicolons. The Christoffel symbols are At this point it is easy to see that an Evans-Vigier field described by the metric (5) becomes a ‘force-free field’ with respect to the motion of a charged test particle having the characteristic parameter e/m 0, and subject to the constraint KC = constant = T Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 e e = . c m c 2 0 (19) 93 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 With this constraint, the geodesic equation (4) reduces formally to the Lorentz equation, duα e = T η βα Fβν uν c ds (20) We may identify Fβν with an electromagnetic field tensor if the 4-vector potential Aµ is related to an electromagnetic potential Aµ by a gauge transformation of the second kind Aµ = µ + ∂φ ∂x µ (21) Since it is possible to demonstrate that constraints such as (6) and (8) are consistent and in fact do not contradict each other along the trajectory of the test-particle (see, for instance, [19]), we can assert that we have achieved a local or a semilocal geometrization (i.e., one along a curve) of the chiral field. The final conclusion of this section is that any field described by a metric of the form (5) may act on a test particle with a Lorentz-type force (7). In such geometrical terms, a Lorentz-type force was known until now only for a weak gravitational field (see, for instance, [6]). In other words, in this case Einstein’s equations are used merely for a definition of an energy-momentum tensor which generates a given gravitational field. In the following we will not use this identity aspect of the Einstein’s equations since we intend to geometrize the field Aα which may be considered as a gravitational perturbation of a vacuum spacetime. Then the field equations correspond to an ‘exterior case’ and are given by Rβγ = 0 where R βγ is given by equation (14). In a way, the constant K may be called a ‘coupling constant’ because it characterizes the strength of the perturbation of the vacuum spacetime generated by a chiral field like an Evans-Vigier field. We assume that the form of the metric (5) retains its independence from the value of K. In other words, the metric gαβ given by (5) remains a solution for any arbitrary value of K. Thus in the expression (14) of Rβγ, each coeficient of K and of its powers must be cancelled separately. In this way, following [6], we obtain four equations: 94 Gαβ ≡ κ Gαβ κ ≡ κ Tαβ (22) (24) ) (25) ( +η η Bearing in mind that the metric tensor is given in our account by equations (5) and (7), we need only derive the Rαβ, R, and also the Einstein’s tensor from the gαβ and establish in this way the components of the matter tensor Tαβ. If this energy-momentum tensor coincides with one which is known for a given (physical, phenomenological) material scheme, we say that (5) represents a solution of Einstein’s equations for such a scheme. If we do not posses such a coincidence, we say that we face an exotic matter which might determine the desired properties of the spacetime (e.g., ‘traversable wormhole’ [21] or ‘warp drive’ [22]). From this point of view the general theory of relativity is not a closed theory, and sometimes the Einstein’s equations seem to form a mathematical identity if a suitable metric is chosen: R1 = 0 = −ηασ βγ , σ ,α R2 = 0 = C0 T Aα Aσ βγ , σ + A,αα Aσ + Aα A,σα βγ , σ ,α αµ σν A COMPLETE GEOMETRIZATION OF A CHIRAL FIELD (23) βσ , µ γα , ν ) ( R3 = 0 = −C0 T ηαµ Aσ Aν + ησν Aα A µ βσ , µ γα , ν (26) R4 = 0 = +C02T 2 Aα Aµ Aσ Aν βσ , µ γα , ν (27) We note that, in accordance with equation (13), the potential Aα generates a new light-like vector aα which, by analogy with the kinematics of a timelike congruence of curves, may be called an ‘acceleration-potential vector’ and has the following properties: ( ) aα = A;αβ Aβ = A,αβ Aβ = − b x γ Aα aα = gαβ aβ = ηαβ aβ (28) ηαβ aα aβ = gαβ aα aβ = 0 aα a;αβ = aα a,αβ = aα A;αβ = aα A,αβ = 0 aα Aα = 0 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (29) H. Torres-Silva: A metric for a chiral potential field We notice that equations (12) and (14) are satisfied identically, and that equation (13) is reduced to the definition of the acceleration potential (15). Thus the Einstein field equations (11)-(14) become 2 ( Aβ Aγ ) ∂ ∂ → (1+ T ∇× ) ∂t ∂t =0 2 → −∇ 2 (1 + T ∇×)2 , (31) (35) I1 = 2 2 1 F F αβ = E − B , 2 αβ (36) 1 I 2 = − Fαβ F αβ = 2E ⋅ B , 2 (37) I 3 = −2 Aα T αβ Aβ , (38) (30) For the stationary case, I 0 = Aα Aα , we have particular vectorial solutions k ∇× A= A , 1 kT ( ) (32) there arise two remarkable solutions of equation (30), namely, the Schwarzschild-type solution, and the KerrSchild type metric. Here kT is related to the angular velocity and, thus, to the angular momentum of the source. We remind the reader that the Kerr metric represents a vacuum field exterior to a spinning source. Hence, a chiral field like an EvansVigier field and a typical gravitational field have the same topological properties. It is important to stress that for the Schwarzschild-type solution (31), ∇ × AS = 0, T → ∞ (no magnetic-type field) (33) and for the Kerr-Schild type metric (19) ∇ × AKS ≠ 0, T ≠ 0 (magnetic-type field). (34) An immediate consequence of these results is that rotating bodies generate, besides a special kind of gravitational field, also some magnetic-type gauge fields defined by lightlike vector potentials. For the time being all experimental tests of general relativity (e.g., Advance of the perihelion of Mercury, Bending of light, Gravitational red shift, etc.) are expressed only as functions of the mass of the central gravitating body. In order to evaluate the physical implications of the chiral field we must evaluate all these effects in terms of the light-like vector potential. PHYSICAL CONTENT OF CHIRAL CONDITION Four Independent Electromagnetic Invariants In Classical Electrodynamics there exist only four independent electromagnetic (EM) field invariants [7], namely (in units with c=1), where Fαβ is the EM field tensor, Fαβ is the dual EM field tensor and Tαβ is the Maxwell stress-energy tensor. Salingaros [7] used these invariants to announce the proposition: plane monochromatic EM (transverse) waves are characterized by vanishing invariants I1 = I2 = I3 = 0 in the Lorentz gauge. As we mentioned, a chiral field as an Evans-Vigier field are defined by a vanishing invariant I0 = 0, but contrary to Evans-Vigier field, the conditions for a chiral field are I0 = 0, I|| = 0, I⊥ = 0 and I3 = –2AαTαβ Aβ. Rotation and Chiral Field Following our preceding account, we may now state that a geometrized chiral field like an Evans-Vigier field represents a classical but exotic electromagnetic-type field which possesses similar properties to gravitational fields defined by Schwarzschild and Kerr metrics. The process of geometrizing such field, through association of the vector potential with part of the structure of spacetime, leads to the supposition that, possibly, there exists a fundamental relation between rotation and a magnetic-type field. It should be emphasized that in a sense our results demostrate a generalisation of and the reciprocity to a well known physical phenomenon. Thus, considering a free particle in an external electromagnetic field defined by the tensor Fαβ, we observe the generation of a vorticity, ωαβ = uα ;β − uβ ;α , (39) which is related to the field tensor Fαβ via the (London) equation of superconductivity [6]: Fαβ = ∂Aβ ∂x α − ∂Aα ∂x β = mc ω . e αβ (40) Equation (40) expresses that the four-vector potential Aα is tangent to the particle trajectories at all points Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 95 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 and thus the particle velocity is proportional to the vector potential as we have seen above. It is important to stress that it is the external vectorial field Aα which determines the motion of a test particle and not vice versa. Moreover, generally, the four-velocity u α may be defined as the vector-potential of an inertial-gravitational field and may be assigned to each point of the spacetime independently of the fact whether or not a test particle resides at that point [30-31]. Hence, if the vacuum spacetime is perturbed by the presence of the vectorial field A α we can assert that the source of vorticity is precisely this field. Our generalisation arises from the fact that not only does a normalized (Dirac) vector potential field [see eq. (41)] generate a vorticity field, but yields also a relation between the angular momentum of a rotating body and a geometrized light-like vector potential. This result is clearly illustrated by equations (32) and (36). ∇ × B = kB γ −1 B v = ± 1/ 2 − γ 2 (µ ρ 0 The compressed gas forms a cylindrical volume of plasma which is moving through the background plasma and rotating with a finite angular velocity. As this mass of plasma propagates through the surrounding gas, it loses energy by accelerating the surrounding plasma. The cylinder will lose energy and settle down to a minimum-energy “relaxed’’ state, a force-free collinear cylindrical structure. It is shown in detail elsewhere -- that the resulting “field equations’’ for the flow are given by 96 (42) ) where ρ: fluid density, B: magnetic induction field, ν: velocity of the center of mass of a fluid element, and γ: ratio of specific heats of the gas. A pseudoplane solution to the force-free equation (1) is given by Br = − k 2 a J1 ( kr ) sin θ kr J ( kr Bθ = k 2 a 1 − J0 ( kr kr 1 ( kr cos θ Bz = k 2 aJ ) ) Morphology of the Solar System Set with ∇ ×Β = κΒ It has been shown in detail elsewhere [8] that the Bode numbers and measured velocity ratios of the planets are accurately predicted by the eigenvalues of the Euler-Lagrange equations resulting from the variation of the free energy of the generic plasma that formed the Sun and planets. This theory is reviewed to show that the equation (36) ∇ × A = κA can explain the velocity ratios of planets, the Bode numbers correspond to the roots of the first-order Bessel functions. The extrema of the roots of the zeroth-order Bessel function predict the ratios of the measured planetary velocities almost without error for the outer planets. Both sets of roots correspond to the same eigenvalue solution of the force-free equations. Both the Titius--Bode series and Kepler’s harmonic law are predicted by the “relaxed state solution’’ of the freeenergy equation for the generic plasma that formed the Sun and planets. Newton’s law of gravitation is not used in the calculations. Here we use the chiral approach where Rµ = 0, and A || B. (41) ) cos θ where Br, Bθ, and Bz are the magnetic induction components in the striated rings of the gas cylinder, and a = kθθ + k z z , k 2 = k12 + k z2 where kθ, k1, and kz are constants supplied by the boundary conditions given by the chiral approach. If we plot of J1 and J0 with the functions scaled to the geometry of the solar system, we observe that for J1 = 0, B 2 ∼ J02 , Bθ ∼ J0 . , This maximizes the magnetic and kinetic energy at the origin. In the cylindrical structure formed by the supernova explosion, the first root corresponds to the structure of the star at the center of the hypothetical solar system, and the second root corresponds to a ring of gas just outside the star. The corresponding flow velocities in the rings is given by eq. 42. The geometry of the configuration is shown in figure 1. The signs reverse for every other ring (corotational and contrarotational) so that the azimuthal velocities are all prograde. The azimuthal velocity of the gas in each ring has a direct relationship to the velocities of the planets Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: A metric for a chiral potential field Figure 1. Plots of Bessel functions versus distance (AU) of planets from the sun. as they exist today. An examination of figure 2 shows that the Bode numbers of the planets out to Jupiter are predicted by the roots of the equations describing the “relaxed state’’ of the primordial gas. Comparison of the measured velocity ratio with the ratios of the extrema of J0 (kr) show very close agreement. For the outer planets, the Bode series fails completely for Neptune and Pluto, but the plasma solutions, the Bessel function roots, give exact predictions. We can observe that if the asymptotic expansions J1 (kr) and J0 (kr) where carried out, the theory could be checked all the way out to and including Pluto. The predicted ratios of the successive peak velocities of the gas in the rings check the measured velocity ratios of the inner planets within a few percent. The velocity ratios for Uranus, Neptune, and Pluto are exact. the relaxed state of the generic plasma predicts both the Bode number series and Kepler’s harmonic law p2 = a3 where p: period of the planet, a: average radius of the planet. It is suggested that the rings of gas in the planet structure “roll up” azimuthally to form balls of gas that eventually evolve into the planet . The roll up of vortex rings to form balls of gas is a well-known phenomenon which has been observed in laboratory experiments. A planet is predicted at 1.3 AU. No such planet exists today. It is suggested that the missing planet suffered a catastrophe either in the birthing process or at a later time and that the residue is our moon. Figure 2. Orbital speed as a function of the distance from the sun. REFERENCES [1] M.W. Evans. “General covariant unified field theory”. Abramis Academic. Suffolk. Vol. 1. 2005. [2] A.J. Wheeler. “Geometrodynamics”. Academic Press, pp. 225-253. 1962. [3] A. Einstein. “The Foundation of the General Theory of Relativity”. Annalen der Physik Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 97 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 49. 1916. The Principle of Relativity. Dover, pp. 111-164. 1952. [4] [5] 98 C. Möller. “Selected Problems in General Relativity”. Brandeis University 1960 Summer Institute in Theorical Physics. Lecture Notes. Brandeis University. 1960. H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [6] J. Argyris, C. Ciubotariu and I. Andreadis. “A metric for an Evans Vigier field”. Foundation of Physics Letters. Vol. 11, pp. 141. 1998. [7] N. Salingaros. “Invariants of the electromagnetic field and electromagnetic waves”. Am. J. Phys. Vol. 53, pp. 361. 1985. [8] D.R. Wells. “Quantization effects in the plasma universe”. IEEE Trans. Plasma Sci. Vol. 17, pp. 270. 1989. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. pp. 99-110 Torres-Silva: Chiral universes and quantum effects produced by electromagnetic fields Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, CHIRAL UNIVERSES AND QUANTUM EFFECTS PRODUCED BY ELECTROMAGNETIC FIELDS UNIVERSOS QUIRALES Y EFECTOS CUÁNTICOS PRODUCIDOS POR CAMPOS ELECTROMAGNÉTICOS H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 5 de diciembre de 2007 Received: September 5, 2007 Accepted: December 5, 2007 RESUMEN La estructura aceptada del espacio y el vacío se derivan de los resultados de la cosmología relativística y de la teoría cuántica de campo. Se demuestra que una interfaz quiral entre regiones enantioméricas de un universo cerrado, o un universo derecho y un universo izquierdo, relacionados por un elemento de simetría PCT a lo largo de la interfaz, representa un modelo con todos los atributos requeridos por el vacío teórico. Se desprende que el comportamiento cuántico es entonces visto que es inducido por la interfaz de vacío. La mecánica quántica emerge como un caso especial de la mecánica clásica, más bien que siendo la última un subconjunto de la primera. Esto resuelve el problema observacional mecánico cuántico, explica las coincidencias de los grandes números cosmológicos y toma en cuenta la antimateria en el cosmos. Palabras clave: Vacío, interfaz quiral, campo cuántico, universo derecho (izquierdo). ABSTRACT The accepted structure of space and vacuum derives from the results of relativistic cosmology and quantum field theory. It is demonstrated that a chiral interface between enantiomeric regions of a closed universe, or a (right) R-Universe and (left) L-Universe, related by an element of PCT symmetry along the interface, represents a construct with all the attributes required of the theoretical vacuum, in-so-far as quantum behaviour is then seen to be induced by the vacuum interface. Quantum mechanics emerges as a special case of classical mechanics, rather than the latter being a subset of the former. This removes the quantum-mechanical observational problem, explains the cosmological large-number coincidences, and accounts for the anti-matter in the cosmos. Keywords: Vacuum, chiral interface, quantum field, R(L)-Universe. INTRODUCTION The vacuum is surprisingly hard to fill, despite clear pronouncements from both general relativity and quantum theories. The theory of general relativity concerns the shape of four-dimensional space and fields, whereas quantum field theory details a structured vacuum state and particles. The logical next step of advancing a model of the physical vacuum, consistent with both theories, is the subject of this paper. This is a basic assignment because of the widely held belief that quantum theory and relativity 1 are essentially incompatible. The problem arises through the presumed non-locality of quantum theory, in direct conflict with the tenets of relativity. The difficulty, first highlighted by Einstein, Podolsky and Rosen, now commonly referred to as the EPR paradox. It will be necessary to return to this dilemma as a crucial test of any