r - Nano[studijní] materiály - Technical University of Liberec
Transcription
r - Nano[studijní] materiály - Technical University of Liberec
Electro-optical properties of crystals Magneto-optical effect in gases Miroslav Šulc Technical University of Liberec Departement of Physics Electro-optical effects • Electro-optical coefficients • Applications of electro-optical effects • Measurement of electro-optical coefficients Vacuum Magnetic Birefringence - measurement in gases and vacuum Nano-optics Optical properties of Crystals II Outline 2 Electro-optic coefficients • Applied electric field E changes optical indicatrix and impermitivity tensor η of investigated materials. 0 • If the intensity of electric field is small, it is possible to express this tensor η as a Taylor expansion ij E ij rijk Ek sijkl Ek El kl • Coefficients rijk (linear Pockels coefficients) are the first derivation of impermitivity tensor for zero electric field rijk ij Ek • These coefficients characterize electro-optical properties of crystals ADP, KDP, LiNbO3, LiTaO3, CdTe, PZN-PT, PMN-PT. It requires inversion asymmetry sijkl 12 2ij Ek E j Optical properties of Crystals II k • Kerr effect, described by coefficients sijkl , is observable in crystals with central symmetry, liquids and gases 3 For example - LiNbO3 crystal • Crystals LiNbO3 is an uniaxial rhombohedral crystal with point-group symmetry 3m. It has only r13, r33, r22, r15 non-zero electro-optical coefficients 0 0 0 0 r5 1 r2 2 r2 2 r2 2 0 r5 1 0 0 r1 3 r1 3 r3 3 0 0 0 Optical properties of Crystals II • The impermitivity tensor is symmetrical, it has 6 independent coefficients with indexes ij. They can be replaced by one index • λ ( ij~λ: 11~1, 22~2, 33~3, 23~4, 13~5, 12~6). • This is why 6x3 matrix can express Pockels tensor rijk. 4 Elektrooptický jev Optical properties of Crystals II • Obecný elektrooptický tenzor – při působení elektrického pole, rij-elektrooptický koeficient, kde pro indexy i= 4-6 jde o rotace budící vlny vzhledem k optické ose krystalu 5 kde Elektrooptický jev Optical properties of Crystals II • Elektrooptický tenzor pro některé isotropní a anizotropní (uniaxiální) materiály. Nesymetrie koeficientů značí GaAs, GaP, kubická soustava LiNbO3 a LiTaO3 hexagonalní soustava ADP, KDP tetragonální soustava 6 Optical properties of Crystals II • Some electrooptical materials 7 ADP – Fosfid dihydrogen amoný, KDP – Fosfid dihydrogen draselný Optical properties of Crystals II • Nejednodušší případ – intenzita elektrického pole E působí ve směru optické osy z a směr šíření pole je ve směru osy x 8 Crystal LiNbO3 E=0 E • Applied electric field E=(0,0,E) along optical axis z, perpendicular to laser beam. The values of the principal refractive indices with field E are ne(E) and no(E) • The change of refractive index causes the optical phase shift of light wave in the sample. The electric field in optical axis direction induces also a change of the sample length ΔL along the path of the laser beam due to piezoelectric effect. It is proportional to piezoelectric coefficient d31 L d 31EL Optical properties of Crystals II ne E ne 12 ne3r33E n0 E no 12 no3 r13 E 9 Šíření optické vlny krystalem V každém směru se mohou šířit dvě vlny, lišící se polarizací a indexem lomu- řádná vlna – index lomu nO nezávisí na směru šíření, směr intenzity E je kolmý k optické ose krystalu a ke směru šíření, mimořádná vlna – kde index lomu ne závisí na úhlu Q mezi směrem šíření a optickou osou krystalu. Optical properties of Crystals II • Uniaxiální krystaly vykazují při šíření dvojlom a tenzor permitivity lze vyjádřit 10 • Rozdíl indexů nO a ne je velký až - 0,08. Obě vlny se šíří nezávisle ve vlnovodné oblasti. • Pokud je optická osa krystalu kolmá k podložce šíří se vlna TE v libovolném směru s řádným indexem nO. A vlna TM s mimořádným indexem ne • Pokud je optická osa krystalu v rovině vlnovodu pak se vlna TM šíří jako řádná a vlna TE jako mimořádná a indexy lomu závisí na velikosti úhlu mezi směrem šíření a podložkou Optical properties of Crystals II Šíření optické vlny krystalem 11 Important applications modulating the power of a laser beam, for example for laser printing or data recording, telecommunications, data transmission V V Properties of ideal electro-optic material: • large change in refractive index per volt. • high optical quality and transmission • low dielectric