Arsenal/Zone Rating: A PitchF/X based pitcher projection system
Transcription
Arsenal/Zone Rating: A PitchF/X based pitcher projection system
Arsenal/ZoneRating: APitchF/Xbasedpitcherprojectionsystem PeiZheShu 1. Introduction Pitcherperformanceprojectionisafundamentalareainbaseballanalysis.Traditionalprojection systems,likePECOTA,ZiPSandSteamer,arebasedoneitherERA(orRA/9),whichcannotseparate pitcherperformancefromfielderdefensewell,orK%,BB%,HR%andbattedballdata,whichare hardtoderivecrucialinformationlikeBABIP.Thesesystemsleavealottobedesired. Fortunately,PitchF/Xwasintroducedtobaseball,andbyutilizingitwecananalyzepitcherswith muchbetteraccuracy.Thispaperintroducesanewandimprovedmethodforpitcherprojection, whichwecall“Arsenal/Zonerating”,usingPitchF/Xdata.Theideaisthatpitcherperformancecan bemostlyjudgedandpredictedfromtwoaspects:arsenalrating,whichcorrespondstothespeed andmovementofthepitch,andzonerating,whichisrelatedtothelocationthepitchwithregardto thestrikezone. Ourarsenalratingandzoneratingmodelaretrainedandpredictedonper-pitchleveldata,which hasaprettydecentsamplesize(over2millionavailablepitchesin7seasonsofdata)andrelatively richcontent(speed,movement,location,pitchcount,etc.),whichallowsustoconstructadetailed model. Ourcombinedprojectionstat,whichwecallarsenal-zone-combinedrating,notonlyhasa comparableresultwithmainstreamprojectionsystemswhenjudgedbyR^2andRMSEtoactual performancedata,butalsoexcellentforpredictingbreakoutandbreakdownpitcherscomparedto thosesystems.Andthere’sanevenbetterresult:afterlinearlycombineourratingtobasicpitching statslikeK%,BB%,HR%,oursystemismuchbetterthanallmainstreamprojectionsystems.We’ll describethemethodofoursystembelow. 2. Method 2.1. Mainmodel Weconstructamultilevelregressionmodeltoincorporateandestimatearsenalratingandzone rating.Ourmainmodel,whichisonper-pitchlevel,andonrunscale,whichcanbedescribedas: ri ~ a( spi , xmovei , zmovei , typei , hand i ) + z ( xloci , zloci , typei , hand i ) + rb + deft + pf pa Here ri istheactualresult(runexpectancy)ofthispitch, a( spi , xmovei , zmovei , typei , hand i ) is thearsenalratingofthepitch,witheachcovariaterepresentingspeed,x-movement,z-movement, pitchtype,andhandness(samehandedoropphandedbatter/pitcher)ofthepitchrespectively, z ( xloci , zloci , typei , handi ) iszoneratingofthepitch,witheachcovariaterepresentingx-location, 2016ResearchPapersCompetition Presentedby: 1 z-location,pitchtypeandhandnessofthepitch, rb istherunexpectancyofthebatter, deft isthe pitcher’steamdefense, pf pa istheparkfactor.We’llexplaineachparameterofthismodelbelow. 2.2. RunExpectancyonpitchlevel Wefollowthewidelyusedfangraphs.comwOBAformulaandthecorrespondingleagueaverage wOBAandwOBAscale[1]forrunexpectancyonplateappearance(PA)level.Weusethefollowing rulestodeterminepitchlevelrunexpectancy ri : (1) Fornon-PAendingpitches,therunexpectancyistheoneofnewpitchcountminustheoneof oldpitchcount. (2) For PA ending pitches, the run expectancy is the one of PA result minus the one of old pitch count. Forpitchcountrunexpectancy,wecalculatetheexpectationofthePAresultrunexpectancy conditionedoneachpitchcount.ThismethodscattersthevalueofthePAresultrelativelyequally oneachpitchofPA. 