proposed vacuum. To establish the necessary background, a brief summary of the implications of relativistic cosmologies and of quantum field theory on the nature of space and the vacuum is presented first. Our conjecture is that quantum theory and general relativity are essentially compatible when the matter is produced Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 99 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 by electromagnetic fields with R µν = 0 and Tµνem = 0 but det Fνµ ≠ 0 . The electromagnetic field theory of matter rises when we have two universes separated by a chiral membrane. This defines the vacuum as an interface, either between two universes or between two regions of opposite chirality in the same universe. Chiral approach means that our Universe is observable area of basic space-time where temporal coordinate is positive and all particles bear positive masses (energies). The mirror Universe is an area of the basic space-time, where from viewpoint of regular observer temporal coordinate is negative and all particles bear negative masses. Also, from viewpoint of our-world observer the mirror Universe is a world with reverse flow of time, where particles travel from future into past in respect to us. The two worlds are separated with the membrane - an area of space-time inhabited by light-like particles that travel along light-like right or left-handed (isotropic-chiral) spirals. In appendix 1 we show the difference in energy between the interface and the two universes. QUANTUM FIELD THEORY The approach that reveals the nature of space and the vacuum is Quantum Field Theory. Dirac produced the first quantum field theory for massive spin half particles. The energy spectrum was found to consist of both positive and negative states, separated by a gap of energy ∆E=2mc 2 . This Dirac sea is the vacuum which therefore consists of an infinite number of negative energy electrons, protons, neutrons and all other spin half particles, or fermions. Any vacancy or hole in the Dirac sea, at level -E, can be filled by an electron dropping down from the level at E. An amount of energy 2E is radiated, while both hole and electron disappear into the vacuum. The hole is therefore equivalent to a particle (called a positron) of charge +e and of positive energy E. The mass of the electron-positron pair that disappears produces the radiated photon or energy quantum hν = ∆E = 2(mc 2 ) . This equation can be obtained from the chiral electrodynamics developed in accompanying papers. This prediction of anti-particles has been confirmed experimentally for all fermions. The model implies that the vacuum should also support an infinite negative sea of the anti-particles to ensure electrical neutrality. Each electronpositron pair is linked by a photon as, seen in figure 1. In this (Feynmann) diagram a positron differs from an electron only through the direction of an arrow, and 100 positrons have been described as electrons moving backwards in time, (chiral particle). e+ e– time (↑) γ = e+e- Figure 1. (Feynmann) diagram of an electron and positron produced by a light photon. The lifetime of virtual particles is proscribed by the uncertainty principle ΔΕ ⋅ Δt ∼ h. Real particles can be created when the vacuum is polarized by a sufficiently strong chiral field. The vacuum is assumed to accommodate virtual particle/ anti-particle pairs which requires a symmetry between matter and anti-matter worlds. Particles and anti-particles have the same modulus of mass, equal but opposite charges and magnetic moments, and if they are unstable, the same lifetime. Collectively this is known as chargeparity-time (PCT) symmetry. In appendix 1 we explain the PCT symmetry in our model. The PCT theorem requires invariance for all fields under this three-way combined operation. This is therefore also the property of the vacuum with all its virtual particles and intermediaries. In view of the foregoing, the single most vexing, unresolved problem is the imbalance between matter and anti-matter in the observable universe. Speculations that link this problem to the parity violation of weak interactions are clearly at variance with the PCT theorem. Conventional wisdom has it that anti-matter apparently disappeared soon after the big bang, and outlandish suggestions of its whereabouts in the universe abound. Contrary to this we postulate regions of matter (R) and anti-matter (L) separated by a radiation layer of chiral EM. In Quantum theory we find quantum paradoxes dealing with the quantum-mechanical observational problem, non-locality and the EPR paradox. Quantum theory demands that two systems, once in interaction, remain correlated ever after until a measurement disturbs one of them. This measurement then reveals not only the nature Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral universes and quantum effects produced by electromagnetic fields of the system under study but also that of the remote partner still linked to the first by a common wave function; all this despite the absence of causality in the quantum world. This instantaneous communication, through the collapsing wave function, constitutes the non-locality of quantum theory. The information carried by a wave function is indeterminate until a measurement selects a single result from an infinite set, and changes the course of events irreversibly. All information, however, does not perish when the measurement selects one bit. The wave function persists to allow alternative choices elsewhere. Each measurement, therefore, splits the universe into two, each with independent continued existence. Instead of a single quantum universe, an infinite number of universes is therefore required by the many-worlds quantum theory. In view of the fact that quantum theory deals in noncommuting operators, illogical conclusions in the system are not unexpected, and are actually provided for in quantum logic, which is based on non-Boolean reasoning. The only problem is that it destroys locality, causality, reality, logicality and other coherent ideas on which a consistent cosmology can possibly be constructed. When postulating a vacuum structure, the real challenge is therefore to account for the unpredictability of quantum events. Massive objects behave classically. Even large molecules behave classically. The behaviour of very small particles, which can be considered as isolated in the vacuum, however, is more erratic and more wave-like. To preserve any notion of reality it is therefore necessary to accept the macroscopic world as the norm. It contains quantum world as a special case, and not the other way around. Noting that the time evolution of both classical and quantum mechanics merely corresponds to a change of coordinates, it is concluded that neither system can adequately describe irreversible processes. Natural macroscopic processes such as decay and lifetime are therefore outside the scope of quantum mechanics, which appears as a simplified limiting case, useful for the description of microscopic events only. In view of this, the standard argument that the more fundamental quantum theory contains classical theory as a special limiting case cannot be sustained. Prigogine finds that quantum theory is not complete, and suggests irreversibility as another basic element in the description of the physical world. However, when superimposing an entropy operator on quantum mechanics the distinction between classical and non-classical systems disappears. The classical theory with irreversibility therefore contains quantum theory as a special case. That is the model to be accepted here, assuming that classical theory, as it describes the rational world, is universally valid. Quantum phenomena only emerge in systems where interaction with the vacuum produces significant perturbations. The most basic ingredient of a cosmologically reasonable model of the vacuum is therefore an ability to predict quantum behaviour for sub-atomic particles. THE VACUUM INTERFACE The minimum statement consistent with all relevant theories is that the physical vacuum represents an element of PCT symmetry in four-dimensional space. Literally this defines the vacuum as an interface, either between two universes or between two regions of opposite chirality in the same universe. The latter more economical situation is the more attractive. The experimentally observed structure of the vacuum would then represent the faint echo of another enantiomeric world from across the interface. Progressively smaller particles experience, to an increasing extent, the effects of interacting with the hidden world beyond the interface. An observer keeping track of the particle is not aware of this hidden interaction and finds that the motion becomes inexplicably more erratic. The differential equation to model the motion is found to represent a wave packet rather than a classical particle. The mathematical description of the particle’s progress is precise, but the physical interpretation is incomplete. The crucial result is that the particle in the quantum region does not behave differently from classical particles. Its progress follows the same logic and causality, but since its equations of motion are formulated with neglect of a vital segment of its total environment, they appear more complicated than necessary. This anomalous behaviour decreases rapidly with increasing aggregation. The genesis of the postulated dual system is like the spontaneous separation of phases that occurs on the cooling of a twocomponent homogeneous fluid. This happens through symmetry breaking down when the interaction between like entities becomes dominant. The phase separation occurs in four dimensions and three-dimensional observations cannot penetrate the dividing surface. A useful analogy is to consider a bilayer of two-dimensional worlds. They are everywhere in contact but oblivious of each other. The interface provides the contact with the third dimension. The three-dimensional vacuum is to be visualized in strict analogy with this two-dimensional interfacial surface and there is no freedom of motion, either towards or away from the interface. To cross the interface it is necessary to move into a third dimension, which is not an allowed operation in Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 101 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 two dimensions. The only way to detect the presence of the interface is by quantum interaction which has little effect on massive entities, but influences microscopic particles dramatically. Likewise, a massive three-dimensional universe is everywhere in contact with the three-dimensional vacuum interface. In order to cross the interface it is necessary to proceed along a fourth dimension. but is simply used here as an instructive two-dimensional analogue. However, this surface is difficult to visualise as it cannot be embedded in R3, three-dimensional euclidean space. What is proposed instead is to consider as a model of the physical universe some three-manifold which, like the Möbius strip, is a non-orientable and one-sided elliptical manifold. The three-dimensional analog requires a four-dimensional twist or curvature of three-dimensional space that closes the universe onto itself and turns left-handed into right-handed objects. Considered as a single universe in three-dimensional space, chirality is preserved throughout. However, the interface created by the curvature separates regions of space with opposite chiralities. This interface cannot be crossed in three-dimensional motion, but allows interaction between entities near the interface to give rise to the quantum effects, (see figure 2 of our universe model). By the principle that the boundary of a boundary is zero, an interface in four-dimensional space has no two-dimensional boundary and the postulated vacuum must be three dimensional as observed. Figure 2. Positron Spin ( /2) in L-Universe and Electron Spin (– /2) in a R-Universe or both are in one Universe with two enantiomeric regions. The exact nature of the difference between the complementary universes makes interesting speculation, but it is useful to think of this as a difference in chirality. It is known from the spontaneous separation of enantiomers how chirality can be the driving force of phase separation. It is well known that objects with two-dimensional chirality can be identical when analysed in three dimensions. Rotations in the plane of these two-dimensional objects can never bring them into coincidence, but a simple rotation about an axis in the plane readily achieves this. The chirality is removed by a three-dimensional operation. Now consider a row of entities of the L-form only, along the two-dimensional surface of a Möbius strip and with orientation in the surface preserved. A two-dimensional world, populated by objects of the same chirality is obtained. However, the paper can be considered as an interface which separates different worlds on the opposite sides of the sheet. One finds that it separates enantiomeric forms. The inversion of chirality is brought about by the Möbius twist, which is a three-dimensional operation. The Möbius ribbon is not proposed to represent the true topology of the universe, 102 The present proposal pictures a universe based on the orientable double cover of period 2π. The postulated interface, called the vacuum, is closed in four dimensions with period π, and corresponds to the relativistic hypersurface which is the locus of light signals and populated by bosons only. The normal to the surface oriented in space is itself oriented in time, the fourth dimension of the present argument. This reduces quantum behaviour to the fluctuation along a time coordinate, between regions of three-dimensional space. It must be emphasized that this proposed model is nowhere in conflict with either relativistic or quantum theories, and is fully consistent with both. It has the merit of simplicity and provides the logical structure to relate quantum effects directly to the macroscopic physical world, (see appendix 2). APPLICATION OF THE MODEL It is of interest to examine how the model deals with some of the vexing problems of quantum theory, like the nonlocality embodied in the EPR argument. It is now proposed that the behaviour of the particle remains rational also in the quantum region, near the interface, and hence there must be a persistent causal relationship of both individuals from a correlated pair with their common origin. This relationship persists until the first of the two individuals Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral universes and quantum effects produced by electromagnetic fields becomes involved in a unique encounter. Until that point, however, synchronised observation of the pair cannot but reveal correlated behaviour. The degree of correlation is neither a function of their separation nor dependent on an exchange of information. The model also provides a simple account of the missing anti-matter. It is not difficult to identify anti-matter with the enantiomeric matter introduced above. This means that the vacuum separates the material and antimaterial worlds. However, exploration of the universe never reveals the gradual change in chirality along the curvature in four dimensions, and all matter is perceived to be of the same chirality. Encounters across the vacuum interface brings matter into violent contact with anti-matter, and a stable universe is therefore only possible if it is in strict equilibrium with itself. To have a cosmic potential on opposite sides of the interface in balance would certainly require well-tuned characteristics of certain relevant physical parameters. It probably requires a specific value of the fine-structure constants, and could be at the root of the famous large number coincidences. This mercifully eliminates concepts like the anthropic principle and many-world theories. It neatly places radiation in the vacuum where it belongs, between matter and anti-matter. As across any other interface that separates phases in equilibrium, constant seepage must occur. This provides a plausible origin of cosmic rays as chance excursions across the interface, and could also account for the isotropic 3K microwave background. It is also necessary to consider the time-reversibility of quantum theory and the arrow of time in the macroscopic world. To jump into time it is necessary to cross the vacuum interface, in either direction. Because of the curvature of space, any displacement in the three-dimensional universe is a small step in the same direction, and hence a positive displacement in time. A time axis always points directly into the interface and time flows towards the site directly on the other side. The two-dimensional world model assists to demonstrate how this argument defines the arrow of time. Unfortunately, it also shows how time travel is self-destructive through an encounter with antimatter. The quantum particle makes a small hop into time, but bounces back with time-reversal and random perturbation of its space coordinates. In contra-distinction to classical particles it therefore manages a displacement in space without an inevitable time advancement. It can even appear to be in two places at the same time as in two-slit diffraction experiments. Time-reversibility and uncertainty principle are implied at the same time. That is the price for not seeing the other side. The vacuum, considered