constant (low capacitance). A transverse electro-optic phase modulator. • low dielectric loss tangent (no dielectric heating due to a highfrequency electric field), and no distortions in modulator output from piezoelectric resonances. I I 0 1 cos Q 2 Optical properties of Crystals II 12 An amplitude modulator in its simplest form Elektrooptický modulátor EO EO Elektro-optický fázový modulátor, změny n < 1.6 x 10-3 [ 2 ] Optical properties of Crystals II Elektrooptický modulátor 14 Mach-Zehenderův interferometr využitý jako elektrooptický modulátor [ 2 ] • Measurement of phase change in Mach-Zehnder interferometer arrangment • Light polarization and direction of electric field determine measured coefficients Important to separate Pockels and inverse piezoelectic effect r 1 2 2 y U out U A U p p n 3 L Optical properties of Crystals II ELECTRO-OPTICAL COEFFICIENTS MEASUREMENT 15 Compensation of piezoelectric induced displacement 2n 1 d i ri r n3 Optical properties of Crystals II • The second crystal, made from the same material as sample crystal, but with another length is used with mirror placed on the top of this crystal • If there is applied the same electric field on investigated sample (light is passing through it) and on compensating crystal (light is reflected from this one), we can fully compensate piezoelectric effect • This compensation can be made both in Michelson and MachZehnder interferometer arrangement 16 Measurement of electro-optical coefficients of crystal LiNbO3 in pm/V and r33= 30,4±0,4 pm/V. 35 30 25 r33 20 15 r13 10 5 0 0,1 1 frekvence [kHz] 10 Optical properties of Crystals II elektro-optické koeficienty [pm/V] • Undoped crystal LiNbO3, of congruent composition (48,5%Li, 51,5% Nb) • Bulk shape 36x3x2 mm3 • This crystal was investigated in transversal configuration. Applied electric field E=(0,0,E) was along optical axis z • Point grup, symmetry 3m. Only coefficient r13, r33, r22, r15 • Correction for piezoelectric effect (d31 = –0,85·10-12 C/N) was take in account (–0,2·pm/V). • Resulting values are r13= 9,7±0,2 EO Coefficients [pm/V] wide temperature range 17 The temperature characteristic 40 12 11 35 9 30 8 25 7 20 6 160 150 200 250 teplota [K] 300 350 180 200 220 240 260 280 300 320 teplota [K] seems to be constant for both coefficients. It seems that electro-optical coefficient r33 became lower with decrease of the temperature, coefficients r13 is constant 340 Optical properties of Crystals II r33 [pm/V] r13 [pm/V] 10 18 Vacuum Magnetic Birefringence • Precise method want to measure the ultrafine Vacuum Magnetic Birefringence • The change of the light velocity in a background magnetic field is given by QED prediction • expected value by QED is Δn ≈ 3.6 10-22 in 9.5 T field • axion presence can partially modify this birefringence Optical properties of Crystals II in vacuum and gases 19 Birefringence • the initially linearly polarized light beam acquires in magnetic field ellipticity • the predicted VMB effect is very weak so subsequent steps must be done • VMB experiment starts from measurement of magneticfield-induced birefringence at gases, also known as a Cotton-Mouton, in air, in nitrogen, helium and finely in vacuum Optical properties of Crystals II • Anisotropy of refractive index, the birefringence δ shown by the vacuum (or gas) after the light has propagated along an optical path L is δ = 2π Δn (L/ λ)sin2θ and Δn = CCMλ0B2 20 • Noise limitation coming mostly from the shot noise of the photodetector. Signal must be modulated for Signal/Noise optimization. • The modulation techniques are sensitive with dedicated filtering techniques Optical properties of Crystals II VMB modulation detection techniques Variation of relative directions of electric and magnetic field is needed (or magnetic field pulses….) Magnetic filed rotation • Field Modulation at 1-1000 mHz (PVLAS …) Electric filed rotation • Half-wave plate ~300 Hz (OSQAR 2007) 21 • Electro-optical modulator EOM ~ 30 MHz Half-wave plate, turning around with ω, rotates electric field with 2 ω Electro-optical modulator for phase modulation B Optical properties of Crystals II Half-wave plate vs. EOM B E E Standard frequency: up to 300 Hz 30 MHz 22 The best orientation of the each successive component in set up is at 45 degree relative to its previous element • The set of possible configurations of polarized