2.3. ZoneRating Asboththezoneratingfunctionandpitchlocationdistributionarerelativelysmooth,weusea simplifiedmodeltodescribezonerating:weseparatethestrikezoneintosquaregrids,anduse eachgridasaseparatecovariateinourmodeltoobtainitszonerating.Alocalregressionis performedontherawresulttoobtainasmoothedone.Thegraphbelowshowsanexampleofthe finalzonerating. Todescribelocationofapitchwithregardtothestrikezone,weneedto“standardize”thestrike zone,namelytoadjustthestrikezoneonbatter’sheightandhandness.We’lldescribethis adjustmentlaterinsection2.7. 2016ResearchPapersCompetition Presentedby: 2 Nowthatwe’veobtainedthezoneratingofeachstrikezonelocation,weneedtocalculatethezone ratingofeachpitcher.Asaresult,weneedtoknowthedistributionofeachpitcher’spitchlocation. Weassumethedistributionofeachpitcher’spitchlocationisacombinationof“circleswith identicalsize”,i.e.mixtureofGaussianwitheachcomponent’scovariancematrixbeingidentical scalarmatrix.Belowisagraphshowingtherawdataandthesmoothedpitchlocationdata. 2.4. ArsenalRating Weuseageneralizedadditivemodel(GAM)[2]todescribethearsenalrating.Weassumethata pitch’sarsenalratingissumofthreecomponents:speed-relatedrating,x-movement-relatedrating andz-movement-relatedrating.Eachratingwouldthenbedescribedbyacombinationof multiple(usuallyseveraltofifty)thinplatesplines[3]. Usingourscoutingknowledge,weknowthatdifferenttypeofpitcheswillhavedifferentproperties. Forexample,fastballwithfasterspeedishighlylikelytobebetter,whilecurveball’sspeedhasless (ifany)positiveimpact.Soweuseseparatearsenalratingmodelfordifferentpitchtypes,thuspitch classificationisessentialtoourmodel. Also,evenforsamepitchtype,identicalpitchesshouldhavedifferent“power”ondifferent batter/pitcherhandness.Forexample,“lateralmoving”slidersareknowntobebetteragainstsame handedbatter.Sowealsouseseparatemodelsforsamehanded/opphandedbatter.Wealsouse separatezoneratingmodelfordifferentpitchtypesandsamehanded/opphandedbatter,although thishaslesssignificantimpactonourresult. Weusea“soft”pitchtypeclassification,whichmeanseachpitchhasaprobabilityrangingfrom [0,1]ofbeingsomepitchtype.Tocalculatethearsenalratingofapitcher,weaveragethearsenal ratingofeverypitchthrownbyhim,whichisthispitch’sratingwhentreatedasaspecificpitch type,weightedbyitsprobabilityofbeingthispitchtype.We’llshowhowtoclassifypitchesin section2.5. 2016ResearchPapersCompetition Presentedby: 3 Seethefollowinggraphforanexampleofarsenalrating,whichshowsslidersforbothsamehanded andopphandedbatters. 2.5. PitchTypeClassification WefirstintroducethefollowingGaussianMixturemodel(GMM)foraspecificpitcher’spitches: ! p( spi , xmovei , zmovei ) = ∑π t Ν( spi , xmovei , zmovei | µt , Σt ) t Here ( spi , xmovei , zmovei ) isa3dvectorcontainsspeed,x-movementandz-movementofpitchb ! thrownbypitchera, π t istheweightofpitchclustert, µt and Σ t isa3dcentervectorand3*3 covariancematrix,respectively,forpitchclustertthrownbythisspecificpitcher.1 Thewholemodelcanbedescribedas:apitcher’sspeedandmovementdistributionisthe combinationofseveralanyshaped3d-ellipsoid.WefoundthisGMMmodelagooddescriptionofa specificpitcher’spitches,withoneorseveralpitchclustersbelongingtooneactualpitchtype. 1Hereweassumethatthecovariancematrix Σ t canbeanypositivedefinitematrix,whichmeans thecontourofGaussiancanbean3d-ellipsoidwithanyshape. 