as an interface, is empty. It is no longer required that it accommodates all the Dirac oceans of negative quantum states. These states are on the opposite side of the interface and they need not be filled. As an example, the negative states for electrons occur in the positron-rich world on the other side of the vacuum interface. Electrons from this side are prevented from dropping down into their negative-energy states by the interfacial surface potential. Photons at the interface can still be considered as representing electron-positron pairs as before. The same holds for the rest of the quantum field entities. The two individuals of a virtual pair are now actually associated with different, symmetry-related time regimes, giving substance to the definition of an anti-particle as a particle moving backwards in time. The most significant result of the model is perhaps the way it distinguishes between weak and electromagnetic interactions. In order to demonstrate the difference it is noted again that quantum behaviour is a function of aggregation. A massless photon at the interface interacts equally with the material and anti-material worlds. It is the archetype of a non-classical particle: its interaction with exactly one half of its total environment is of necessity ignored by any observer, and it appears to propagate like a harmonic wave, without being a wave. The particulate nature of the photon is demonstrable in experiments where forced confrontation with matter so dominates its behaviour that the influence of the anti-matter is effectively masked. The photoelectric effect illustrates this well. Its interaction with the other side is scaled down. It is not at the interface in the same sense as a photon and coexists with the positron, its reflection across the interface. It moves like a wave-packet and interacts more strongly with its own matter. The vector boson that mediates the weak interaction also has mass, of about 100 GeV and, unlike the photon, is therefore not identical with its anti-particle and reflects across the vacuum interface that contains the element of PCT symmetry. The weak interaction likewise has reflection symmetry only across the vacuum interface, manifesting itself asymmetrically on both sides of the interface. This requires β-decay to be unsymmetrical. It remains to explain why the vacuum interface is stable, yet separates two interactive states of matter. The answer is that the three-dimensional interface, postulated here, separates the two layers in time rather than space. This prevents macroscopic interaction, provided the equilibrium is maintained. Interaction between the opposite sides is confined to quantum events which represent penetration of rarefied particles into the time barrier and into the domain of influence of the world beyond. In the appendix 2 and 3, we examine the cosmological implications of this vacuum. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 103 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 CONCLUSION The implications of the vacuum interface model have striking parallels with gauge theory. Local gauge invariance, under an appropriate symmetry group, implies a transformation that links an internal property like the phase of a wavefunction or isotropic spin to a gauge field. Breaking of the gauge symmetry has important physical consequences. This locks the phases of the wavefunctions together over macroscopic distances and destroys the gauge symmetry. Gauge theory is presently being extended successfully to incorporate the strong interaction. The quest is to find that symmetry group which contains all the necessary subgroups to define the gauge symmetry of each force separately. The full symmetry occurs only at the grand unification energy, which is so high that all forces are equivalent. At lower energy the symmetry breaks spontaneously and the different forces separate into different symmetry species, as observed. In the formalism of the present argument a free particle at the vacuum interface has a gauge connection with the quantum potential. The symmetry group of this gauge field contains the unified quantum and classical theories. The contiguous worlds that meet at the interface, like the atomic lattice at superconductivity, provide the mechanism to create a Higgs field which breaks the symmetry and produces the massive worlds of classical theory, with lower symmetry. a black hole. At an intermediate level, an increased h would also produce radiation of constant energy quanta at lower frequency. This represents an intrinsic red shift of the type observed for quasar. APPENDIX 1:A NEW INSIGHT INTO THE NEGATIVE-MASS AND THE ACCELERATING CHIRAL UNIVERSE The discovery of acceleration of the universe expansion in recent astrophysics research prompts the author to think that Newton’s gravitation law can be generalized to accommodate the antimatter: While the force between matters (antimatters) is attractive, the force between matter and antimatter is a repulsive one. A paradox of negative-mass in gravity versus a basic symmetry ( m → − m ) based on quantum mechanics is discussed in sufficient detail so that the new postulate could be established quite naturally. Corresponding modification of the theory of general relativity is also proposed. If we believe in the symmetry of particle and antiparticle as well as the antigravity between them, it might be possible to consider a new scenario of the expansion of universe which might provide some new insight into the interpretation of cosmological phenomena including the accelerating universe observed. Symmetry of space-time inversion Rigorous formulation of this theory requires definition of the full symmetry group, containing also the symmetry subgroups of the known forces of nature. Progressive symmetry breaking produces each of the forces in turn until, at the lowest level of mass separation, gravitational effects appear for the first time. The model therefore contains not only the seeds of grand unification, but also the mechanism for spontaneous separation of matter and anti-matter into different time domains. The three stronger forces are defined in quantum-mechanical terms and gravitation follows classical mechanics. Quantum effects are proposed to have their origin in the gradient at the vacuum interface. As the curvature of space-time is distorted by large masses, so would the gradient be enhanced, and quantum effects are predicted to become more pronounced in the vicinity of high-density material. Likely candidates are neutron stars, pulsars, quasars and black holes. The effect would manifest itself through a higher value of h, and hence more pronounced quantum-mechanical uncertainty. More massive particles will show quantum behaviour, and in the limit of infinite gradient, the interface is punctured and uncertainty becomes total (∆E⋅∆t≥h). This situation corresponds to 104 Starting from RQM, we consider the wavefunction (WF) of a freely moving (along x axis) particle: ψ ∼ exp [i( p x − E t ) / ], (1.1) where p is the momentum and E(>0) the total energy. But what is the WF ψc of an antiparticle? Before 1956, it was assumed to be a consequence of the operation of a so-called charge-conjugate transformation C which can bring a charged particle ( say an electron with charge –e) to its antiparticle (say the positron with charge e) [2]: ψ c = Cψ ∼ ψ ∗ ∼ exp [i(− p x + E t ) / ]. (1.1*) We see that the negative-energy –E<0 emerges immediately due to the basic operators in quantum mechanics (QM): pˆ R = −i ∂ ˆ ∂ , E R = i . ∂x ∂t (1.2) The negative-energy difficulty at the level of QM was remedied to some extent by the so-called “hole theory Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral universes and quantum effects produced by electromagnetic fields for positron” (which is obviously impossible for the Klein-Gordon particle) and solved formally at the level of quantum field theory (QFT) by the redefinition of creation (annihilation) operators. For example, the Schrodinger equation is nonrelativistic. But t he fol low i ng couple d Sch ro d i nger l i ke equation Since the discovery of parity violation, i.e., the violation of space-inversion P(x→–x) symmetry in 1956-1957, physicists realize that not only P but also C transformations are not conserved in the weak-interaction processes. So Eq. (1.1) is not applicable in general and the WF of antiparticle should be redefined as: ψ c = CPTψ ∼ exp [−i( p x − E t ) / ], ψ → Tψ = ψ ( x , −t ) ∼ exp [i(− p x − E t ) / ]. (1.4) Note that: First, the name “time-reversal” is actually a misnomer [3, 4]. What the transformation (1.4) means is merely a reversal of motion (p→–p). Second, the correctness of definition of antiparticle WF (1.3) depends on the validity of the CPT theorem which in turn is ensured by basic principles of SR and QFT. Third, as the complex-conjugate operations in C and T cancel each other, what a combined CPT transformation in (1.3) means is merely a sign change of coordinates (x, t) in comparison with Eq. (1) [1, 2]. But the original meaning of C, P and T implies that Eq. (1.3) should describe an antiparticle with the same p and E(>0) as that of the particle described by (1.1). Hence for antiparticles, we should forget the “hole theory” and use the following operators instead of (1.2): ∂ ∂ (1.5) , Eˆ L = − i . ∂x ∂t In fact, Eq. (1.5) had been proven to be the direct and unique outcome of the full solutions to the EPR paradox and Klein Paradox [4-6]. pˆ L = i Fourth, once we accept Eqs. (1.3) and (1.5), the CPT theorem becomes a new fundamental postulate, i.e., a basic symmetry which can be stated in the following form: Under the (newly defined) space-time inversion denoted by PT , meaning merely x→–x, t→–t, the theory of RQM remains invariant with its concrete solution, e.g., a particle WF transforming to its antiparticle WF (denoted by C) automatically. It means that our postulate reads: PT = C (1.6) (1.7) is just the relativistic Klein-Gordon equation (i (1.3) where the so-called “time-reversal transformation” T is defined as: ∗ i ∂ ϕ = mc 2ϕ − 2 ∇ 2 (ϕ + χ ), ∂t 2m 2 2 ∂ i ∂t χ = − mc χ + 2m ∇ 2 ( χ + ϕ ), ∂ 2 ) ψ = − c 2 2 ∇ 2 ψ + m 2c 4ψ , ∂t (1.8) with relation first pointed out by Feshbach and Villars in 1958: ϕ = (ψ + i ψ / mc 2 ) / 2, 2 χ = (ψ − i ψ / mc ) / 2. (1.9) Now we see that under the space-time inversion (x→–x, t→–t) and the transformation: ϕ (− x , −t ) → χ ( x , t ), χ (− x , −t ) → ϕ ( x , t ), (1.10) the Eq. (1.7) does remain invariant while a particle WF (1.6) with | ϕ |>| χ | (due to E<0, see (1.8) turning to its antiparticle WF (1.9)) with | χc |>| ϕ c | (due to, E<0, Ec = –E>0, see (1.9)). Symmetry of mass inversion Alternatively, we can restate the above basic symmetry in the following way: Under the mass inversion: m → − m, ϕ ( x , t ) → χ ( x , t ), χ ( x , t ) → ϕ ( x , t ), (1.11) the theory, e.g., Eq. (1.6), remains invariant. Although transformation (1.6) is equivalent to transformation (1.11), they share different advantages. The former is relevant to unobservable coordinates (x, t) and so is more essential in RQM and equivalent to even more abstract symmetry of i versus –i (see Eq. (1.1) versus (1.3)), while the latter is relevant to observable mass m and so is easily to be generalized to the case of classical theory. Here, we’d better use the following working rule: to deal with particle (matter) and antiparticle (antimatter) on an equal footing, a classical theory must be invariant under the mass-inversion transformation m→–m. Note that: First, m is always positive. Second, being the external field, the electric-(magnetic) field strength E(B) undergoes Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 105 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 no change in the transformation. Third, in RQM like (1.7) or (1.8), the motion equation for antiparticle is the same one as that for particle. This is because each particle state like (1.1) contains its hidden antiparticle field under the condition |ϕ|>|χ| whereas an antiparticle state like (1.3) contains its hidden particle field under the condition |χc|>|ϕc|. Fourth, to clarify further why we prefer the new postulate (1.6) instead of C transformation and CPT theorem, we wish to emphasize an important difference between a postulate (law) and a theorem. All quantities in a theorem must be defined in advance separately and unambiguously and the outcome of the theorem is actually contained in its premise implicitly. For example, the definitions of C, P and T are all clear in mathematics and the validity of CPT theorem is ensured by the basic principles of SR and QFT. Once C, P and T are not conserved in experiments, they cease to be meaningful as physical transformations. In this situation, the CPT theorem immediately exhibits itself as a new postulate (1.12) in which the definition of transformation of particle to antiparticle is just contained in the same equation. In general, a postulate or law can often (not always) accommodate a definition of physical quantity, and the validity of the postulate (law) together with the definition must be verified by experiments. Hence the establishment of a law is a process “from particular to general” or an outcome of “analysis and induction method”. By contrast, to prove a theorem from well-established theories is a process “from general to particular” or a consequence of “deduction method”. As is well known, the EP served as a starting point in establishing the theory of general relativity (GR). The possible invalidity of EP in the presence of antimatter implies that GR is dealing with the gravitation of pure matter without the coexistence of antimatter. Indeed, let us look at the Einstein field equation [9]: For example, the definition of gravitational mass m is contained in the gravitational law. The definition of inertial mass m is contained in Newton’s law. What we have done is a similar thing - the definition of particle-antiparticle transformation C is contained naturally in a new postulate (1.6) - not one that comes from elsewhere. (where the superscript c means antimatter,) since under c c → −Tµν . the mass inversion, Tµν → −Tµν and Tµν Notice that the form of the energy-momentum tensor is the same for both matter and antimatter. We stress once again that the distinction between m and –m is merely relative, not absolute. So in the whole universe eff c (matter+antimatter) we have Tµν = Tµν − Tµν ≡ 0 and the Einstein equation is Generalization of Einstein field equation in general relativity Consider a positronium and an atom of matter. If Newton Equation is correct, there will be no gravitational force between them. This means that the gravitational mass m (grav.) of positronium is zero! However, the energy or the relevant inertial mass m (inert.) of positronium is definitely nonzero. Hence we see that in the case of coexistence of particles and antiparticles, the equivalence principle (EP) in the (weak) sense that [8] m (grav.) = m (inert.) 106 (1.13) On the left side, the Ricci tensor Rµv, curvature scalar R and the metric tensor gµv are all functions of coordinates xµ. While on the right side, the energy-momentum tensor Tµv is introduced to describe the existence of matter in the vicinity (a macroscopic small volume) of xµ. Then under a transformation of mass inversion m→–m to reflect that of matter to antimatter, Tµv should change its sign due to its proportionality to the mass m. Hence Eq. (1.13) changes sign on the right side whereas not on the left side. This reflects the fact that GR is a classical field theory and so cannot treat the matter and antimatter on an equal footing. To keep Eq. (1.13) invariant under the mass inversion, we manage to modify its right side by a generalization as: eff c Tµν → Tµν = Tµν − Tµν , Rµν − 1 g R≡ 0 2 µν (1.14) (1.15) APPENDIX 2: THE COSMOLOGICAL CONSTANT PROBLEM Let’s outline shortly the cosmological constant problem. Consider Einstein equation with ∆ -term ( = c = 1 ): (1.12) cannot be valid. 