HVDC Technology Line Commutated Converters

Transcription

HVDC Technology Line Commutated Converters
4/16/2014
1
HVDC Technology
Line Commutated Converters
Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014
2
Topics
•
•
•
•
•
•
•
•
•
•
Line Commutated Converter ‐ LCC
Effective short Circuit Ratio ‐ ESCR
Configurations and operating modes
Conversion principles
Reactive power
Capacitor Commutated Converter – CCC
Converter arrangements
Converter station layout and equipment
Control & protection
Questions?
1
4/16/2014
3
HVDC technology
Line Commutated Converters ‐ LCC
HVDCHVDC-CSC
Converter
Transformers
AC Filters
AC
DC Filters
DC
Outdoor
Indoor
Thyristor Valves
HVDC Classic
• Current source converters (CSC)
• Line-commutated converter (LCC) with
thyristor valves
• Requires ~50% reactive compensation
(35% HF)
• Converter transformers
• Minimum short circuit capacity > 2 x Pd,
> 1.3 x Pd with capacitor commuted
converter (CCC)
4
Short Circuit Ratio
What’s the deal?
•
•
•
•
•
•
AC
Network
SN
WF
SWF?
QHF ± QSH
Commutation performance
Voltage stability
Dynamic performance
Dynamic overvoltage, DOV
Low order harmonic resonance, fres = f1 (S/Q)
Rule of thumb – ESCR > 2 LCC, > 1.3 CCC; where ESCR = (SN+SG+SSC+SWF‐Q)/PDC
QHF ± QSH
T
G
SG
SC
SSC
2
4/16/2014
5
HVDC in bipolar operation Single 12p CSC per pole with metallic return switching
BPS
BPS
GRTS
MRTB
NBS
NBS
NBGS
NBGS
BPS
=
DC breaker
DC disconnect, closed
DC disconnect, open
DC breaker, closed
DC breaker, open
BPS
• MRTB – metallic return transfer breaker, used for switching from ground return to metallic return
• GRTS – ground return transfer switch, used for switching from metallic return to earth return in preparation for restarting pole (NRTS for systems with continuous metallic neutral)
• BPS – bypass switch, used to provide metallic return path
• NBS – neutral bus switch, used to commutate spill current from healthy pole for neutral bus fault
• NBGS – neutral bus ground switch, used to help clear faults on electrode line (or metallic neutral
6
HVDC monopolar earth return operation
Temporary during emergencies or maintenance
Idp1
Idp1=Ig
=
DC breaker
DC disconnect, closed
DC disconnect, open
DC breaker, closed
DC breaker, open
3
4/16/2014
7
HVDC monopolar metallic return operation
During converter outages or degraded line insulation
Idp1
Ig = 0
Idp1
=
DC breaker
DC disconnect, closed
DC disconnect, open
DC breaker, closed
DC breaker, open
8
Commutation in a controlled bridge
Rectifier operation
Id
uR
uS
uT
IR
1
3
5
IS
Ud
IT
4
6
2