2016ResearchPapersCompetition Presentedby: 4 Toclassifypitches,weslightlyalterourassumptionsintoastrongerone,whichisthefollowing model: ! p( spi , xmovei , zmovei ) = ∑ π t Ν ( spi , xmovei , zmovei | µt + off p , Σ t ) t Whichmeanseverypitcher’spitchfollowsthesameGMMmodel,nowwitheachtrepresentinga pitchtype.Theotherdifferenceisthe“offset”vector off p ,whichisthesameforanypitchthrowing byaspecificpitcher,regardlessofpitchtype. Welabeledatrainingsetfortheclassificationtask.Fromthetrainingsetandthemodelabovewe getaNaïveBayesclassificationresultusingthismodel,andweaddintherawspeedandmovement data,toformamultinomiallogisticregressionmodel,toobtainthefinalresult.Seethegraphbelow foranexampleofourclassificationresult. Wefollowthepitchtypesystemofbrooksbaseball.net.Asaresult,ourlabelsetclassifypitchesinto 6types:FF(fastball),SI(sinker),CH(changeup,includingsplitter),FC(cutter),SL(slider),CU(curve, includingfasteronesandslowerones). Wefoundthemodelabovehasgoodaccuracyforclassifyingpitches:Weobtained88.3%accuracy onourtestset.Whilethismightnotseemtobetoohigh,wefoundnearlyalloftheclassification errors“borderlinepitches”,namelyFF/SI,FC/SLorSL/CU.Thosepitchtypesarenaturallyhardto classify,andourlabelsetsometimesessentiallyprovidesanarbitrarylabel. Thismultinomiallogisticregressionmodelalsonaturallygivesprobabilisticclassificationresult, whichweusetocalculatearsenalrating,aswediscussedinsection2.4.Thisprobabilisticresult providesanicealternativesolutiontotheborderlinepitches. 2.6. PitchMovementCalculationandPitchCalibration WefollowA.Nathan’smethod[4]tocalculatepitchmovement.Weremovedrageffectfromthe data,andremovegravityeffectfromdataaswell.Asaresult,weonlyconsidertheMagnuseffectof thepitch. Also,PitchF/Xrawdatahasaknownissue:itispoorlycalibrated[5].Preciselyspeaking,insome ballparksand/orsomegames,itwillsystematicallyreportaslightlyhigherorlowernumberof 2016ResearchPapersCompetition Presentedby: 5 someattribute(includingvelocityandmovement)ofeverypitchthrown.Thisiswhatwewantto correct,aswecanseebelow,therawdatacanbeprettyweird. Weusethemodelinsection2.5forclusteringpitchestosolvethisproblem,alsowithan“offset” vector.Thistimeweuseanoffsetforeachgame.Seethefollowinggraphforanexample. 2.7. StrikeZone Weuseasimpledefinitionofthestrikezone.Aclosedcurvewhichsatisfiesthefollowingcondition: apitchlocatesonthecurvehas50%probabilityofbeingcalledastrike.Followingthisdefinition, weusealogisticregressiononrawcalled-strike/balldatatodeterminetheactualstrikezone. Aswe’reactuallymoreconcernedabouttheimpactofheightandhandnesstothestrikezonerather thanitsshape,wecanjustapproximatethestrikezonewitharectanglewithsamecenterofmass andsamearea.Addintheassumptionthatthecenterofmassofthez-sideoftherectanglehasa linearrelationshipwithbatterheight,andthex-sideparametersoftherectangleaswellaslengthof thez-sideareirrelevantwithbatterheight,wearriveatthefollowingstrikezoneformula: Right-handedbatter: − 0.991 <= x <= 0.946 and 0.906 + 0.1281* height <= z <= 2.591 + 0.1281* height Left-handedbatter: − 1.139 <= x <= 0.755 and 0.617 + 0.1729 * height <= z <= 2.306 + 0.1729 * height Aswecansee,thisisprettysimilarwithMikeFast’sstrikezoneformula[6].Weusethisresultto adjustapitch’sstrikezonelocationaccordingtobatterheightandhandness. 