1 Rµν − gµν R = −8π GTµν 2 1 Rµν − gµν R = 8π GTµν + Λgµν 2 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (2.1) H. Torres-Silva: Chiral universes and quantum effects produced by electromagnetic fields Here Tµv is energy-momentum tensor of the matter and Λ is some constant parameter having the dimension [cm-2]. In the used unit system the Newtonian gravitational constant G lP2 2, 5 ⋅ 10 −66 cm 2 (2.2) and according to experimental data the mean energy density today is of the order Tµν ρ1 108 cm −4 → 8π GTµν 5 ⋅ 10 −57 cm −2 (2.3) In the vacuum interface (see figure 2), the Einstein equation is described by em Rµν = 8π GTµν + Λ P gµν (2.8) It is clear that the interaction of fields doesn’t changes qualitatively the estimation (2.7). From (2.7) and (2.3) we see that the contribution to the right hand side of Eq. (2.1) estimated in the framework of canonical quantum field theory is larger about 10120 times in comparison with the experimental estimations. and Λ 10 −56 cm −2 (2.4) Thus, if Einstein equation (1) is used for description of the today dynamics of our R-Universe, the quantities in its right hand side are of the same order indicated in (2.3) and (2.4). In our model, for the L-Universe, we have Tµv < 0, Λ < 0. Now let us estimate the possible value of the right hand side of Eq. (2.1) in the framework of canonical quantum field theory. For simplicity consider energy-momentum tensor in quantum electrodynamics in flat spacetime: 1 1 i Tµν = − ( Fµλ Fνλ − ηµν F 2 ) + (ψγ ( µ ∇ν ) − ∇(νψγ µ )ψ ) (2.5) 4 4 2 Casimir effect, predicted in [1] and experimentally verified in [2], shows for reality of zero-point energies. Moreover, the attempts to drop out zero-point energies by appropriate normal ordering of creating and annihilating operators in energy-momentum tensor fail for many of reasons (the discussion of this problem see, for example, in [3]). Thus, at estimating vacuum expectation value of energy-momentum tensor (2.5), it should not be performed normal ordering of creating and annihilating operators in (2.5). Thus we obtain for vacuum expectation value of tensor (5) in free theory: Tµν 0 = d 3 k kµ kν 3 k0 ∫ (2π ) −2 k0 = k kµ kν k o k 0 = m2 + k 2 (2.6) Here m is the electron mass. The first item in (2.6) gives the positive contribution but the second item gives the negative contribution since these items give the boson and fermion contributions to vacuum energy, respectively. If integration in (2.6) is restricted by Planck scale, kmax ∼ lP−1 , then from (2.6) and (2.2) it follows: 8π G Tµν 0 lP−2 1066 cm −2 Λ P (2.7) APPENDIX 3: COSMOLOGICAL IMPLICATIONS It is instructive to examine some of the cosmological implications of the present proposal. When light traverses intergalactic space it displays a Doppler frequency shift, invariably interpreted in terms of receding sources, and therefore assumed to imply an expanding universe. This interpretation is not inconsistent with the present model, but neither is it a necessary consequence. Curvature of three-dimensional space along a time coordinate implies that a distant source is separated from an observer in both space and time. During transit, the photon moves towards an observer ahead of it in time and therefore appears to lag as if its source was receding. The observed red shift, as before, is a function of separation, but the proportionality constant does not necessarily relate distance to rate of recession, but rather to a time separation interval, ∆t, ) ∆t, zc = rH = r 1 t − 1 ( t + ∆t , where t=r/c. Hence: ) z = 1 − t ( t + ∆t . This formulation allows the calculation of a Hubble radius rather than a Hubble age of the universe. As ∆t → ∞ , H → 1 t 0 = c r0 , where the maximum value of the interval r0 = ct0 is interpreted as an upper bound to some radius of the universe. This effective radius corresponds to 4x109 parsec. Converted to a dimensionless distance, one has N1 = r0 m e c 2 e 2 = t 0 m e c3 e 2 ≈ 10 40 . Using this value with the dimensionless mass, or number of baryons, of the universe, N3 = 1080, a mass density of ρ = N 3 N13 = 10 −40 is calculated. This matches the third large number N 2 = e 2 / (4πε 0 Gm p me ) = 2.3 × 1039 , Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 107 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 the gravitational coupling constant, as required by Mach’s principle, without invoking anthropic principles. There is no reason why any of these large numbers should change with time. The foregoing does not demand a static universe. As time flows, observers move along the interface and therefore experience a gradually changing curvature. Time evolution amounts to the threading of the interface through the universe, and the consequent changes in configuration are like pseudo-rotation, which increases the isotropic appearance of the universe. The resulting relative motion would probably be not unlike that of an expanding universe. In-so-far as an abstract surface like P2 does not exist in less than four dimensions, the vacuum interface must likewise be four-dimensional. Its three-dimensional aspect differentiates between the chiral forms of matter, and by analogy, the four-dimensional vacuum could conceivably differentiate between opposite directions in time. A closed journey along the interface would gradually turn positive into negative time flow as was shown for the chirality of matter, suggesting that time has no unique beginning. The same conclusion is reached by modern quantum cosmologies. Hawking’s idea that the universe is finite but has no boundary in imaginary time, may indeed be fully consistent with the four-dimensional chiral structure arrived at here. The model of the universe with two chiral spaces The model of the homogenous and isotropic universe with two spaces is considered. The background space is a coordinate system of reference and defines the behaviour of the universe. The other space characterizes the gravity of the matter of the universe produced by electromagnetic waves. In the presented model, the first derivative of the scale factor of the universe with respect to time is equal to the velocity of light. The density of the matter of the universe changes from the Plankian value at the Planck time to the modern value at the modern time. The model under consideration describes the whole universe from the Planck time to the modern time and avoids the problems of the Friedmann model such as the flatness problem and the horizon problem. As known [14, 15], the Friedmann model of the universe has fundamental difficulties such as the flatness problem and the horizon problem. These appear to be a consequence of that the space of the Friedmann universe, on the one hand, is defined by the gravity of the matter of the universe, and on the other hand, 108 is a coordinate system of reference. The solution of the problem is to introduce the background space as a coordinate system of reference. In this case, the background space defines the behaviour of the universe, and the other space characterizes the gravity of the matter of the universe. Let us consider the model of the homogenous and isotropic universe with two chiral spaces. Let us introduce the background space as a coordinate system of reference. Then the evolution of the universe is described as a deformation of the background space. Let us take the homogenous and isotropic background space, with the spatial interval of its metric is given by ds 2 = a 2 dl 2 2 1 + kl 2 4 (3.1) Suppose that the background space is defined by the total mass of the universe including the mass of the matter and the energy of gravity produced by electromagnetic waves Gik = Tiktot = Tikem = Tik + tik . (3.2) Let us consider the case when the total mass of the universe is equal to zero. It means that the Maxwell tensor vanishes, Tikem = 0, but with det F k ≠ 0 . i Tiktot = Tik + tik = 0 (3.3) Then eq. (3.2) take the form Gik = 0. (3.4) The solution of the equations (3.4) gives Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 d 2a =0 (3.5) da = c. dt (3.6) dt 2 H. Torres-Silva: Chiral universes and quantum effects produced by electromagnetic fields Thus the second derivative of the scale factor of the universe with respect to time is equal to zero, and the first derivative of the scale factor is equal to the velocity of light. It should be noted that the scale factor of the universe coincides with the size of the horizon a = ct. (3.7) In the model (3.4), the laboratory coordinate system is synchronous. In the laboratory coordinate system, the background space is described by the flat metric ds 2 = c 2 dt 2 − a 2 dl 2 . (3.8) Thus we arrive at the Milne model [16] in which the size of the universe being the maximum distance between the particles coincides with the scale factor of the universe and coincides with the size of the horizon. In the universe with one space, the Milne model is derived from the condition that the density of the matter tends to zero ρ → 0. Here the Milne model describes the background space of the universe, with the total mass of the universe being equal to zero mtot = 0. Let us determine the relationship between the lifetime of the universe and the Hubble constant. Since the Hubble constant is H= 1 da , a dt (3.9) so from (3.6), (3.7), (3.9) one can obtain t= 1 . H (3.10) Allowing for (3.7) and (3.10), from (3.11) it follows that the mass of the matter changes with time as m= c 2 a c 3t c3 = = , G G GH (3.12) and the density of the matter, as ρ= 3c 2 3 3H 2 = = 2 2 4 πG 4 πGa 4 πGt (3.13) According to (3.12), growth of the mass of the matter takes place during all the evolution of the universe. At the Planck time tp1, the mass of the matter is equal to 1/ 2 the Planck mass mPl = (c / G ) . At present, the mass 56 of the matter is m0 ≈ 1.4 ⋅ 10 g , and the density of the -29 -3 matter is ρ0 ≈ 3.2 ⋅ 10 g cm . Thus the model of the universe (3.3)-(3.6) provides growth of the mass of the matter from the Plankian value to the modern one. We have considered the model of the homogenous and isotropic universe with two spaces, with the behaviour of the universe is defined by the background space. Unlike the Friedmann model, the presented model gets rid off the flatness and horizon problems. Remind [14, 15] that the horizon problem in the Friedmann universe is that two particles situated within the horizon at present were situated beyond the horizon in the past. In the universe under consideration, all the particles are situated within the horizon during all the evolution of the universe, since the size of the universe being the maximum distance between the particles coincides with the size of the horizon. Hence the presented model avoids the horizon problem. Let us estimate the size of the universe at the Planck time and at present. Remind that the size of the universe coincides with the scale factor of the universe. According 5 1/ 2 to (3.7), at the Planck time t Pl = (G / c ) , the scale factor of the universe is equal to the Planck length TPl = lPl = (G / c3 )1/ 2 . According to (3.7), (3.9), for the modern Hubble constant H 0 ≈ 3 ⋅ 10 −18 c-1 , the modern scale factor of the universe is a0 ≈ 10 28 cm . Remind [14, 15] that the essence of the flatness problem in the Friedmann universe is impossibility to get the modern density of the matter starting from the Planck density of the matter at the Planck time. In the presented theory, the density of the matter of the universe changes from the Planckian value at the Planck time to the modern value at the modern time. Hence the flatness problem is absent in the presented theory. Let us determine the relationship between the mass of the matter and the scale factor of the universe at t = const. The total mass of the universe is equal to zero, given the mass of the matter is equal to the energy of its gravity In order to resolve the above problems of the Friedmann universe an inflationary episode is introduced in the early universe [14, 15]. Since the presented model describes the universe from the Planck time to the modern time and avoids the above problems of the Friedmann universe, there is no necessity to introduce the inflationary model. m= Gm c2 a . (3.11) Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 109 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 REFERENCES [9] N.A. Bahcall, J.P. Ostriker, S. Perimutter and P.J. Steinhardt. “The cosmic triangle: revealing the state of the universe”. Science. Vol. 284, pp. 1481-1488. May 28 1999. [10] W. Freedman. “The Hubble constant and the expanding universe”. American Scientist, Vol. 91, pp. 36-43. Jan-Fe, 2003. [1] H. Bondi. “Negative mass in general relativity”. Rev. Mod. Phys. Vol. 29, pp. 423-428. 1957. [2] J.D. Bjorken and S.D. Drell. “Relativistic Quantum Mechanics”. McGraw-Hill Book Company. 1964. [3] J.J. Sakurai. “Modern Quantum Mechanics”. John Wiley & Sons Inc. 1994. [11] M. Livio. “Moving right along”. Astronomy. pp. 34-39. July 2002. [4] G.J. Ni and S.Q. Chen. “Advanced Quantum Mechanics”. Chinese Ed. Press of Fudan University. 2000. English Ed. Rinton Press. 2002. [12] P. Davies. “Seven wonders”. New Scientist. September 21 2002. [5] G.J. Ni, H. Guan, W.M. Zhou and J. Yan. “Antiparticle in the light of Einstein-PodolskyRosen paradox and Klien paradox”. Chin. Phys. Lett. Vol. 17, pp. 393-395. 2000. [13] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 1, pp. 6-23. 2008. [6] G.J. Ni. “Ten arguments for the essence of special relativity”. Proceedings of the 23rd Workshop on High-energy Physics and Field Theory, pp. 275-292. Edit: I.V. Filimonova and V.A. Petrov. Protvino, Russia. June 2000. [14] A.D. Dolgov, Ya.B. Zeldovich and M.V. Sazhin. “Cosmology of the early universe”. Moscow Univ. Press. Moscow. 1988. [15] A.D. Linde. “Elementary particle physics and inflationary cosmology”. Nauka. Moscow. 1990. [7] L. Smolin. “Three Roads to Quantum Gravity”. Basic Books, p. 149. 2001. [16] Ya. B. Zeldovich and I.D. Novikov. “Structure and evolution of the universe”. Nauka. Moscow. 1975. [8] S. Weinberg. “Gravitation and cosmology”. John Wiley. 1972. [17] L. Landau and E.M. Lifshitz. “The classical theory of fields”. 4th Ed. Pergamon. Oxford. 1976. 110 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: A new relativistic field theory of the electron Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, pp. 111-118 A NEW RELATIVISTIC FIELD THEORY OF THE ELECTRON UNA NUEVA TEORÍA RELATIVÍSTICA DE CAMPO PARA EL ELECTRÓN H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 21 de diciembre de 2007 Received: September 5, 2007 Accepted: December 21, 2007 RESUMEN En este trabajo se presenta un examen cualitativo sobre una nueva Teoría General Relativística para el electrón, con la obtención de la ecuación de Dirac a partir de los campos electromagnéticos con el campo eléctrico paralelo al campo magnético. El principio rector es el de la relatividad general, y la principal hipótesis es que de las ecuaciones fundamentales se desprende la teoría de Dirac y la teoría de Maxwell - Lorentz como de dos casos especiales cuidando la coherencia y compatibilidad entre las condiciones en las que las ecuaciones fundamentales se reducen a la ecuación de Dirac y las ecuaciones de Maxwell - Lorentz. Se espera que la presente investigación arroje alguna luz sobre las desconcertantes dificultades a las que nos encontramos en la comprensión del comportamiento de un electrón exclusivamente en función de la ecuación de Dirac y las ecuaciones de Maxwell - Lorentz. Más allá de esto, se puede investigar la posibilidad de que otras partículas elementales se puedan regir por las mismas ecuaciones fundamentales bajo variadas condiciones restrictivas. Palabras clave: Ecuación de Dirac, tensor de materia, sistema Einstein-Maxwell. ABSTRACT In this paper we present a qualitative discussion of a new General Relativistic Field Theory for the electron, obtaining the Dirac equation from electromagnetic fields with the electric field parallel to the magnetic field. The guiding principle is that of general relativity, and the main hypothesis is that the fundamental equations embrace the Dirac theory and the Maxwell-Lorentz theory as of two special cases respectively. We concern ourselves with the consistency and compatibility among those conditions under which the fundamental equations are reduced to the Dirac equation and the MaxwellLorentz equations. We expect that the present investigation will shed some light on those perplexing difficulties which we encounter in comprehending the behavior of an electron solely according to the Dirac equation and the Maxwell-Lorentz equations. Beyond this, we aim to investigate the possibility that other elementary particles are governed by the same fundamental equations under varied restrictive conditions. Keywords: Dirac equation, matter tensor, Einstein-Maxwell system. INTRODUCTION Einstein’s Dream Albert Einstein spent several years of his life trying to develop a theory which would relate electromagnetism and gravity to a common “unified field”. Hence the name unified field theory. 