A. Nitzan: Lecture 1
Transcription
A. Nitzan: Lecture 1
How Molecules Conduct Introduction to electron transport in molecular systems Reviews: Annu. Rev. Phys. Chem. 52, 681– 750 (2001) [http://atto.tau.ac.il/~nitzan/nitzanabs.html/#213] Science, 300, 1384-1389 (2003); MRS Bulletin, 29, 391-395 (2004); Bulletin of the Israel Chemical Society, Issue 14, p. 3-13 (Dec 2003) (Hebrew) Thanks I. Benjamin, A. Burin, B. Davis, S. Datta, D. Evans, M. Galperin, A. Ghosh, H. Grabert, P. Hänggi, G. Ingold, J. Jortner, S. Kohler, R. Kosloff, J. Lehmann, M. Majda, A. Mosyak, V. Mujica, R. Naaman, © A. Nitzan, TAU U. Peskin, M. Ratner, D. Segal, T. Seideman, H. Tal-Ezer . A. Nitzan Part A INTRODUCTION © A. Nitzan, TAU Molecules as conductors molecule © A. Nitzan, TAU Molecular Rectifiers Aviram Ratner Arieh Aviram and Mark A. Ratner IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA Department of Chemistry, New York New York University, New York 10003, USA Received 10 June 1974 Abstract The construction of a very simple electronic device, a rectifier, based on the use of a single organic molecule is discussed. The molecular rectifier consists of a donor pi system and an acceptor pi system, separated by a sigmabonded (methylene) tunnelling bridge. The response of such a molecule to an applied field is calculated, and rectifier properties indeed appear.© A. Nitzan, TAU Xe on Ni(110) © A. Nitzan, TAU Feynman © A. Nitzan, TAU Chad Mirkin (DPN) Moore’s “Law” © A. Nitzan, TAU Moore’s 2nd law © A. Nitzan, TAU Molecules get wired © A. Nitzan, TAU © A. Nitzan, TAU Cornell group © A. Nitzan, TAU http://www.hemdweb.co/ April 2002 © A. Nitzan, TAU The Hedonistic Imperative outlines how genetic engineering and nanotechnology will abolish suffering in all sentient life. The abolitionist project is hugely ambitious but technically feasible. It is also instrumentally rational and ethically mandatory. The metabolic pathways of pain and malaise evolved because they served the fitness of our genes in the ancestral environment. They will be replaced by a different sort of neural architecture. States of sublime well-being are destined to become the genetically pre-programmed norm of mental health. The world's last unpleasant experience will © A.event. Nitzan, TAU be a precisely dateable © A. Nitzan, TAU Feynman • For a successful Technology, reality must take precedence over public relations, for nature cannot be fooled © A. Nitzan, TAU First Transport Measurements through Single Molecules Adsorbed molecule addressed by STM tip Molecule between two electrodes Self-assembled monolayers Break junction: dithiols between gold Molecule lying on a surface Single-wall carbon nanotube on Pt Pt/Ir Tip ~1-2 nm 1 nm SAM Au(111) Dorogi et al. PRB 52 (95) @ Purdue