2.8. Otherparameters Weuseasimplelinearregressionfortheprojectionofbothteamdefenseandparkfactor:the projectedvalueisthelinearcombinationofpreviousseveralyearsofobservedvalue.Weusethe averageofUZRandDRSscoreforteamdefense,andobservedwOBA-basedparkfactorasraw value.Forparkfactor,5yearsofpreviousdataareused,whileforteamdefense,3yearsareused,as teamdefensehasamuchhigheryear-to-yearvariance,especiallywhenusingrawmodelslikeUZR andDRS. 2016ResearchPapersCompetition Presentedby: 6 WeassumeaGaussianpriordistributionforrunexpectancyofbatters2.Thisistoeliminatethe effectofeachpitcher’scontext,ordifferent(combined)abilityofthebattershepitchedto. 2.9. Adjustmenttoourmainmodel Theoutputofourmodeltillnowisapitcher’szoneratingandarsenalratingbasedonhis actual(past)dataofaspecificperiod.Combiningthemtogether,andaddintheprojectedteam defenseandparkfactor,weobtainarawcombinedrating.Whilethisisalreadyadecentestimateof pitcher’sfutureperformance,wefeeltheneedtodosomerelativelyminorbutstillimportant adjustment,whichcanbedescribedusingthefollowingcombinedformula: arp = ( a + z + deft + pf pa ) * pitchp + l _ avg + hand p + pc _ valuep ∑ ∑ Here arp isthecombinedresultofourmodel,whichwewillcall“arsenal-zone-combinedrating” fromnowon. ∑ a isthesumofthearsenalrating,discussedinsection2.4, ∑ z isthesumofthe zonerating,discussedinsection2.3. deft istheteamdefense, pf pa istheparkfactor,bothofwhich arediscussedinsection2.8. pitch p istheestimatevalueofpitchesthrownbythispitcherper9 innings. l _ avg istheleagueaverageRA/9. hand p isanadjustmentbasedonpitcherhandness. pc _ value p isanadjustmentbasedonpitcher’spastpitch-countdistribution.We’llexplaineachof thoseparametersbelow. pitch p :Thisisusedtoscaletheratingfromrun-per-pitchscaletoRA/9scale.Topredictthe estimatevalueofpitchesthrownbythispitcherper9innings,weusetheobservationthatthis valueisinfactthemultiplicationoftwofactors:pitchesperPA,andPAper9innings(roughlysame as9timesWHIP).Wejustusethepreviousseason’svalueforpitchesperPA,andusealinearmodel forPAper9innings,witharsenalratingandzoneratingasparameters. l _ avg :Thezoneratingandarsenalratingaretrainedonmulti-yeardata,andthebaselineis “leagueaverage”.SowhenwescaletheseratingbacktoRA/9,weshoulduseadifferentleague averageRA/9foreachyearandforAL/NL.Weusealinearmodel(ofpreviousseveralyears’RA/9) topredictnextyear’sRA/9,topreventoverfitting. hand p :Weusedifferentmodelsforsame-handed/opp-handedbatter,butduetolackofdataon leftypitchers,wecombinedrightyandleftypitchersinthesamearsenalratingmodel,whichisnot verysatisfactory.Ouradjustmentonthisistogiveallleftiesa“bonus”.Weuseout-of-sample data(weuse2008-11datatopredict2012-14)toobtainthebonusvalue,topreventoverfitting. pc _ value p :Wesumthezoneandarsenalratingofeachpitch(andthus,eachpitchtype)ofa pitchertoobtainhisfinalrating.Butaccordingtoourscoutingknowledge,combinationofseveral typesof“strong”pitchprobablywouldleadtoevenhigherlevelofperformancethansummingthe pitches’arsenalandzoneratingsalone.Wehaveseveralwaystocompensateforthis,andafter 2Thismethodisoftencalled“mixedmodel”or“hierarchicalmodel”. 2016ResearchPapersCompetition Presentedby: 7 testingitondata3,wefoundapitch-count-distributionbasedadjustmentisthebestone.Thatis, pitchersruninto“good”pitchcountmoreoftenwillleadtoevenbettercombinationresult. 