u
uT
U d  U di 0 cos  
U
di0

3

3
2
π
uR
X cId
uS
U
v
4
4/16/2014
9
Reactive power characteristics
LCC
•
•
•
HVDC Classic:
Reactive compensation by switched filters
and shunt capacitor banks
•
•
•
Converter stations appear as a reactive load, i.e. lagging power factor
Both rectifier and inverter operation exhibit lagging power factor, i.e. current lags voltage
Lagging power factor is due to phase control and commutating reactance
Typically reactive power demand = 55% of station rating at full load
Reactive power compensation –
typically 35% of station rating from ac filters the balance from shunt banks
Shunt reactors sometimes used at light load to absorb excess from filters
10
Conventional HVDC technology
LCC and CCC
Commutation capacitor, CC
LCC circuit
•
•
•
•
•
CCC circuit
CC located between converter transformers and thyristor valves ‐ reduces transformer rating, increases valve voltage rating
CC provides part of the commutation voltage and reactive support. Reduces probability for commutation failure for remote faults
CC location reduces bank exposure to ac network faults, simplifies commutation capacitor protection, reduces MOV energy
Reduces amount of shunt compensation, raises ac network resonance frequency, reduces dynamic overvoltage, lowers minimum ESCR
Reduces variable O&M with shunt bank switching and transformer LTC operations
5
4/16/2014
11
CCC principles of commutation Inverter operation
•
Commutation Margin, ´
•
Apparent Margin ac
•
Commutation margin
increases with +Id or -Uac
12
HVDC converter arrangements
Thyristor Module
Gate Unit
Single
Double
Valve
Valve
Quadruple
Valve
Thyristor
HVDC Classic
• Current source converter
• Line commutated
• Thyristor valves
• Thyristor modules
• Electrically triggered
Heat Sink
6
4/16/2014
13
Layout of bipolar HVDC station
± 500 kV, 3000 MW
14
HVDC converter station
6400 MW, ± 800 kV with series converters
7
4/16/2014
15
Thyristor Valve Installation
16
Layout of HVDC quadruple thyristor valve
Saturable Reactor
Module
TCU
TCU
Thyristor Module
= 9 thyristor
positions
TCU Derivative
Feeding Capacitor
DC Grading
Resistor
TCU
Thyristor
Thyristor
Control Unit
Damping
Resistors
TCU
Damping
Capacitors
TCU Derivative
Feeding Resistor
8
4/16/2014
17
HVDC thyristor module
PROTECTIVE FIRING
+ UPF
+ URP
Thyristors
RECOVERY PROTECTION
- UN
S
+
&
Q
R
1
MONITORING
TCU
Heat sinks
NORMAL FIRING
+ UDI
&
&
+ UPS
POWER
IP
FP
Cooling
tubes
Capacitors
Compression
springs
Resistors
Current
connector
18
Valve Cooling System Single circuit system
Outdoor dry, liquid‐to‐air coolers for valve heat dissipation
• Same base design for HVDC, HVDC Light and SVC
• High reliability – redundant pumps, coolers, control, monitoring and protection
• Designed for ease of maintenance –
redundancy permits repair or replacement of parts without requiring a converter or pole outage
•
•
MAIN
PUMPS
D EAERATION
VESSEL
SHU NT
VALVES
M
EXPANSION
VESSEL
CONVERTER
VALVE
OUTDOOR
COOLERS
MECH ANIC AL
F ILTERS
D EION IZER
FILTERS
REPLEN ISHMENT
SYSTEM
M ECH AN IC AL
F ILTERS
9
4/16/2014
19
Transformer Converter Interface HVDC
•
•
•
•
•
Match valve voltage with system AC‐
side
Provide impedance to limit the short circuit current to the valve
Galvanically separate the AC‐ and DC‐
side (takes place inside transformer, between AC and DC winding) making it possible to connect the converters in series
Converter transformers also carry harmonics, phase shift provides some harmonic cancellation
MVA rating and transport limitations determine configuration
20
Harmonic Filters
Conventional HVDC12‐pulse converter
•
•
•
•
•
•
AC side current harmonics: fh=12n±1, i.e. 11th,13th,23rd,25th,. . . Typical ac filter performance criteria: THD<1.5%, Dh<1%, TIF < 45
DC side voltage harmonics: fh=12n
Typical dc filter performance criteria: Ieq < 250ma
Typically 35% of station rating in installed ac filters
Harmonics diminish with increasing harmonic number
10
4/16/2014
21
Filter types
Bandpass filter
High-pass filter
100
10
1
0
10
20
Harmonic number
30
1 10
4
1 10
Impedance (ohms)
1 10
3
1 10
Impedance (ohms)
Impedance (ohms)
4
1 10
Double-tuned filter
3
100
10
0
20
40
60
3
100
10
1
5
Harmonic number
10
15
Harmonic number
22
HVDC classic control principles
•
Two independent variables at each terminal – firing angle, ac voltage
•
Control of firing angle is fast, control of ac voltage is slow (LTC)
•
One end assigned to voltage control, the other end to current control
•
Higher level power control calculates current order – no need for speed for normal dispatch but can be fast for pole loss compensation or runback
•
Current (or voltage) order converted to firing angle and sent to control pulse generator
•
CPG synchronized to ac voltage via PLL for equidistant firing
11
4/16/2014
23
Firing angle limits and VDCOL
•
Firing angle limits – alpha min for rectifier operation, minimum commutation margin for inverter operation
•
Minimum firing voltage for rectifier operation for disturbances
•
Voltage dependent current order limiter for controlling dynamic reactive power demand during start‐up and disturbance recovery
•
VDCOL time constants – fast for decreasing voltage, slower for increasing voltage
•
VDCOL up time constant speed dependent on system strength
Rio Madeira HVDC Project
Challenges
Rio Madeira - Total transmission project overview
Hydro Power Plants
3300 and 3150 MW
Complex Customer structure
Technology
–
Very week network in NW Brazil.
–
Advanced technical solutions
• Capacitor Commuted Converters – Replaces 2 Synchronous machines
• Large three winding transformers (Largest HVDC transformers so far)
• Deep hole electrodes
Logistics
–
–
Transport of transformers on river. Limited period of enough water in river
Brazilian Custom Clearance
© ABB Group
April 16, 2014 | Slide 24
12
4/16/2014
Rio Madeira HVDC Project
Two transformers moved into position
ABB Araraquara Converter station (right) and
Ahlstom station in the middle
© ABB Group
April 16, 2014 | Slide 25
Rio Madeira HVDC Project
Porto Velho Bipole quadruple valves
© ABB Group
April 16, 2014 | Slide 26
13
4/16/2014
Rio Madeira HVDC Project
Araraquara Bipole double valves
© ABB Group
April 16, 2014 | Slide 27
Rio Madeira HVDC Project
Porto Velho Back to Back station
© ABB Group
April 16, 2014 | Slide 28
14
4/16/2014
Rio Madeira HVDC Project
Porto Velho Back to Back
© ABB Group
April 16, 2014 | Slide 29
30
NorthEast – Agra (NEA800), India
Power: 6000/8000*) MW * continuous overload
DC‐voltage: + 800 kV
Transmission: 1728 km
Three‐station multi‐terminal bipole with OH‐lines, parallel‐connected 12‐pulse converters • In‐service: 2014‐15
•
•
•
•
BIPOLE 1 BIPOLE 2
~432 km
~1296 km
+800 kV
3000 MW 400 kV 3000 MW
Pole 3
Pole 1
Pole 4
Pole 2
Bipole 2
Bipole 1
Agra
3000 MW
400
kV
-800 kV
400 kV
3000 MW
Pole 3
Pole 1
Pole 4
Pole 2
Bipole 2
Bipole 1
Alipurduar
Biswanath Chariali
15
4/16/2014
31
Questions?
16