1 After Einstein finished his first article on the unified field theory in 1922, despite criticism he spent much of the second half of his life pursuing the development of the unified field theory besides the discussion of completeness of quantum mechanics. In the first several years, he was very optimistic, thought success would come soon, but he found it was full of difficulties afterwards. He considered mathematical tools in being was not sufficient, then turned Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 111 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 to study mathematics, but never obtained any result with real physical sense. Because Einstein wanted to found an encompassing mathematical construct that would unite not only gravitational field but also electromagnetic field under a single set of equations, but then the task has become even more difficult, with the discovery of two other basic field: the weak interaction field and strong interaction field. Most physicists thought Einstein’s quest was hopeless, and in fact he never succeeded. But Einstein was convinced such a basic harmony and simplicity existed in nature, he kept his chin up, went ahead along his own road. Because he was apart from the mainstream of physical research - quantum field theory, he was very alone in his old age, but he was fearless. He still prepared to keep on his mathematical calculation of unified field theory on his sickbed until the day before his death. He said with a sigh before his death: I cannot finish this work, it will be forgotten, but it will be rediscovered in the future. Einstein did manage to develop a theory which “wrapped” electromagnetism and gravitation into a common metric tensor. In one of his formulations of a unified field theory (called Einstein-Schrodinger Theory), gravitation was wrapped into the symmetric part of the metric tensor, while electromagnetism was wrapped into the antisymmetric part of the metric tensor. This wrapping is possible because electromagnetism and gravity share some mathematical similarities. They both have a stressenergy tensor. The electric charge is analogous to the gravitational mass. The magnetic moment is analogous to the angular momentum moment. The electric potential and electric field are analogous to the gravitational potential and gravitational field, respectively. Finally, the magnetic field is analogous to the magneto-gravitic field. The mathematical wrapper which Einstein developed exploits this analogy. However, the analogy between electromagnetism and gravity breaks down at higher field strengths when nonlinear field effects set in. As a result, Einstein-Schrödinger theory correctly describes electromagnetism and gravity at low field strengths where they are not coupled to each other. However, it does not describe the interactions between electromagnetism and gravitation which occur at higher field strengths. Thus, Einstein-Schrödinger theory achieved an approximate mathematical unification, but no real physical unification of electromagnetism and gravity. In this sense, it did not really achieve its objective. Kaluza and Klein developed an alternative wrapper for electromagnetism and gravitation. Instead of wrapping electromagnetism into the antisymmetric part of the metric tensor, they retained a symmetric metric tensor but added a fifth dimension. They were able to show that 112 Maxwell’s Laws and General Relativity can be expressed in terms of their five-dimensional metric tensor. Again, this exploits the analogies between electromagnetism and gravity. The problem with Einstein’s unified field theory and Kaluza-Klein’s unified field theory is that they don’t address the fundamental issue. They still treat gravitation and electromagnetism as two completely separate interactions. Neither theory can tell you how a gravitational field is fundamentally produced by a charged particle (electron). Today, the search for a unified field theory has been replaced by loftier goals. Physicists are now looking for a so-called Theory of Everything (TOE) which will unify not only electromagnetism and gravity, but also the nuclear interactions and other potential physical forces such as inflation and “dark energy”. At the time of Einstein, modern particle physics had not yet been developed and the strong and weak nuclear interactions were not well understood. Within of the unified program a fundamental question was if gravitational fields did play an essential part in the structure of the elementary particles of matter (electron). The first unimodular theory was developed by Einstein in 1919, assuming as source the Maxwell tensor, where the quantum electron theory was not reproduced. Thus, as stated by Einstein in 1919, “we cannot arrive at a theory of the electron [and matter generally] by restricting ourselves to the electromagnetic components of the Maxwell-Lorentz theory, as has long been known” [6]. Motivation In the beginning of this century, Lorentz, Poincaré, Abraham, Mie and others attempted to show that the constitution of an electron be explained as a field of electromagnetic nature. In order to make the motion of the electron special-relativistic, however, it was necessary to consider a mechanical core (Poincaré) or to introduce some nonlinearity (Mie) in the electromagnetic field under consideration [1-3]. To overcome these difficulties appeared to have completely been resolved with the Dirac equation for the electron discovered in 1928. It has conventionally been believed that the information of an electron near its core is fully provided by the Dirac equation. The notion of the electron formed by the conventional interpretation of the Dirac equation is hardly acceptable as rational and feasible. Instead, in an accompanying paper, it was shown that the Dirac equation has a solution that indicates that an electron is a field localized in space and deformable and that the motion of this “elementary field” is determinate and causal. Moreover, is shown, it is possible to regard the field governed by the Dirac equation as if electromagnetic. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: A new relativistic field theory of the electron This possibility is not surprising if we note that the intrinsic magnetic moment of an electron is a notion to be comprehended only in the context of Faraday-MaxwellLorentz’s theory of electricity and magnetism. Thus we are led to infer the following: An electron is a localized field of which some part remote from its center may well be regarded as normal electromagnetic, and some other part near its center is governed by the Dirac equation derived from parallel fields. The connection between the two parts must be continuous and gradual, and there is no clear-cut border between them. A real electron, as a whole, must be a unified field governed by a common set of partial differential equations. It is important to anticipate the possibility that those fundamental equations governing the field be reduced to the Maxwell-Lorentz equations under a restrictive condition and to the Dirac equation under another restrictive condition. Although with the early theories of Einstein and others [6-7], there is no deductive way of giving the fundamental equations, it is not difficult to anticipate the following: a. The electronic mass has its representation in the Dirac equation, but not in the Maxwell-Lorentz equations. On the other hand, the electronic charge is seen in the Maxwell-Lorentz equations, but not in the Dirac equation for a free electron. We infer from these observations that the electronic mass and charge are approximate substitutes of field variables that are functions of time and space in the fundamental equations. Only because the variables are comparatively less variants, they may be replaced with constants as depending on conditions of observation. b. The Maxwell-Lorentz equations are covariant under the Lorentz transformation, however, the covariance of the Dirac equation under the same transformation is conditional. Besides, the field variables in MaxwellLorentz equations and those in the Dirac equation are apparently of different characteristics under the Lorentz transformation. In order to embrace those two sets of equations as of special cases, the fundamental equations must be formed in a geometrical frame less restrictive than the Euclidean, i.e., as covariant for observers in varied conditions [8-9]. These difficulties are overcomes with our Maxwell’s Equations with parallel electromagnetic fields, (see accompanying paper). Considering those observations in the above, it is significant to recall the demonstration of the similarity between the Dirac field and the electromagnetic field. In the demonstration, we see a clue to electing a set of fundamental equations that are reducible to both the Dirac equation and the Maxwell-Lorentz equations. In paper (Physical interpretation of the Dirac equation with electromagnetic mass), we considered the Dirac equation for a free electron derived from Maxwell’s equations when the electric field is parallel to the magnetic field. The Nature of the Investigation If one accepts as valid the principle of relativity, i.e., the principle of covariance of the laws under coordinate transformations, the choice of a proper scheme of geometry is an essential part of the task of constructing the fundamental equations concerned. In this respect, it is significant to recall that the Dirac equation is not completely covariant under the Lorentz transformation. It appears that the range of the meaning implied by the Dirac equation can no longer be confined in the Euclid space. This situation suggests first that the scheme of geometry be properly generalized and then that the Dirac equation be modified accordingly. We expect, in this way, that the fundamental equations thus found will be able to embrace the Dirac equation and the Maxwell-Lorentz equations as of two special cases respectively. In a geometrical scheme more general than the Euclidean, each component of the metric tensor gij is a function of space-time coordinates. Therefore, it seems to be sensible to expect that any matter field, with no exception, is accompanied by a gravity field. The fundamental equations govern simultaneously the matter field and the metric 1 field is the equation Rij − gij R = − kTij proposed earlier 2 by Einstein [10-11] . The left hand side of the equation is sometimes called the Einstein tensor Gij. One might surmise that a matter field determines uniquely the Einstein tensor of the space where the matter field is located. Thus it appears that the Einstein tensor can be the representation or the image of the matter field. But the uniqueness of the relation between a matter field and the resulting Einstein tensor is unknown. We note that the equations to be found must be regarded only as of an approximate means of representing the reality concerned. (None of the equations utilized in physics may escape this fate.) Therefore, even when a field, e.g., of an electron, governed by those equations has a singularity that implies a strong distortion of space curvature, one can not immediately conclude that the real field, expected to be represented by the solution, has the same singularity. The field equations of general relativity are rarely used without simplifying assumptions. The most common application treats of a mass, sufficiently distant from other masses, so as to move uniformly in a straight line. All applications of special relativity are of this type, in order to stay in Minkowski space-time. A body that Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 113 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 moves inertially (or at rest) is thus assumed to have fourdimensionally straight world lines from which they deviate only under acceleration or rotation. The well-known Minkowski diagram of special relativity is a graphical representation of this assumption and therefore refers to a highly idealized situation, only realized in isolated free fall or improbable regions of deep intergalactic space. In the real world the stress tensor never vanishes and so requires a non- vanishing curvature tensor under all circumstances. Alternatively, the concept of mass is strictly undefined in Minkowski space-time. Any mass point in Minkowski space disperses spontaneously, which means that it has a space-like rather than a time-like world line. In perfect analogy a mass point can be viewed as a local distortion of space-time. In euclidean space it can be smoothed away without leaving any trace, but not on a curved manifold. Mass generation therefore resembles distortion of a euclidean cover when spread across a non-euclidean surface. A given degree of curvature then corresponds to creation of a constant quantity of matter, or a constant measure of misfit between cover and surface, that cannot be smoothed away. Here, a strain field appears in the curved surface. At any point on the curved manifold the gradient of the strain field is perpendicular to the tangent vector and coincides with the axis of the local light cone. To relieve the stress, the natural response of the mass point is displacement along the stress gradient and hence it traces out a time-like world line at constant spatial coordinates. This displacement, along the time coordinate only, is the arrow of time, which appears as a direct consequence of the curvature of space. There is no time in euclidean space. The primary cause of mass generation by space curvature is elimination of the strict orthogonality between time and space coordinates which allows the strain field (mass point) to acquire complementary time-like and space-like attributes. This is the mechanism envisaged by Corben [4] as a model for creating mass through relativistically invariant self-trapping of a free bradyon and a free tachyon, (time-like and space-like waves). The essence of the argument advanced here is that real world-space is not euclidean and that space is generally curved into the time dimension, consistent with the theory of general relativity. The curvature may not be sufficient to become obvious in a local context. However, it is sufficient to break the time-reversal symmetry that seems to characterize the laws of physics. Not only does it cause perpetual time with respect to all mass, but actually identifies a fixed direction for this It creates an arrow of time and thereby eliminates an inconsistency 114 in the logic of physics: how reversible microscopic laws can underpin an irreversible macroscopic world. General curvature of space breaks the time-reversal symmetry and produces chiral space, manifest in the right-hand force rule of electromagnetism. The fact that most other fundamental laws of physics do not refer the chirality of space, nor the arrow of time, confirms that the curvature on a local scale is barely detectable. The one exception to apparent time-reversal symmetry is the law of entropy. It has been stated [1] that “...the second law of thermodynamics is excluded from the classication fundamental due to its statistical nature”. This is an unconvincing explanation and the curved-space argument provides a better mechanism for entropy production. In any curved-space manifold gradient vectors drive time-like displacement of separate particles along non-parallel world lines. Even among pairs of stationary particles three-dimensional line elements therefore do not remain invariant over a period of time. An initially stationary array of non-interacting particles (ideal gas) spontaneously generates relative internal (zero point) motion leading to chaotic distribution in a container, or spontaneous dispersal in the open. Where local interactions constrain dispersal, zero-point vibration develops. This intrinsic microscopic instability, caused by the curvature of space, is the source of entropy. The conclusions reached here are clearly related to those of Prigogine [5] who deduced that the irreversible creation of matter generates cosmological entropy and that the arrow of time is provided by the transformation of gravitational energy into matter. The difference is that Progonine’s result was obtained by incorporating the second law of thermodynamics into the relativistic field equations, whereas the present model makes no assumption about macroscopic behaviour. Theses observations, usual in classical mechanics, are significant in evaluating Einstein’s attempt recollected in the following. Recollection of Einstein’s Attempt It seems that Einstein devoted the last twenty years, at least, of his life to the attempt of materializing his deterministic view of particles. Einstein explicitly used the term “unified field theory” (gravitation-electromagnetism) in the title of a publication for the first time in 1925. Ten more papers appeared in which the term is used in the title, but Einstein had dealt with the topic already in half a dozen publications before 1925 . In total he wrote more than forty technical Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: A new relativistic field theory of the electron papers on the subject. This work represents roughly a fourth of his overall oeuvre of original research articles, and about half of his scientific production published after 1920. As is well known, however, the endeavor was not fruitful. In retrospect, the cause of his difficulty appears to be in his interpretation of Schrödinger’s wave equation. A clue to knowing Einstein’s interpretation in question is found in an essay published by him in 1936 (Einstein, 1936). His interpretation of wave mechanics may be summarized as follows: i) The wave function does not in any way describe the condition of a single system; it relates rather to many systems, an ensemble of systems, in the same sense as of statistical mechanics, so Schrödinger’s equation determines the time variation that is experienced by an ensemble of systems. ii) Quantum mechanics will not be the point of departure in the search of the foundation of quantummechanical phenomena, just as one cannot go from thermodynamics to the foundation of mechanics, so there must be a field theory that results in a way of representing particles and the representation must be free of singularities. The foundation of the theory is given by the differential equations of the field, and the theory leads also to quantum mechanics in the same way as classical mechanics of particles leads to thermodynamics. Einstein emphasized often that the field in question must be free of singularities. His reasoning seems to be based on the following two observations: Conventional wave functions in quantum mechanics are free of singularities. On the other hand, in his general theory of relativity completed in 1916, the differential equations of the metric space completely replace the Newton theory of the motion of celestial bodies, if the masses are substituted with singularities of the field; those equations contain the law of force as well as the law of motion while eliminating inertial systems. His theory with Tij = TijMaxwell , however, does not explain quantum-mechanical phenomena, and is not satisfactory (unimodular theory). Considering these two facts, Einstein had a conjecture that a satisfactory theory be obtained by modifying the general theory of relativity so that the singularities do not arise in a field determined by the differential equations