2.10. Adjustmentforpredictionpurpose Forpredictionpurposes,pastdataisnotexactlyequaltofuturedata.Althoughaspecificpitcher’s arsenalandzoneratingarelargelystablethroughyears(we’lldiscussthisinsection3.3),apitcher’s arsenalratingisprobablydecreasingeveryyear(atleastafteraroundage24-25),duetoadvancing ageandaccumulatedpitch“miles”.Weuseadirectage-basedadjustment,basedonkernel regressionresultof2008-2011data. Regressiontothemeanisalsoawidelyadoptedmethodinprojectionsystems.Wealsoutilizethis idea,andregresseachpitchertoleagueaverageRA/9accordingtohisinningspitchedinlast year(theyearwecalculatehisarsenalandzonerating).Theregressioncoefficientispickedby cross-validationonbetween-seasonarsenal-zone-combinedrating4. 3. ResultandDiscussion 3.1. Predictivepowertest Usingourmethoddescribedabove,we’reabletoproducetheresultofthearsenalratingandzone ratingmodels,andeachpitcher’sarsenal-zone-combinedrating.ThisresultisonRA/9scale,and canbeusedtopredictpitcher’sfutureperformance. WeusePitchF/XfromMLB.comandplay-by-playdatafromretrosheet.orgfromseason2008to season2014totrainourarsenalratingandzoneratingmodels.Toclassifypitches,weadditionally requirethepitcherinvolvedtohaveatleast1500pitches(roughly95innings)pitchedduringa singleseason,whichrestrictouranalysistostartersonly.Thefull7-seasondatasetcontainsaround 4.9millionpitches,andwiththeadditional1500-pitchrequirement,thedatasetcontainsaround 2.4millionpitches. TotestthepredictivepowerofourcombinedRA/9scaleresult,weuse2012-2014data,withthe additionalrequirementofpitcherpitchingatleast50inningintherespectiveseason,andpitchfor onlyoneteamduringboththecurrentseasonandpreviousseason5.Wehaveatotalof181 qualifiedseasonsofpitchers,allofthemstarters.Wepredictpitcher’sseasonperformanceusing thepreviousseason’sarsenal-zone-combinedratingonly,withtheonlyadjustmentbeingtheage adjustmentandregressiontothemeandescribedinsection2.10. Weusefourprojectionsystemsasourcomparisonbaseline:Marcel,PECOTA,ZiPS,andcontextbased-FIP(cFIP)[7].TheMarcelprojectionsystemisapurereplacement-level“baseline”system, 3Werunapartialleastsquares(PLS)regressionof2008-2011datawithalotofpotentialfeatures andchoosethemaincomponent(whichalmostonlycontainspitch-count-distribution). 4Weusecross-validationtomaximizetheloglikelihoodofthedataafterregression-to-the-mean. Theresultisthatthepriorcountsasaround20innings. 5Thisnot-changing-team-for-two-seasonsrequirementismainlybecauseweuseparkfactorand teamdefensetocombineourfinalrating,andweknowtheexactteameachpitcherpitchedforin thesecondseason,butwe’renotsurehoweachprojectionsystemhandlesthisissue,sotoavoid unfairadvantageforourrating,wejustremovethosepitcherswhochangedteam. 2016ResearchPapersCompetition Presentedby: 8 butisdesignedtohaveagoodweightedRootMeanStandardError(RMSE)6.ThePECOTA projectionsystemandZiPSsystemaretwomainstreamsystems,bothofwhichutilize“comparable pitchers”topredictpitcher’sfutureperformance.ZiPSconsistentlyrankhighlyinpitcherprojection comparison[8].ThosethreesystemsaboveareonERAscale,sowelinearlyscaleittoRA/9scale. cFIPisasystemthatadjustK%,BB%andHR%accordingtoopponent,park,catcherandumpire, andusethoseresulttocombineanFIP-likerating.Thisratingisoriginallyona100-pointscale,but