Reed et al. Science 278 (97) @ Yale Nanopore C60 on gold STM tip Joachim et al. PRL 74 (95) Dekker et al. Nature 386(97) Nanotube on Au Au Nitzan, Reed et© al.A. APL 71 (97)TAU Lieber et al. Nature 391 (98) Park et. al. Nature 417,722-725 (2002) © A. Nitzan, TAU Datta et al Weber et al, Chem. Phys. 2002 © A. Nitzan, TAU Electron transfer in DNA © A. Nitzan, TAU Electronic processes in molecular systems Electron transfer Electron transmission Conduction Parameters that affect molecular conduction Eleastic and inelastic transmission Coherent and incoherent conduction Heating and heat conduction © A. Nitzan, TAU Theory of Electron Transfer The physics of activated rate process The physics of electron transfer in a nuclear environment A simple model – parabolic potential surfaces The Marcus parabolas The reorganization energy Adiabatic and non adiabatic rates Solvent control Bridge length dependence (“super-exchange”) Transition to hopping Experimental implications © A. Nitzan, TAU Activated rate processes ωB EB ω0 γ - friction KRAMERS THEORY: Low friction limit High friction limit Transition State theory k= γ reaction coordinate ω 0 J B e − E B / k BT Diffusion controlled rates k = 4π DR kBT D= mγ kBT (action) ωoω B − EB / kBT ωB k= e = kTST 2πγ γ ω 0 − E B / k BT kTST = e © A. Nitzan, TAU 2π The physics of transition state rates Assume: ωB (1) Equilibrium in the well EB ω0 reaction coordinate (2) Every trajectory on the barrier that goes out makes it ∞ kTST = ∫ d v v P ( x B , v ) =< v f > P ( x B ) 0 ∞ ∫ d vv e 0 ∞ ∫ dv e − 12 β mv 2 = − 12 β mv 2 1 2πβ m P ( xB ) = ω0 − β EB = e 2π exp ( − β E B ) EB ∫−∞ dx exp ( − β V ( x )) = β mω02 − β EB e 2π −∞ © A. Nitzan, TAU Electron transfer in polar media •Electron are much faster than nuclei •Î Electronic transitions take place in fixed nuclear configurations •Î Electronic energy needs to be conserved during the change in electronic charge density q=0 a Electronic transition q=+e b q=+e c Nuclear relaxation © A. Nitzan, TAU Electron transfer q=0 q=1 q=1 q=0 Nuclear motion Nuclear motion q=0 q=1 q=0 q=1 Electron transition takes place in unstable nuclear configurations obtained via thermal fluctuations © A. Nitzan, TAU Electron transfer a b energy λ EA Ea ∆E Eb Xa Xtr Xb © A. Nitzan, TAU Transition state theory of electron Alternatively – transfer solvent control Adiabatic and non-adiabatic ET processes E E2(R) Landau-Zener problem Ea(R) ∞ & & P ( R* , R& ) P ( R& ) k = ∫ dRR b←a Vab 0 2π | Va ,b |2 Pb←a ( R& ) = 1 − exp − & ∆F h R R = R* Eb(R) E1(R) * R t=0 R t k NA = πβ K 2 | Va ,b |2 h ∆F R = R* © A. Nitzan, TAU e− β EA Electron transfer – Marcus theory (0) (0) q A qB → (1) (1) q A qB ∇ ⋅ D = 4πρ E = D − 4π P εs − 1 P = χE = E 4π εe − 1 Pe = E 4π ε s − εe Pn = E 4π (0) qA + (0) qB = (1) qA + (1) qB We are interested in changes in solvent configuration that take place at constant solute charge distribution ρ They have the following characteristics: (1) Pn fluctuates because of thermal motion of solvent nuclei. (2) Pe , as a fast variable, satisfies the equilibrium relationship (3) D = constant (depends on ρ only) Note that the relations E = D-4πP; P=Pn + Pe are always satisfied per definition, however D ≠ εsE. (the latter equality holds only at equilibrium). © A. Nitzan, TAU The Marcus parabolas ρθ = ρ0 + θ ( ρ1 − ρ0 ) Use θ as a reaction coordinate. It defines the state of the medium that will be in equilibrium with the charge distribution ρθ. Marcus calculated the free energy (as function of θ) of the solvent when it reaches this state in the systems θ =0 and θ=1. W0 (θ ) = E0 + λθ 2 W1 (θ ) = E1 + λ ( 1 − θ ) 1 1 1 1 1 + − λ = − ε e ε s 2 RA 2 RB RAB 2 2 ∆q © A. Nitzan, TAU Electron transfer: Activation energy W0 (θ ) = E0 + λθ 2 W1 (θ ) = E1 + λ ( 1 − θ ) a 2 b energy λ EA Ea ∆E [( Eb − Ea ) + λ ]2 Eb EA = 4λ 1 1 1 1 1 λ = − + − ε e ε s 2 RA 2 RB RAB θa θtr 2 ∆q θb © A. Nitzan, TAU Electron transfer: Effect of Driving (=energy gap) © A. Nitzan, TAU Experimental confirmation of the inverted regime Miller et al, JACS(1984) Marcus Nobel Prize: 1992 © A. Nitzan, TAU Electron transfer – the coupling • From Quantum Chemical Calculations •The Mulliken-Hush formula | H DA |= hωmax µ12 eRDA • Bridge mediated electron transfer © A. Nitzan, TAU Bridge assisted electron transfer B2 B1 V12 D 2 1 B3 V23 3 A V3A VD1 A D N Hˆ = E D D D + ∑ E j j j =1 E j − E B , V j , j +1 j + EA A A + VD1 D 1 + V1 D 1 D + VAN A N + VNA N + N −1 ∑ (V j , j + 1 j =1 j EB − ED / A j + 1 + V j , j +1 j + 1 j A ) © A. Nitzan, TAU ED − E V1 D 0 0 M 0 VD1 E1 − E V21 0 M 0 0 V12 0 0 E2 − E V23 V32 O L E1 − E V21 0 M 0 O 0 O EN − E VNA V12 0 E2 − E V23 O V32 L cD c1 c2 M = 0 0 M VNA c N E A − E c A 0 0 L L 0 L E N −1 − E V N , N −1 ( E D − E ) c D + VD1 c1 = 0 ( E A − E ) c A + VAN c N = 0 BEWARE: equations are coming! c1 M c2 0 M VN −1, N M E N − E c N 0 ( V1D c D 0 = − M 0 V c NA A ) Hˆ B − EI B c B = u (B) ˆ c B = −G u ( Gˆ ( B ) = EI B − Hˆ B ) −1 © A. Nitzan, TAU Effective donor-acceptor coupling ( E% D − E ) cD + V%DA c A = 0 ( E% A − E ) c A + V%AD cD = 0 (B) (B) E% D = E D + VD1Gˆ 11 VD1 ; E% A = E A + V AN Gˆ NN VNA ( ) Gˆ B V%DA * V%DA = VD1Gˆ 1( BN)VNA ; V%AD = VAN Gˆ N( B1)V1 D = V%DA G = G0 + G0VG0 + G0VG0VG0 + ... 