Similar documents

HIGH-VOLTAGE DIRECT CURRENT CONVERTER STATIONS, UPDATE 2015 - GLOBAL MARKET SIZE, AVERAGE PRICING AND EQUIPMENT MARKET SHARE TO 2020

HIGH-VOLTAGE DIRECT CURRENT CONVERTER STATIONS, UPDATE 2015 - GLOBAL MARKET SIZE, AVERAGE PRICING AND EQUIPMENT MARKET SHARE TO 2020 High-Voltage Direct Current Converter Stations, Update 2015 Research Report provides an overview of the HVDC transmission market for each of the countries analyzed, and presents insights on key indicators such as transmission length (2009-2020) and capacity (2009-2020).

More information

Global High Voltage Direct Current (HVDC) Transmission Systems Market

Global High Voltage Direct Current (HVDC) Transmission Systems Market High-voltage, direct current (HVDC) system is an electrical power transmission system which uses direct current for long distance electrical power transmission as opposed to more common alternating current power transmission systems. These systems are economical and offers better stability than AC line or AC cable and can be easily customized to specific function to improve the reliability of the network. HVDC systems can be applied at any voltage levels which makes it possible to connect the systems between two asynchronous networks. Demand for the HVDC systems is mainly from the countries where power stations are located at larger distance from consumer ends such as India & China and is less from the densely populated areas such as countries in Europe since the electrical losses are negligible at smaller distances. Global HVDC market is witnessing new product developments and large scale agreements, collaborations and partnerships across the value chain, with a number of tier-one companies globally. Currently large number of projects deployed uses line Commuted converter LCC technology, however focus on increasing the use of non-renewable energy sources has increased the demand for voltage Source Converter technology VSC.

More information