itcanalsobelinearlyscaledtoRA/9scale.Also,thisratingisnotacompleteprojectionsystem,asit iscalculatedonlyononeseasonofdata.Wealsousepreviousseason’scFIPonlytoprojectnext season,withanageadjustmentandregressiontothemean,bothwithsimilarmethoddescribedin section2.10. Resultofprojectionsystem system Marcel PECOTA ZiPS cFIP arsenal-zone-combined R^2withnext 0.1866 0.1975 0.2043 0.2183 0.2017 season'sRA/9 RMSEwithnext 0.860 0.881 0.874 0.867 0.864 season'sRA/9 Thetableaboveshowsthecorrelation(R^2,highermeansbetter)andRMSE(lowermeansbetter)7 withrealRA/9dataforoursystemandfourbaselinesystems.Wecanseethatoursystemis3rdin R^2and2ndinRMSE,andnottoomuchbehindtheleaders.Thesecomparisonareonthose181 qualified2012-2014startingpitchers,andthesamesetofdataareusedforallR^2andRMSE comparisonsbelow. Breakout-Breakdownpredictionresultusingarsenal-zone-combinedrating Breakout Breakdown Baseline Bottom Bottom Percentage Top1/3 Middle Middle Top1/3 Sytem 1/3 1/3 PECOTA 20% 58% 25% 17% 44% 50% 6% 33% 58% 27% 15% 45% 43% 12% ZiPS 20% 56% 17% 28% 44% 42% 14% 33% 57% 17% 27% 40% 43% 17% cFIP 20% 50% 28% 22% 56% 28% 17% 33% 47% 25% 28% 50% 33% 17% Thetableaboveshowsthe“breakout-breakdown”predictionofourrating.Thispredictionworks asfollow(usingZiPSbaselineasexample):sortall2012-2014qualifiedstartingpitchersaccording to“arsenal-zone-combinedratingminusZiPSprojection”.Checkthepitcherswiththe highest(incidatingbreakdown,orlowest,indicatingbreakout)20%(or33%)result,toseewhere their“realRA/9minusZiPSprojection”fallswithinallpitchers:topthird,middle,orbottomthird. Theresultshowsoursystemcanstatisticallysignificantlypickoutthebreakoutandbreakdown(or underestimatedandoverestimatedbyeachbaselineprojectionsystem,respectively)pitcherswith 6Marcelsystem’sgoodRMSEpropertycanalsobefoundin[8]. 7Weallowprojectionsystemstohavean“offset”whencomputingtheRMSE. 2016ResearchPapersCompetition Presentedby: 9 regardtoeverybaselineprojectionsystem,asineverybreakoutprediction,the“top1/3” percentage(red)iswaybiggerthan“bottom1/3”(green),andviceversainbreakdownprediction. Thisbreakout-breakdownpredictionshowsoursystemshouldhavesomedistinctadvantageover thebaselineprojectionsystems.Weusethefollowingtesttoconfirmthisobservation. 3.2. CombinationwithK%,BB%andHR% Asourarsenal-zone-ratingsystemhaven’tutilizethemoststablecomponentstatsofpitchers(K%, BB%,HR%adjustedbyparkorestimatedHR%basedonFB%),andeveryprojectionsystemhave alreadyusedthose,wenaturallyarriveatthefollowingguess:ifwecombinethearsenal-zoneratingwiththesestablepitchingcomponents,weshouldobtainabettercombinedmodelthan combinethebaselinesystemswiththesecomponents. ResultofcombinedsystemwithxFIP arsenal-zoneIndex(weight) Marcel+xFIP PECOTA+xFIP ZiPS+xFIP cFIP+xFIP combined+xFIP R^2(50/50) 0.2263 0.2315 0.2293 0.2124 0.2528 RMSE(50/50) 0.834 0.834 0.836 0.846 0.819 R^2(optimal) 0.2268 0.2315 0.2298 0.2209 0.2529 RMSE(optimal) 0.833 0.834 0.836 0.845 0.819 Thetableaboveshowsthisguessistrue.Afterlinearlycombining8everymodelwithxFIP(canbe seenasalinearmodelofK%,BB%andestimatedHR%basedonFB%)inpreviousseason,our modelcomesoutontop,withaprettybigadvantage(R^2advantageissimilartoZiPSvsMarcel). Ofcourse,cFIPhasanaturaldisadvantageinourcombinationtestabove,asit’sbasicallyan