1N = 1 ( E D / A − E1 ) VD1VNA = VB V12 1 ( ED / A VB − E E B) ( D/ A 1 1 V23 ... VN −1, N − E2 ) ( E D / A − E N −1 ) ( ED / A − EN ) N = V0 e − (1 / 2) Nbβ ' VB 2 β ' = ln b ED / A − EB © A. Nitzan, TAU Marcus expresions for non-adiabatic ET rates 2π | VDA |2 F ( E AD ) h 2 2π 2 (B) = VD1VNA G1 N ( E D ) F ( E AD ) h k D→ A = Donor-to-Bridge/ Acceptor-to-bridge F (E) = Bridge Green’s Function e − ( λ + E ) / 4 λ k BT 2 4πλ k B T Reorganization energy Franck-Condonweighted DOS © A. Nitzan, TAU Bridge mediated ET rate k ET ~ F ( E AD , T )exp( − β ' RDA ) β’ (Å-1)= 0.2-0.6 for highly conjugated chains 0.9-1.2 for saturated hydrocarbons ~2 for vacuum © A. Nitzan, TAU Incoherent hopping 2 N ........ k12 1 k10=k01exp(-βE10) kN,N+1=kN+1,Nexp(-βE10) 0=D N+1 = A P&0 = − k1,0 P0 + k0,1 P1 constant P&1 = − ( k0,1 + k2,1 ) P1 + k1,0 P0 + k1,2 P2 STEADY STATE SOLUTION M P&N = − ( k N −1, N + k N +1, N ) PN + k N , N −1 PN −1 + k N , N +1 PN +1 P&N +1 = − k N , N +1 PN +1 + k N +1, N PN © A. Nitzan, TAU ET rate from steady state hopping 0 = − ( k0,1 + k2,1 ) P1 + k1,0 P0 + k1,2 P2 M 0 = − ( k N −1, N + k N +1, N ) PN + k N , N −1 PN −1 P&N +1 = k N +1, N PN k D → A ≡ k N +1,0 = ke k kN → A − ( E B / k BT ) + k k1→ D −1+ N © A. Nitzan, TAU Dependence on temperature The integrated elastic (dotted line) and activated (dashed line) components of the transmission, and the total transmission probability (full line) displayed as function of inverse temperature. Parameters are as in Fig. 3. © A. Nitzan, TAU The photosythetic reaction center © A. Nitzan, TAU Dependence on bridge length e−β N −1 −1 kup + kdiff N −1 © A. Nitzan, TAU DNA (Giese et al 2001) © A. Nitzan, TAU Steady state evaluation of rates Rate of water flow depends linearly on water height in the cylinder h Two ways to get the rate of water flowing out: (1) Measure h(t) and get the rate coefficient from k=(1/h)dh/dt (2) Keep h constant and measure the steady state outwards water flux J. Get the rate from k=J/h -- Steady state rate © A. Nitzan, TAU Steady state quantum mechanics {l} Starting from state 0 at t=0: P0 = exp(-Γ0t) 0 {l } V0l G = 2π|Vsl|2ρ{L } (Golden Rule) l Steady state derivation: ψ ( t ) = C0 ( t ) 0 + ∑ C l ( t ) l l d − ( i / h ) E0 t h C 0 = c0 eC0 = − iE0 C0 − i ∑ Vsl C l dt l d h C l = − iEl C l − iVl 0 C 0 dt ; all l © A. Nitzan, TAU C 0 = c0 e pumping − ( i / h ) E0 t damping d h C l = − iEl C l − iVl 0 C 0 − (1 / 2)η C l dt C l ( t ) = cl e − ( i / h ) E0 t J = (η / h ) ∑ C l 2 = C0 Vls c0 cl = E0 − El + iη / 2 ; 2 l ∑ Vl 0 → C0 k= J C0 2 2π = h η/h 2 ( E0 − El ) + (η / 2 ) 2 l η →0 ∑ Vl 0 l 2 ; all l 2 2π h ∑ Vl 0 l 2 2 δ ( E0 − E l ) ( 2π 2 δ ( E0 − E l ) = Vl 0 ρ L h ) E l = E0 = Γ0 / h © A. Nitzan, TAU Resonance scattering {r} {l} 1 V1l V1r 0 {l } H = H0 + V H 0 = E0 0 0 + E1 1 1 + ∑ El l l + ( l ≠0 V = V0,1 0 1 + V1,0 1 0 + ∑ Vl ,1 l 1 + V1,l 1 l l ∑ Er r r r ) + ∑ (Vr ,1 r 1 + V1,r 1 r r © A. Nitzan, TAU ) Resonance scattering C 0 = c0 E − ( i / h ) E0t hC& 1 = − iE1C1 − iV1,0 C 0 − i ∑ l V1,l C l − i ∑ r V1,r C r hC& r = − iEr C r − iVr ,1C1 − (η / 2)C r hC& l = − iEl C l − iVl ,1C1 − (η / 2)C l C j ( t ) = c j exp ( −( i / h ) E0 t ) cr = Vr ,1 c1 E0 − Er + iη / 2 For each r and l j = 0, 1, {l}, {r} cl = Vl ,1 c1 E0 − El + iη / 2 © A. Nitzan, TAU 0 = − i ( E1 − E0 ) c1 − iV1,0 c0 − i ∑ l V1,l cl − i ∑ r V1,r cr cr = Vr ,1 c1 E0 − Er + iη / 2 ∑ r V1,r cr = − iB1R ( E0 )c1 2 | V | 1r | V1r B | ≡ ( E ) E ) − (1 / 2)i Γ1 R ( E ) B1 R ( E ) ≡ ∑ 1 R = Λ 1 R (∑ r E − E r + iη r E − E1 + iη 2 B1 R ( E ) = − (1 / 2)i Γ1 R ( ) wide band approximation Γ1 R ( E ) = 2π | V1r |2 ρ R ( Er ) ∞ Er = E | V1r |2 ρ R ( Er ) Λ 1 R ( E ) = PP ∫ dEr E − Er −∞ SELF ENERGY © A. Nitzan, TAU c1 = V1,0 c0 E0 − E% 1 + ( i / 2)Γ1 ( E0 ) Γ1 ( E0 ) = Γ1 L ( E0 ) + Γ1 R ( E0 ) 0 = − i ( Er − E0 ) cr − iVr ,1 c1 − (η / 2)cr | cr |2 =| C r |2 = | Vr ,1 |2 | V1,0 |2 | c0 |2 ( ( E0 − Er )2 + (η / 2)2 J 0→ R = (η / h ) ∑ cr 2 r ) + ( Γ1 ( E0 ) / 2 ) 2 | V1,0 |2 η →0 → E0 − E% 1 ( E0 − E% 1 ) 2 + ( Γ1 ( E0 ) / 2 ) 2 2 Γ1 R ( E0 ) | c0 |2 h Vr 1 δ ( E0 − Er ) 2 © A. Nitzan, TAU Resonant tunneling {r } {l } J 0→ R = 1 {l } V1r V1l | V1,0 |2 ( E0 − E1 ) + ( Γ1 / 2 ) 2 2 Γ1 R | c0 |2 h 0 V(x) L (a) |1> R .... R .... |0> .... (b) L .... .... x (c) .... © A. Nitzan, TAU Resonant Tunneling V(x) L (a) |1> R .... | V1,0 |2 R .... |0> .... (b) L .... .... (c) .... J 0→ R = ( E0 − E1 ) 2 + ( Γ1 / 2 ) 2 Γ1 R | c0 |2 h x Transmission Coefficient J 0→ R p0 = ( incident flux ) × T ( E0 ) =| c0 | T ( E0 ) mL 2 T ( E0 ) = ( ( 2π hρ L ( E0 ) ) Γ1 L ( E0 )Γ1 R ( E0 ) E0 − E% 1 ) + ( Γ1 ( E0 ) / 2 ) 2 Γ1 = Γ1 R + Γ1 L 2 © A. Nitzan, TAU −1 Resonant Transmission – 3d V(x) L (a) |1> R T ( E0 ) = .... |0> .... (b) L .... .... Γ1 L ( E0 )Γ1 R ( E0 ) .... R (c) .... x ( E0 − E% 1 ) 2 Γ1 = Γ1 R + Γ1 L + ( Γ1 ( E0 ) / 2 ) 2 1d 3d: Total flux from L to R at energy E0: Γ1 L ( E0 )Γ1 R ( E0 ) 1 dJ L→ R ( E ) 2 | | c = 0 2 2 dE 2 π h ) E0 − E% 1 + ( Γ1 ( E0 ) / 2 ) E = E0 ( ( ) If the continua are associated with a metal electrode at thermal equilibrium than c0 2 = f ( E0 ) = exp ( ( E0 − µ ) / k B T ) + 1 −1 (Fermi-Dirac distribution) © A. Nitzan, TAU CONDUCTION L R µ –|e|φ µ f(E0) (Fermi function) 1 dJ L→ R ( E ) = T ( E0 ) | c0 |2 dE E = E0 ( 2π h ) ∞ I= e T (E) = ( Γ1 L ( E )Γ1 R ( E ) E − E% 1 ) + ( Γ1 ( E ) / 2 ) 2 2 ∫ dE ( f L ( E ) − f R ( E ) )T ( E ) 2π h −∞ f ( E + e φ ) − f ( E ) = e φδ ( E − µ ) e2 I= T (E = µ) ×φ 2 spin states 2π h e2 I= T (E = µ) ×φ πh Zero bias conduction g (φ = 0) © A. Nitzan, TAU Landauer formula g (φ = 0) = I= e ∞ e 2 πh T (E = µ) ; µ − Fermi energy ∫ dE ( f L ( E ) − f R ( E ) )T ( E ) π h −∞ For a single “channel”: T (E) = ( Γ1 L ( E )Γ1 R ( E ) E − E% 1 ) + ( Γ1 ( E ) / 2 ) 2 Maximum conductance per channel g= e 2 2 πh dI g (φ ) = dφ (maximum=1) = ( 12.9 K Ω ) © A. Nitzan, TAU −1