of the metric space. He assumed that the desirable modification be made by eliminating the symmetry condition of the metric tensor from the general theory of relativity completed in 1916. According to Einstein, equations of such complexity as expected can be found only through the discovery of a logically simple mathematical scheme that determines the equations of physics completely or almost completely. Once one has a proper mathematical scheme, one requires only little knowledge of physical facts for setting up a proper theory. In 1948, near the end of his life, Einstein thought that he had success in formulating a satisfactory scheme of geometry in which the metric tensor is no longer symmetric. He hoped that this geometry could provide the framework in which the new theory of physics be established. Unfortunately, however, the result was disappointing; a stationary field free from singularities could never represent a mass different from zero. We thus recognize that Einstein’s view of conventional quantum mechanics is partially right, and a causal and determinative law is underlying conventional quantum-mechanical phenomena of the electron. Considering this, it appears to be a serious misjudgment of Einstein to attribute immediately the cause of singularities to the symmetry condition of the metric tensor in the Riemann geometry. Now, we can say that the general solution of a partial differential equation contains a set of functions whose forms are not determined by the equation but by initial and boundary conditions. A physically significant solution is a particular solution that satisfies proper initial and boundary conditions. It is a significant event in the history of physics that Einstein had persistently failed to recognize the significance of initial and boundary conditions in interpreting physical laws. We see the same failure in Dirac’s interpretation of the Dirac equation for the electron if we not considerer that the Dirac equation is derived from chiral electromagnetic fields with E || B. FUNDAMENTAL EQUATIONS In the following investigation, the variables are in general defined as tensors in a four-dimensional Riemannian space. The mathematical treatment of them follows the ordinary rule of tensor calculus. For the convenience of reference, the mathematical symbols employed are mostly similar to those in (Møller, [9-11]), unless otherwise specified. Those equations are mutually coupled, and the strong tendency of the electron to be a localized and stable field must be effected by the characteristics of those equations and proper boundary and initial conditions. For formulating the fundamental equations, it is customary to rely on Hamilton’s principle of variation of deriving covariant equations from a Lagrangian function. But the choice of the Lagrangian function is arbitrary, and so is of variation methods. There is no assurance of uniqueness of Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 115 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 the result. As Eddington remarked earlier [12], the physical significance of the method is unknown and doubtful, particularly when we have no means of evaluating those resulting equations immediately and directly in comparison with empirical information. Our experience in this field of physics is yet naive; instead of taking any axiomatic approach, it seems to be desirable to continue an effort of reflecting on the physical reality via equations known thus far. The guiding principle is that of general relativity, and the main hypothesis is that the fundamental equations embrace the Dirac equation and the Maxwell-Lorentz equations as of two special cases respectively. Although we do not intend to compare solutions of the fundamental equations directly with empirical information, we concern ourselves with the consistency and compatibility among those conditions under which the fundamental equations are reduced to the Dirac equation and the Maxwell-Lorentz equations. We expect that the present investigation will shed some light on those perplexing difficulties which we encounter in comprehending the behavior of an electron solely according to the Dirac equation and the Maxwell-Lorentz equations. Beyond this, we have an ambition to investigate the possibility that other elementary particles are governed by the same fundamental equations under varied restrictive conditions. We expect that those equations in the above will eventually be reduced to the Dirac equation and also to the MaxwellLorentz equations, and write for Fij 1 ∂ ( ∂x −g 1 ∂ −g − gF ( j )−g ij − gF * ∂x j ij )−g ∂η ∂x ij j ∂ξ ∂x j =0 =0 (1) (2) In these equations, g is the determinant of the metric tensor gij; Fij is an antisymmetric tensor and F*ij is conjugate to Fij; ξ and η are scalars. One might ask why these equations are fundamental. The answer is simple: Firstly, these equations are covariant in the Riemannian sense; secondly, i by considering the current select for gij ∂η ∂x j and by ∂ξ i assuming ξmagnet for gij , these equations can be as ∂x j the Riemannian generalization of the Maxwell-Lorentz equations. However, we do not immediately relate these equations to the Maxwell-Lorentz equations; a physical consideration is needed prior to doing so. 116 −Q y 0 Qx − Qx 0 Py Pz − Px − Py . − Pz 0 F *ij = g ik g jm F *km (3) = 1 − gg ik g jmδ kmst F st 2 (4) where δkmst is the Levi-Civita symbol, we have The equations for the matter field and those for the metric tensor field are intimately coupled together. In a conventional sense, however, we may call the following the equations for the matter field: Qz Considering The Matter Field ij 0 −Qz ij F = Qy P x 0 Pz F *ij = − Py − Qx − Pz Py 0 − Px Px 0 −Q y −Qz Qx Qy × −g , Qz 0 0 − Pz′ Py′ −Qx′ 0 − Px′ −Qy′ Pz′ ij F* = . 0 −Qz′ − Py′ Px′ Q′ Q′ Q′ 0 x y z (5) From here on, we shall often write P for (Px, Py, Pz) and Q for (Qx, Qy, Qz) simply for the sake of convenience, although they are not three-vectors. We note that in general. P ≠ P´, Q ≠ Q´ (6) Q = Q´ = B (7) However, if P = P´ = E, We have a nice approximation. We expect the equivalence between the two sets of equations will be established, if the metric tensor field be properly evaluated in the following. The Metric Tensor Field As is well known, Einstein in 1916 proposed an equation for the metric tensor [6]. 1 Rij − gij R = − kTij 2 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 (8) H. Torres-Silva: A new relativistic field theory of the electron where Rij is the contracted curvature tensor, R is the curvature scalar, and Tij is the energy-momentum tensor of the matter field. Einstein gave this equation by considering that the only fundamental tensors that do not contain derivatives of gij beyond the second order are functions of gij and the Riemann-Christoffel curvature tensor and that the equation is analogous to the Poisson equation for the gravitational field to the non-relativistic limit. It seems that Einstein proposed this equation for the purpose of solving cosmological problems, i.e., the structure of the universe as a whole [6]. Therefore, Tij is expected to be a known tensor supplied from the data of astronomical observation of the average mass distribution. Schwarzschild showed that the equation with Tij = 0 has a particular solution that expresses properly the gravity field induced by a material point [12]. Only when Eq. (8) is considered simultaneously with Eqs. (1) and (2), the equation for an elementary particle may be solved. If it is noticed that Eq. (8) alone consists of ten simultaneous partial differential equations of the second order, the analytical treatment of those equations concerned is an extremely difficult task. Moreover, it was not completely known how Tij is to be constructed in terms of Fij , η and ξ in the Einstein epoch. (As noted a short time ago, the variation method is not a decisive one.) Our present purpose is to show that the Dirac equation and the Maxwell-Lorentz equations, which are covariant only in the Euclidean sense, are both attainable by linearization of the same one set of nonlinear equations covariant in a non-Euclidean sense. From this viewpoint, we consider that it may not be necessary that the fundamental equations are immediately covariant in the Riemannian sense. There may be schemes of geometry that are more general than the Euclidean and less than the Riemannian. It is noted that, because of the restrictive conditions, viz., Eq. (8), Einstein’s geometry is less general than the Riemannian [12]. According to Einstein, the Einstein tensor, the left hand side of Eq. (8), should vanish in a space empty of matter. On the other hand, in the Riemann geometry, it does not vanish in general. (In the Riemann geometry, the idea of matter does not exist.) However, the covariant divergence of the Einstein tensor vanishes always in the Riemann geometry as well as in [10]. As noted earlier, Einstein chose Eq. (8) as one of the possibly simplest equations. Our conjecture is even when we adopt Einstein’s equation the obtained equation is adequate completely for describing the field extremely near the center of the core of an electron. Instead of taking an axiomatic approach, it is essential to study carefully the circumstances under which the present investigation is motivated. Later Einstein [6] attempted to investigate the structure of an elementary particle as based on the same equation. There, however, he did not pay much attention to Tij. He simply speculated that the matter field is an electromagnetic field, using a unimodular theory with Tij = TijMaxwell and the magnetic field B perpendicular to electric field E, (E ⊥ B). Contrary to Einstein conjecture, in our present problem in which an electron is considered to be a small universe, we considerer E••B, ie, we suppose that the electron –positron equation is the Dirac equation if only if it is derived from electromagnetic fields with E••B, inserted 1 in the original Einstein equation Rij − gij R = − kTij , 2 Maxwell ij with Tij = Tij . That means F = iF *ij , where E = iB i i , given by i = −1 , and select , ξmagnet ∂F µν ∂x ν ∂F µν ∂x ν = imc µ 4π µ i Je = − E = select c e (9) = 4π µ imc µ i J = B = ξmagnet c m m (10) (For the specific demonstration see the article Maxwell’s theory with chiral current) Thus, contrary to Einstein equation for the electron (unimodular theory) [13], i.e., the equations for the matter field and those for the metric tensor, do not contain Planck’s constant h, the electronic mass m and charge e, our equation (8), (9) and (10) contain h, m, e, which are essential to obtain the Dirac equation. With equations (9-10), it’s possible to show that an electron is like a toroid with E••B, spin ½, without radiation and rp = T = / 2mc (figure 1). rp Figure 1. Electron model Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 117 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 Assumptions as regards the metric tensor field According to the above results and considerations, we assume that the field in question is spatially localized. In the space outside the field, the Riemann-Christoffel tensor is negligibly small. It would be more reasonable to regard a part of the space as outside when the RiemannChristoffel tensor is negligibly small in that part. Also we note that, owing to the other bodies of matter contained in the universe, the tensor in question does not completely vanish at any point of the space. But our interest is in the local field, the electron. Hence, we ignore the curvature of the global scale, and may consider an inertial frame of reference outside the electron. (Einstein, perhaps due to his esteem of Ernst Mach, did not necessarily seem to think that the field of an electron can be completely closed and sustained by itself [12, 13]). If we consider an electron fixed to an inertial frame of reference, the electron appears to be free from the influence of the external universe. Classically, if we consider the internal structure of the electron, the situation is not necessarily so simple. It seems possible that a portion of the electron is in acceleration relative to the inertial frame reference in the same way as a portion of a spinning top resting as a whole on the inertial frame is. Such a classical-mechanical structure is inconceivable. However, it is sensible then to assume that the electron has a stable structure with its own permanent gravity field, as independent of the influence of the external universe. [5] S. Weinberg. “A Unified Physics by 2050”. Sci. Am. Vol. 281 Nº 6, pp. 68-75. December, 1999. [6] A. Einstein. “Do Gravitational Fields Play an Essential Part in The Structure of the Elementary Particles of Matter?” The Principle of Relativity. Dover, pp. 191-198. 1952. [7] P.G. Bergmann and R. Thomson. Spin and Angular Momentum in General Relativity. Phys. Rev. Vol. 2 Nº 89, pp. 400-407. 1953. [8] J. N. Goldberg, Conservation Laws in General Relativity, Phys. Rev. Vol. 2 Nº 111, pp. 315-320. 1958. [9] C. Møller. “On the Localization of the Energy of a Physical System in the General Theory of Relativity”. Ann. Physics. Vol. 4, pp. 347-371. 1958. [10] C. Møller. “Further Remarks on the Localization of the Energy in the General Theory of Relativity”. Ann. Physics. Vol. 12, pp. 118-133. 1961. [11] C. Møller. Conservation Laws and Absolute Parallelism in General Relativity. Mat. Fys. Skr. Danske. Vid. Selsk. Vol. 1 Nº 10, pp. 1-50. 1961. [12] A.S. Eddington. The Mathematical Theory of Relativity. Cambridge University Press, Cambridge. 1921. [13] A. Einstein. “Die Kompatibilität der Feldgleichungen in der einheitlichen Feldtheorie”. Preuss. Akad. Wiss. Berlin, Phys. Math. Klasse, Sitzber, pp. 18-23. 1930. CONCLUSION Thus we are presented a new theory called “Teoría Total Simplificada” (TTS) based on chiral electrodynamic which reproduces at the first time the Dirac equation for the electron unifying the gravity with electromagnetism [14-16]. REFERENCES [1] W.G. Dixon, Special Relativity. University Press, Cambridge. 1978. [2] R. Adler, M. Bazin and M. Schiffer, Introduction to General Relativity. McGraw-Hill, NY. 1965. [3] M. Friedman. Foundations of Space-time theories. Princeton U.P., Princeton, NJ. 1983. [4] E. Witten. “Duality, Spacetime and Quantum Mechanics”. Physics Today. Vol. 50, pp. 28-33. 1997. 118 [14] H. Torres-Silva. “Electrodinámica quiral: eslabón para la unificación del electromagnetismo y la gravitación”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 6-23. 2008. [15] H. Torres-Silva. “The close relation between the Maxwell system and the Dirac equation when the electric field is parallel to the magnetic field”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 43-47. 2008. [16] H. Torres-Silva. “Chiral field ideas for a theory of matter”. Ingeniare. Rev. chil. ing. Vol. 16 Nº 1, pp. 36-42. 2008. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral waves in a metamaterial medium Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008, pp. 119-122 CHIRAL WAVES IN A METAMATERIAL MEDIUM ONDAS QUIRALES EN UN MEDIO METAMATERIAL H. Torres-Silva1 Recibido el 5 de septiembre de 2007, aceptado el 21 de diciembre de 2007 Received: September 5, 2007 Accepted: December 21, 2007 RESUMEN En este trabajo se estudia la refracción anómala en el borde de un medio metamaterial con fuerte quiralidad. El hecho de que para una onda monocromática el vector de Poynting es antiparalelo a la dirección de la velocidad de fase conduce a relevantes propiedades que pueden tener ventajas en el diseño de novedosos dispositivos y componentes a frecuencias de microondas. Palabras clave: Ondas quirales, metamateriales. ABSTRACT In this paper we study the anomalous refraction at the boundary of a metamaterial medium with strong chirality. The fact that for a time-harmonic monochromatic plane wave the direction of the Poynting vector is antiparallel with the direction of phase velocity, leads to exciting features that can be advantageous in the design of novel devices and components at microwaves frequencies. Keywords: Chiral waves, metamat erial. INTRODUCTION Composite materials in which both permittivity and permeability possess negative values at some frequencies has recently gained considerable attention. This idea was originally initiated by Veselago in 1967, who theoretically studied plane wave propagation in a material whose permittivity and permeability were assumed to be simultaneously negative. Recently have been constructed such a composite medium for the microwave regime, and experimentally the presence of anomalous refraction in this medium is verified [1]. Previous theoretical study of electromagnetic wave interaction with omega media using the circuit-model approach had also revealed the possibility of having negative permittivity and permeability in omega media for certain range of frequencies [2]. That is important for design of circulary polarized antennas The anomalous refraction at the boundary of such a medium with a conventional medium, and the fact that for a time-harmonic monochromatic plane wave the direction 1 of the Poynting vector is antiparallel with the direction of phase velocity, can lead to exciting features that can be advantageous in design of novel devices and components. For instance, as a potential application of this material, the idea of compact cavity resonators in which a combination of a slab of conventional material and a slab of metamaterial with negative permittivity and permeability. The problems