elements was investigated. Calculus with Jones symbolic matrixes was done. • Laser beam increases degree of polarization by passing GlanThomson polarizer prism • The beam then goes through the electro-optical modulator • than propagate trough magnetic field where the light acquires an ellipticity from induced anisotropy • The polarization of the beam is finally analyzed by an analyzer. Optical properties of Crystals II VMB with EOM -experimental set-up 23 Detection in experiment with EOM 𝐼= 𝐼0 (1 2 + 𝛿 sin 𝑇) where δ is very small birefringence of the investigated sample, and sin T can be expressed by odd Bessel functions J sin 𝑇 = 2 𝐽𝑚 (𝑇𝑜 ) sin 𝑚𝜔𝑡 𝑚=𝑜𝑑𝑑 The measured sample birefringence is 𝛿= 𝑈𝑚 2𝑈 𝐽1 where U is detected constant voltage and Um is amplitude of alternating voltage of measured signal. Optical properties of Crystals II The detected intensity I has both constant and time-variable parts, described for amplitude of modulator induced phase shift To > 0.1 rad by equation 24 Optical properties of Crystals II Laboratory test New laboratory set-up was build in universities laboratories to solve stability problems 50 MHz electrooptical modulator from Quantum Technologies 25 50 MHz electro-optical modulator from Quantum Technologies • We check working condition, influence of environment • We change our set-up from phase modulation to intensity modulation and intensity modulation was measured Deep modulation 99,5 % , perfect sinusoidal signal (agreement 0.99998), half-wave voltage 125,57 V • modulator works properly • it has very good stability Optical properties of Crystals II Electro-optical modulator 26 The EO modulator was calibrated Detected intensity I depends on amplitude of phase modulation T0 (≈ applied voltage) by equation 𝐼= 𝐼0 (1 2 Optical properties of Crystals II Calibration curve + sin(𝑇𝑜 sin 𝜔𝑡)) We measure the first harmonic signal, so correlation with Bessel functions J1 was checked • Good agreement with prediction was achieved • Due a technical limits of our EOM (maximal applied voltage), it is not be able to work at the maximum of Bessel function (highest signal) • We work at phase shift amplitude about 1 rad 27 Perfect agreement between adjusted value at S-B compensator and measured values Pearson product-moment correlation coefficient 0.99998 expected sensitivity 10-4 rad, with accuracy ~5% Optical properties of Crystals II Method was checked by Soleil-Babinet compensator measurement 28 Run in CERN SM18 test hall, August -September 2012 The base element of the set-up was stabilized 1mW He-Ne laser (Melles Griot) The new beam expanders were used for precision collimation of laser beam inside the LHC magnet pipe Glan-Thompson prisms (CVI Melles Griot) were used for polarization of light. They provides extinction ratio 1:10000. HAMATSU photodiode detector with preamplifier with optical fiber input was used for light detection Optical properties of Crystals II • Cotton- Mouton constant at nitrogen was measured • The new components were used 29 • AC modulation signal is built up by wave function generator • System response was analysed by 100 kHz Lock-in amplifier Stanford Research 830 DSP • New DAQ had took data Optical properties of Crystals II Set-up for the measurement of the Gas Magnetic Birefringence with electro-optic modulator 30 Photos of real experiment September 2012 Optical properties of Crystals II 31 The Cotton-Mouton effect in N2 Results of the measured optical retardance δ has been found to increase with the square of magnetic field The constant of the CottonMouton effect for N2 at 1 bar is found to be equal to -3.6∙10-7 rad T-2m-1 The difference in refractive indices is Δn ≈ (2.28∙±0.16)∙10-13 for N2 at atmospheric pressure in 1 T field Optical properties of Crystals II 32 This result is in good agreement with published values !!!! Expected OSQAR VMB sensitivity • • • • • 𝜹 ·𝝀 ∆𝒏 = 𝟐𝝅𝑳 For He-Ne laser λ= 632.8 nm, and LHC magnet L=14.3 m, the difference Δn ≈ 6 ∙10-14 can be measurable Our previous experiments were made without resonant cavities Sensitivity can be significantly increased by an application of high finesse cavities It can improve sensitivity by a factor 103 - 105 We are still far from QED prediction, but we are approaching Optical properties of Crystals II • Birefringence δ sensitivity of our set-up is extending to 10-4 rad now 33