of radiation, scattering, and guidance of electromagnetic waves in metamaterials with negative permittivity and permeability, and in media in which the combined paired layers of such media together with the conventional media are present, can possess very interesting features leading to various ideas for future potential applications such as phase conjugators, unconventional guided-wave structures, compact thin cavities, thin absorbing layers, high-impedance surfaces, to name a few. In this talk, we will first present a brief overview of electromagnetic properties of the media with negative permittivity and permeability, and we will then discuss some ideas for potential applications of these materials. In this work we discuss the chiral waves in metamaterial media. Instituto de Alta Investigación. Universidad de Tarapacá. Antofagasta Nº 1520. Arica, Chile. E-mail: [email protected] Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 119 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 CHIRAL WAVES In classical electrodynamics, the response (typically frequency dependent) of a material to electric and magnetic fields is characterized by two fundamental quantities, the permittivity ε and the permeability µ. The field permittivity relates the electric displacement D to the electric field E through D = ε E, and the permeability µ relates the magnetic field B and H by B = µ H . If we do not take losses into account and treat ε and µ as real numbers, according to Maxwell’s equations, electromagnetic waves can propagate through a material only if the index of refraction n, is real. Dissipation will add imaginary components to ε and and µ cause losses, but for a qualitative picture, one can ignore losses and treat ε and µ as real numbers. Also, strictly speaking, ε and µ are second-rank tensors, but they reduce to scalars for isotropic materials. In a medium with ε and µ both positive, the index of refraction is real and electromagnetic waves can propagate. All our everyday transparent materials are such kind of media. In a medium where one of the ε and µ is negative but the other is positive, the index of refraction is imaginary and electromagnetic waves cannot propagate. Metals and Earth’s ionosphere are such kind of media. In fact, the electromagnetic response of metals in the visible and near-ultraviolet regions is dominated by the negative epsilon concept [1-3]. Although all our everyday transparent materials have both positive ε and positive µ, from the theoretical point of view, in a medium with ε and µ both negative, electromagnetic waves can also propagate through. Moreover, if such media exist, the propagation of waves through them should give rise to several peculiar properties. This was first pointed out by Veselago over 30 years ago when no material with simultaneously negative ε and ε was known [4]. For example, the cross product of E and H for a plane wave in regular media gives the direction of both flow, and the electric field propagation and energy E , the magnetic field H , and the wave vector k form a right-handed triplet of vectors. In contrast, in a medium with ε and µ both negative, E x H for a plane wave still gives the direction of energy flow, but the wave itself that is, the phase velocity propagates in the opposite direction, i.e., wave vector lies in the opposite direction of E x k H for propagating waves. In this case, electric field E , magnetic field H , and wave vector k form a left-handed triplet of vectors. Such a medium is therefore termed left-handed medium [5]. In addition to this ‘‘left-handed’’ characteristic, there 120 are a number of other dramatically different propagation characteristics stemming from a simultaneous change of the signs of ε and µ, including reversal of both the Doppler shift and the Cerenkov radiation, anomalous refraction, and even reversal of radiation pressure to radiation tension. However, although these counterintuitive properties follow directly from Maxwell’s equations, which still hold in these unusual materials. Such type of left-handed materials have never been found in nature but such media can be prepared artificially, they will offer exciting opportunities to explore new physics and potential applications in the area of radiation-material interactions. Following the suggestion of Pendry, Smith and co-workers reported that a medium made up of an array of conducting nonmagnetic split ring resonators and continuous thin wires can have both an effective negative permittivity ε and negative permeability µ for electromagnetic waves propagating in some special direction and special polarization at microwave frequencies [5]. This is the first experimental realization of an artificial preparation of a left-handed material, where on the one hand, the permittivity of metallic particles is automatically negative at frequencies less than the plasma frequency, and on the other hand, the effective permeability of ferromagnetic materials for electromagnetic waves propagating in some particular direction and polarization can be negative at frequency in the vicinity of the ferromagnetic resonance frequency, which is usually in the frequency region of microwaves. However this configuration exhibit chirality and a rotation of the polarization so the analysis of metamaterial presented by several authors provides a good but not exact characterization of the metamaterial [6]. The evidence of chirality behavior suggests that if it is included in the conditions to obtain a metamaterial behavior of a medium futher progress will be obtained. In this short paper, we propose to investigate the conditions to obtain a metamaterials having simultaneously negative ε and negative µ and very low eddy current loss. As a initial point, we considerer a media where the electricpolarization P depends not M only on the electric field E , and the magnetization depends not only on the magnetic field H , and we may have, for example, constitutive relations given by the Born-Federov formalism [7]. D(r , ω ) = ε (ω )( E (r , ω ) + T (ω )∇ × E (r , ω )) (1) B(r , ω ) = µ (ω )( H (r , ω ) + T (ω )∇ × H (r , ω )) (2) Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 H. Torres-Silva: Chiral waves in a metamaterial medium The pseudoscalar T represents the chirality of the material and it has length units [7]. In the limit T → 0, the constitutive relations (1) and (2) for a standard linear isotropic lossless dielectric with permittivity ε and permeability µ are recovered. According to Maxwell’s equations, electromagnetic waves propagating in the direction of magnetization in a homogeneous magnetic material is either positive or negative transverse circularly polarized. If the composite can truly be treated as a homogeneous magnetic system in the case of grain sizes much smaller than the characteristic wavelength, electric and magnetic fields in the composite should also be either positive or negative circularly polarized and can be expressed as − j ( k z −ω t ) E ± (r , t ) = Eˆ 0 ( ± )e ± 0 (3) − j ( k z −ω t ) H ± (r , t ) = Hˆ 0 ( ± )e ± 0 (4) where E0± = E0 ( xˆ ± yˆ ) , and ∇ × E ± (r , t ) = k± E ± , k± ≥ 0 is the chiral wave number. In this case of right polarized wave we can see that the effective permittivity εp and the effective permeability µp are obtained from with µ p = µ (1 − k+ T ) and where k eff and ω are related by keff 2 = ω 2 (ε p µ p ) . Equations (5) and (6) are exact in principle assuming that nonlocal effects can be neglected. This assumption is appropriate in many cases. But in some cases, nonlocal effects can be significant and cannot be neglected, as has been shown in the past. In such cases, Eqs. (5) and (6) shall be not exact. For simplicity, in this paper we have assumed that nonlocal effects can be neglected and hence Eqs. (5) and (6) shall be valid. In Eqs. (3 and (4) the sign of the effective wave number can be positive or negative depending on the product k+T and the energy flow. For convenience we assume that the direction of energy flow is in the positive direction of the z axis, but the sign of k eff still can be positive or negative. In the case of right polarization, if 1 ≥ k+ T ≥ 0, the phase velocity and energy flow are in the same directions, and from E Maxwell’s equation, one can see that the electric and magnetic field and H and the wave vector keff will form a right-handed triplet of vectors. This is the usual case for right-handed materials. In contrast, if k+ T ≥ 1 the phase velocity flow are in opposite and energy directions, and E , H , and keff will form a left-handed triplet of vectors. This is just the peculiar case for left handed materials where the effective permittivity εeff and the effective permeability µ eff are simultaneously negative. So, for incident waves of a given frequency v, we can determine whether wave propagation in the composite is right handed or left handed through the relative sign changes of k eff.. Based on Eqs. (5)-(6), we have computed T. and ε/εp or − jk z − jk z ∫ D(r ,ω )e + f dr = ε ∫ (E (r ,ω ) + T ∇xE )e + dr (5) − jk z = ε ∫ (1 − k+ T ) Ee + dr with ε p = ε (1 − k+ T ) and k+ T ≥ 1. − jk+ z close to µ P ε P , the value of T. is quite large, indicating a strong spatial dispersion. Hence the singular point is the very point of traditional limitation. However, with κ / µP ε P continuously increasing, the spatial dispersion strength falls down very quickly. Therefore, if κ. is not Similary, we have ∫ B(r ,ω )e µ/µp. versus κ / µ P ε P , as shown in Fig. 1 When κ. is very − jk z dr = µeff ∫ H (r , ω )e + dr (6) − jk z = µ (1− k+ T ) ∫ H (r , ω )e + dr around µ P ε P , e.g. κ < 0.7 µ P ε P or κ > 1.3 µ P ε P , we need not take nonlinear terms into consideration at all. Hence the strong spatial dispersion and nonlinearity cannot put the upper limitation to chirality parameters either. Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 121 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 dispersion, the Pasteur model is meaningful. Neither spatial dispersion nor energy will hinder chirality to be stronger, but we cannot realize strong chirality only by increasing the spatial dispersion. The necessary condition of strong chiral medium is that the chirality and spatial dispersion are of conjugated types. We remark that strong chiral media have found wide applications in the negative refraction and supporting of backward waves, useful in metamaterial substrates. 30 20 10 0 –10 –20 ACKNOWLEDGEMENT –30 0 1 2 3 Figure 1. The strength relationship of chirality and spatial dispersion. T versus κ / µ P ε P The point of κ / µP ε P = 1 is singularity, corresponding The author acknowledges discussions with colleagues in the school of electrical and electronic engineering EIEE – Universidad de Tarapacá. This work have been supported by the project N° 8721-06 of the Universidad de Tarapacá. infinite spatial dispersion coefficient T. When κ / µP ε P > 1, T becomes negative for keeping the positive rotation term coefficients with negative µ and ε. REFERENCES [1] S. Tretyakov, A. Sihvola, and L. Jylha. Photonics and Nanostructures - Fundamentals and Applications. Vol. 3, p. 107. 2005. CONCLUSIONS [2] From figure 1, it is clear that enhancing spatial dispersion will not lead to strong chirality and will reach the traditional limitation point. This is why we have never succeeded in realizing strong chirality no matter how to improve the asymmetry and spatial dispersion. M.M.I. Saadoun and N. Engheta. “Theoretical study of electromagnetic properties of non-local omega media”. Chapter 15. Progress in Electromagnetic Research (PIER) Monograph series, vol. 9, A. Priou, (Guest Editor), pp. 351-397. 1994. [3] R.A. Shelby. “Experimental verification of a negative index of refraction”. Science. Vol. 292 Nº 5514, pp. 77-79. 6 April, 2001. [4] V.G. Veselago. “The electrodynamics of substances with simultaneously negative values of epsilon and mu”. Soviet Physics Uspekhi. Vol. 10 Nº 4, pp. 509-514. 1968. [5] D.R. Smith. “Composite medium with simultaneously negative permeability and permittivity”. Phys. Rev. Lett. Vol. 84 Nº 18, pp. 4184-4187. 1 May, 2000. [6] D.R. Smith. Physical Review B. Vol. 65, p. 195104. 2002. [7] H. Torres Silva. “Chiro-Plasma Surface Waves”. Advances in complex Electromagnetic Materials, Kruwer Academic Publishers. Netherlands, p. 249. 1997. Fortunately, as pointed out earlier, the strong chirality does not require strong spatial dispersion. Hence the most important difference between strong and weak chirality is that T. and κ. have opposite signs, which necessarily leads to negative ε and µ. Here, κ. stands for chirality and T. is the chiral coefficient of the first order for spatial dispersion. Strong chirality roots from using one type of spatial dispersion to get the conjugate stereoisomer, or chirality. It is an essential condition for supporting the backward eigenwave in strong chiral medium. In conclusion, a strong chiral medium behaves like Veselago’s medium. Under the weak spatial dispersion, the energy is always positive for chiral medium. We show that strong chirality does not equal strong spatial dispersion, which occurs only around a singular point. Even in this small region with very strong spatial 122 Ingeniare. Revista chilena de ingeniería, vol. 16 Nº 1, 2008 UNIVERSIDAD DE TARAPACÁ Arica, Chile MAGÍSTER EN TELECOMUNICACIONES MAGÍSTER EN INGENIERÍA DE SOFTWARE Entrega conceptos avanzados de Telecomunicaciones y de Ingeniería Electromagnética, tal que permita a los participantes formarse en estudios de alto nivel en esta área temática. Corresponde a un ciclo de formación profesional, orientado a mejorar las prácticas en la disciplina de desarrollo de software y la calidad de los productos obtenidos. Ofrece a través de la enseñanza de la Dirección Estratégica de Empresas, la opción por la formación en Dirección y Gestión de Empresas de Telecomunicaciones. Permitirá adquirir el conocimiento técnico, teórico y práctico, requerido para el desarrollo efectivo de grandes y complejos sistemas de software y desarrollar las habilidades requeridas para llevar a cabo proyectos exitosos. Duración: tres semestres académicos. Duración: tres semestres académicos. Informaciones: Mario Zamorano L. Fono: 56-58-205851 E-mail: [email protected] Informaciones: Héctor Valdés V. Fono: 56-58-205865, 205270 E-mail: [email protected] MAGÍSTER EN INGENIERÍA ELÉCTRICA Orientado a ampliar y actualizar los conocimientos en el área de los Sistemas Eléctricos de Potencia. Ofrece un programa basado en asignaturas formales, además de una tesis que constituye su núcleo. MAGÍSTER EN E-LEARNING El objetivo del programa es formar especialistas capaces de diseñar, producir, evaluar y gestionar cursos virtuales acorde a las necesidades específicas de la sociedad. La especialización puede realizarse, entre otras, en alguna de las siguientes disciplinas: Sistemas de Distribución, Calidad de Servicio y Mercados Eléctricos o en Accionamientos Eléctricos, Control y Robótica. Producto esperado: Una asignatura instalada en un Entorno Virtual de Enseñanza Aprendizaje. Duración: tres semestres académicos. Duración: tres semestres (33 créditos). Informaciones: Ildefonso Harnisch V. Fono: 56-58-205183 E-mail: [email protected] Informaciones: Sandra Díaz F. Fono 56-58-205350 E-mail: [email protected] http://utamed.uta.cl MAGÍSTER EN INGENIERÍA MECÁNICA MENCIÓN PROCESO DE MANUFACTURA MAGÍSTER EN MULTIMEDIA EDUCATIVA El objetivo principal de este programa es la formación de especialistas en el área de procesos de manufactura. Este programa es el resultado de un convenio de cooperación entre nuestra universidad y la universidad de Kassel, Alemania. Duración: cuatro semestres académicos. Modalidad: Virtual. El objetivo del programa es formar especialistas capaces de diseñar, producir y evaluar recursos multimediales educativos para su posterior incorporación en el diseño curricular de cursos virtuales. Producto esperado: Objetos de Aprendizaje integrados en el curriculum. Modalidad: Virtual. Informaciones: Juan Miguel Godoy R. Fono: 56-58-205263 E-mail: [email protected] Duración: tres semestres (32 créditos). Informaciones: Sandra Díaz F Fono 56-58-205350 e-mail: [email protected] http://utamed.uta.cl http://www.uta.cl/ Este mensaje tiene el propósito de invitarle a participar, junto a nosotros, en la difusión de las ciencias de la ingeniería y la tecnología. Es así que solicitamos vuestra colaboración, a cambio de publicidad impresa para vuestra distinguida institución. Para mayor información sobre valores y características consultar a: Carolina Cautín B. Fono: 56-58-205650 Fax: 56-58-205650 e-mail: [email protected] PROCESO DE ARBITRAJE DE ARTÍCULOS CIENTÍFICOS EN INGENIARE. REVISTA CHILENA DE INGENIERÍA 1. De la Evaluación Preliminar y Envío a los Árbitros La primera tarea del editor será verificar que el contenido del artículo sea apropiado para la revista y que el manuscrito se haya preparado siguiendo las instrucciones para los autores. El editor podrá rechazar el artículo inmediatamente si detecta: violaciones crasas de las instrucciones, problemas serios de redacción o si, a su juicio, el trabajo no tiene suficiente mérito científico o tecnológico. Si el artículo propuesto pasa la primera evaluación, la próxima tarea consistirá en preparar una hoja de control para seguir su progreso. La hoja de evaluación debe incluir: el o los nombres de los autores, la dirección (postal y electrónica) del autor encargado del manuscrito, el título del artículo, los nombres y las direcciones de los árbitros, la fecha de envío a los árbitros, la recomendación de los árbitros, la decisión tomada luego de la evaluación y la fecha de aceptación o de rechazo del artículo. El editor enviará el artículo a dos o tres árbitros con el objeto de que éste sea debidamente evaluado. Los árbitros serán especialistas o científicos que investiguen en áreas relacionadas con el tema del artículo y, por lo tanto, deberán estar plenamente capacitados para evaluar el manuscrito y recomendar su aceptación o rechazo. Los árbitros recibirán el manuscrito, además de una carta con instrucciones sobre el proceso de revisión y una hoja de evaluación, para consignar sus comentarios y recomendaciones sobre la aceptación o rechazo del artículo. 2. De la Labor de los Árbitros Los árbitros considerarán la solidez del diseño experimental, verificarán que las conclusiones estén de acuerdo con los datos experimentales, evaluarán las pruebas estadísticas empleadas y comprobarán que los autores consideraron toda la literatura pertinente; asimismo, se considerará la calidad de la redacción. Se usará en esta etapa, el sistema de árbitros desconocidos, donde los árbitros conocen la identidad del autor, pero el autor desconoce la identidad de los árbitros. 3. De la Decisión del Editor Después de evaluar las recomendaciones de los árbitros, el editor tomará una de las siguientes decisiones: Aceptar el artículo con cambios menores: El editor devolverá el trabajo con una lista de correcciones leves. Si los cambios no conllevan modificaciones significativas de la redacción, el editor leerá el artículo y añadirá sus comentarios a los de los árbitros; de lo contrario, optará por leer la próxima versión del manuscrito. Cuando reciba la versión final del artículo, el editor confirmará al autor su aceptación, indicándole en qué número de la revista se publicará y cuándo el autor recibirá las pruebas. Ejemplos de cambios menores: errores tipográficos, páginas sin numerar, artículos citados en el texto que no aparecen en la literatura citada o viceversa, discrepancias leves entre el resumen y el abstract, cambios moderados a la redacción. Devolución del artículo para cambios mayores: El editor devolverá el artículo con una lista de problemas importantes que el autor debe atender para que el trabajo pueda ser considerado nuevamente. Ejemplos de cambios mayores: analizar los datos usando otras pruebas estadísticas, añadir o rehacer tablas y figuras, repetir experimentos, reescribir la discusión a la luz de la literatura no consultada, cambios sustanciales a la redacción. Rechazo: El editor devolverá el artículo con la evaluación de los árbitros e informará sus razones para no publicarlo. Esta decisión será casi siempre final. Ejemplos de motivos de rechazo: contenido del artículo no apropiado para la revista, violaciones crasas de las normas de publicación, artículos carentes de significación, mérito científico o tecnológico. SELECTION PROCESS FOR ARTICLES SUBMITTED FOR PUBLICATION IN THE INGENIARE. REVISTA CHILENA DE INGENIERÍA 1. Preliminary Selection and Peer Evaluation The editor will first verify that the content of the article is appropriate for the magazine and the manuscript is set in accordance with the journal’s standards. The editor may reject, at his discretion, submissions that do not comply with the general directions, are poorly written or do not posses sufficient scientific or technological merit. Articles that pass the preliminary selection are sent for peer review by specialists and scientists of renown research in areas related to the article. Upon assessing the article, peer reviewers write a report including comments and suggestions recommending its acceptance or rejection. 2. About the Evaluation by Peers Reviewers As part of the evaluation of the article, reviewers will consider the soundness of the experimental design, verifying that the conclusions coincide with the statistical and experimental data. Reviewers will also make sure and that the author(s) consulted all literature pertinent to the topic discussed. Wording and writing quality will also be assessed. During this process the identity of the reviewers will not be known by the author(s), but the latter’s will be available to the reviewers. 3. The Editor’s Decision After assessing the reviewers’ recommendations, the editor will make a decision based on the following options: Accepting the article, subject to minor revisions: The editor will return the article to the author(s) with a list of suggestions for minor corrections, including his own as well as those made by the reviewers. Once the modified manuscript is received by the editor, this will confirm the acceptance of the article, indicating the publication date. Minor revisions in an article include: typographical errors, page numbering, articles cited in the text that are not in the bibliography and vice versa, slight discrepancies between the summaries and the abstract, moderate corrections to the text. Returning the article for major changes: The editor will return the article to the author(s) with a list suggestions for major corrections that must be made before the article is accepted for publication. Major revisions include: analyzing data using other statistical tests, adding or redoing figures and tables, repetition of experiments, rewriting the discussion of the problem using additional literature and substantial changes to the text. Rejection: The editor will return the article with the peer evaluation, reporting the reason(s) for the rejection. This decision will be final (in most cases). Reasons for rejection of an article include: inappropriate content, manuscripts not complying with the norms for publication and works lacking scientific or technological merit. NORMS OF PUBLICATION People interested in publishing papers in “Ingeniare. Revista chilena de ingeniería” must send articles which comply with the publication norms detailed below. The topics must relate to the following areas of engineering: Electronics, Electricity, Computing, Mechanics, Industry, Acoustic, Metallurgy and Engineering Education. The author’s rights may not be granted to third parties. If necessary, the editor reserves the right to carry out minor modifications for editing, in order to achieve a better presentation of the work. Papers may be presented in English (if possible), Portuguese and in Spanish. Four types of contributions are regularly considered: Papers. Presentation of significant research, development, or application. Brief Papers. Concise descriptions of a contribution to a specific aspect of design, realization, or operation. Letters. Significant remarks of interest to engineers, and comments on previously published papers. In addition, special papers (tutorials, surveys, and perspectives on the current trends) are solicited. Authors are encouraged to contact the Editor or Co-Editor before submitting such papers. Papers and Brief Papers go through the same review process. Letters go through a shorter review process to facilitate rapid publication. PUBLICATION CHARACTERISTICS The Advisory Editor Committee will recommend the publication of papers whose content will be the author’s full responsibility. Originals accepted for publication will not be returned. Editing or rejections will be notified in due time. The Advisory Editor Committee may consider papers presented in national and international conferences and scientific meetings. The main title of the article should be in English and Spanish. It must be short and it must clearly state the topic of the work. Abstracts must be brief, containing clear and precise ideas. It must contain keywords which define the content of the paper (minimum of five and maximum of ten). The text should begin with a summary of not more than 250 words. It must briefly state: 1) what has been done in this work, 2) how it was done (only if it is important to be detailed), 3) main results obtained, 4) relevance of the results. A summary is an abbreviated but comprehensive presentation of the article and it must inform about the objective, methodology and the results of the work described in the paper. A translation of the summary into English, headed by the word abstract, must be included immediately after Spanish resumen. The introduction must be presented in about a page and a half and it must guide the reader towards an understanding of the problem presented. It should also include information about the nature of the problem, references to previous works, purpose and meaning of the paper. The body of the paper will contain fundamental information about the work. Information must be clearly presented. Language must be objective and impersonal. The author must see to it that the article complies with the norms of publication, language register and specific terms accepted by the scientific community. The introduction and the body of the article must be written in two 8 cm. columns, with a 1.05 cm. space between columns. Conclusions must be clear, stating what is shown in the work as well as its relevance. They must also state advantages, limitations and application results. References will be written with numbers in parenthesis and they will be listed at the end of the paper as follows: Books: [N°] Author’s First Initial Name, Last Name. “Title”. Editorial name. Number of Edition. City, Country. Volume, pp. Pages number. Date. Articles of magazines: [N°] Author’s First Initial Name, Last Name. “Title”. Magazine name. Volume. Number, pp. Pages number. Date. Electronics references: [N°] Author’s Name. “Title”. Site Update, pp. Pages number. Date of visit. URLs. Individualization: Footnotes, written with arabic numbers, will state: 1) date of reception of the original, people involved in the intellectual work, materialy or financially. If necessary the mention whether the paper is part of a study, a thesis, a project, etc., 2) name of the author, profession, institution, author and institution’s electronic and mail address. Aknowledgements: Will be included before the bibliography, identifying individuals and institutions that gave intellectual or financial support to the research. All equations, pictures and photographs must bear a number that will be used for identification purposes throughout the text. Pictures and photographs must also include an explanatory caption. Periodicity: “Ingeniare. Revista chilena de ingeniería” is published periodically, is printed in three issues per volume annually. Reception of papers: Manuscripts should be in Microsoft Word or LaTeX format and submitted in electronic form, via e-mail or in optical or magnetic media, according to given instructions. Address: Editor Committee, “Ingeniare. Revista chilena de ingeniería”, Casilla 6-D, Arica-Chile, Sud América. E-mail: [email protected] Papers should not be longer than 15 pages and must comply with the following format: Paper: letter size 21,59 cm x 27,94 cm; Margins: top 2 cm, bottom 2 cm, left 2,54 cm and right 2 cm; Title of the article, centered in bold type, Times New Roman 10 pt.; two blank spaces before the initial paragraph; Subtitles should be at the left margin in black letters with Times New Roman 10 pt.; The body of the text must be written with Times New Roman 10pt., one blank space between paragraphs. NORMAS DE PUBLICACIÓN Los autores interesados en publicar artículos en la “Ingeniare. Revista chilena de ingeniería”, deben enviar sus trabajos ajustados a las normas de publicación que se detallan más abajo. Los temas deben enmarcarse dentro de las siguientes áreas de la ingeniería: Electrónica, Eléctrica, Computación, Mecánica, Industrias, Acústica, Metalurgia y Enseñanza de la Ingeniería. El trabajo sometido no debe tener “Derechos de Autor” otorgados a terceros. El editor se reserva el derecho a realizar modificaciones menores de edición, para una mejor presentación del trabajo. Se podrá presentar trabajos en idioma inglés (de preferencia), español y portugués. Se consideran cuatro tipos de contribuciones: Trabajos in extenso (papers). Presentaciones relativas a investigación significativa, desarrollo o aplicación de sistemas tecnológicos. Trabajos condensados (brief papers). Descripciones concisas de contribución específica a investigación significativa, desarrollo o aplicación de sistemas tecnológicos. Comunicaciones (letters). Observaciones de interés para los lectores (ingenieros) y/o comentarios acerca de publicaciones previas. Trabajos especiales. Trabajos tales como tutoriales, encuestas y visiones de las tendencias actuales en ingeniería son bienvenidas. Se invita a los autores de tales trabajos a contactarse con el Editor antes de presentarlos para publicación. Los trabajos in extenso y condensados (papers & brief papers) se someten al mismo procedimiento de revisión. Las comunicaciones (letters) son revisadas en un proceso más breve, para facilitar su pronta publicación. CARACTERISTICAS DE LAS PUBLICACIONES El Comité Editor Asesor será el encargado de autorizar la publicación de los trabajos, cuyo contenido será de responsabilidad exclusiva de los autores. Los originales de los artículos aceptados para publicar no serán devueltos. Las modificaciones o rechazos se indicarán con notas explicativas. El Comité Editor Asesor podrá considerar trabajos presentados en congresos y reuniones científicas nacionales e internacionales. El título principal debe estar escrito en inglés y español, indicando claramente la materia del artículo. Éste deber ser breve, pero preciso en la idea que represente. Además, debe contener un número suficiente de palabras clave que definan el contenido del artículo (mínimo cinco y máximo diez). El texto comienza con un resumen de no más de 250 palabras, donde debe precisarse brevemente: 1) lo que el autor ha hecho, 2) como lo hizo (sólo si es importante detallarlo), 3) los resultados principales, 4) la relevancia de los resultados. El resumen es una representación abreviada, pero comprensiva del artículo y debe informar sobre el objetivo, la metodología y los resultados del trabajo descrito. A continuación del resumen, debe incluirse su traducción al idioma inglés, encabezado por la palabra abstract. La introducción deberá orientar al lector respecto al problema presentado e incluir: la naturaleza del problema, los antecedentes o trabajos previos, el propósito o significancia del artículo. Ésta deberá desarrollarse en una página y media, como máximo. El cuerpo contendrá, en detalle, la información fundamental del artículo. Deberá asimismo considerar el objeto de la información, la que deberá ser entregada en forma clara y eficiente. La redacción de los trabajos será de carácter objetivo e impersonal. El autor cuidará que la forma se ajuste a las normas de presentación, corrección en el lenguaje y uso de terminologías aceptadas por organismos científicos. La introducción y el cuerpo deberán ser escritos en doble columna de 8 cm cada una, con un espacio de 1,5 cm entre columnas. Las conclusiones tendrán que ser claramente definidas y deberán cubrir lo siguiente: lo que se demuestra en el trabajo, su relevancia, ventajas y limitaciones y aplicación de los resultados. Las referencias se indicarán con número entre paréntesis y se listarán al final de la publicación, de la siguiente forma: Libros: [N°] Iniciales del Nombre del autor (es), Apellido del autor (es). “Título”. Nombre de la Editorial. Número de Edición. Ciudad, País. Volumen, pp. Páginas consultadas. Año de publicación. Artículos de revistas: [N°] Iniciales del Nombre del autor (es), Apellido del autor (es). “Título del artículo”. Nombre de la revista. Volumen. Número, pp. páginas entre las que se encuentra el artículo. Mes y año. Textos electrónicos: [N°] Iniciales del Nombre del autor (es), Apellido del autor (es). Título del artículo, pp. Páginas consultadas. Fecha de actualización. Fecha de consulta. Dirección web. Individualización: Al pie de la página, mediante números arábigos, deben señalarse: institución a la que pertenecen los autores, dirección postal y electrónica de él o los autores. Agradecimientos: Se ubicarán antes de las referencias bibliográficas, señalando a las personas o instituciones que colaboraron en el trabajo intelectual, material o financiero. Todas las ecuaciones, figuras y fotografías deberán tener un número que las identifique, al que se hará referencia en el texto. Las figuras y fotografías deberán ser nítidas y tener, además, una leyenda explicativa al pie de las mismas. Periodicidad: “Ingeniare. Revista chilena de ingeniería”, edita tres números al año (cuatrimestral). Recepción de colaboraciones: Los manuscritos deberán estar en formato Microsoft Word o LaTeX, y enviarse por algún medio electrónico (correo electrónico, medio de almacenamiento óptico o magnético), de acuerdo a las instrucciones presentadas. Éstas deben ser enviadas a: Comité Editor, “Ingeniare. Revista chilena de ingeniería”, Casilla 6-D, Arica - Chile, Sudamérica. E-mail: [email protected] Los artículos no podrán tener una extensión mayor de 15 páginas y deberán respetar el siguiente formato: papel tamaño carta, 21,59x27,94 cm; márgenes: superior 2 cm, inferior 2 cm, izquierdo 2,54 cm, derecho 2 cm; título del artículo, centrado en negrita, con letra mayúscula tipo Times New Roman 12 pt.; títulos del texto, centrados en negrita, con letra Times New Roman 10 pt., dejando dos líneas en blanco antes del párrafo; texto del cuerpo con letra Times New Roman 10 pt., dejando una línea en blanco entre párrafos.