adjustedFIPwithalmostnothingelse.ButcFIPcanalsobeenviewedasalinearmodelofstable pitchingcomponent(infact,itscomponentsaremorestablethanrawK%,BB%,andHR%),sowe cancombinecFIPwithourarsenal-zone-combined-rating,andwitheverybaselineprojection system(otherthancFIPitself).Thisisshowninthetablebelow,andourmodelcomesoutontop again,withasimilarbigadvantage. ResultofcombinedsystemwithcFIP arsenal-zoneIndex(weight) Marcel+cFIP PECOTA+cFIP ZiPS+cFIP combined+cFIP R^2(50/50) 0.2499 0.2484 0.2486 0.2693 RMSE(50/50) 0.822 0.829 0.829 0.812 R^2(optimal) 0.2499 0.2487 0.2486 0.2693 RMSE(optimal) 0.822 0.8287 0.829 0.812 8Weusea50/50weightforeverymodelcombinationforthefollowingreason:50/50isextremely closetoMAPestimationofthispriorweight(linearcombinationofmodelcanbeseenasaBayesian averagingofmodels)ofeverypairofmodels.Wealsouseaoptimalpriorweight(basedoncrossvalidationonR^2),andfoundtheoptimalweightformostmodelcombinationpairsarecloseto 50/50inmostcases(everypairisin45/55-55/45range,exceptcFIP+xFIP)aswell.Weshowthe resultforboth. 2016ResearchPapersCompetition Presentedby: 10 3.3. Year-to-yearcorrelation Wearealsointerestedintheyear-to-yearcorrelationofsamepitcher’sarsenal-zone-combined rating,withorwithouttheregressiontothemeanadjustment.Wefoundevenwithoutthe regressiontothemean,ithasamuchhigherR^2thanthatofcFIP(whichisinturnmuchhigher thaneverybasicpitchingstatandlinearmodelsbasedonit,suchasxFIPandSIERA,asshownin [7]),andhasasimilarR^2withthatofZiPS,onlylowerthanPECOTA,asshowninthetablebelow, duringseasons2012-2014.Soit’saprettystableratingacrossyears. Year-to-yearcorrelationofprojectionsystem system arsenal-zonecombined arsenal-zone(w/oregression combined tothemean) year-to-year R^2 0.6628 0.6787 cFIP (w/oregression tothemean) cFIP PECOTA ZiPS 0.4106 0.4475 0.8327 0.6703 3.4. Discussion Allourresultaboveshowsagoodprojectionsystemforpitcherswithenoughpreviousseason’s data(around95innings).Thislimitsourresulttoqualifiedstartingpitchers.However,asthe arsenal-zone-combinedratingisstableenoughacrossyears,andisbasedonper-pitchleveldata whichhasabiggersamplesizethanper-PAdata,nottomentionarsenalrating(themainpartofthe model)itselfusesfeatures(speedandmovement)thathavewaylessvariancethanotherper-pitch statslikeplatedisciplinestats,itshouldtheoreticallygeneralizewelltostartingpitcherswithless previousdata,aswellasreliefpitchers,althoughsomeadjustmentmustbemade.Themain problemprobablyliesonpitchclassification,asoursystemrequiresGMMandNaïve-Bayes classificationresult,whichfitwellforlargedatasetbutcanbeproblematicwithsmallerones. Luckilythere’realreadymanually-labeledpitchclassificationdata(forexample,theoneon Brooksbaseball.net),soit’spossibletoovercomethisproblem. 4. Conclusion WepresentaPitchF/Xbasedmodel:Arsenal/Zonerating,todescribepitcher’struepitchingability, andtopredictpitcher’sfutureperformance. Thefinalmodel,whichwecallarsenal-zone-combinedrating,isagoodpitchingperformance predictorbyitself.Ithascomparableresultwithmainstreamprojectionsystems,andithasdistinct advantageinpickingoutthebreakoutandbreakdownpitchersthanthosemainstreamsystems. Whenlinearlycombinedwithstablepitchingstats(K%,BB%andHR%adjustedbyparkor estimatedHR%basedonFB%),thearsenal-zone-combinedratingismuchbetterthanthe mainstreamprojectionsystems,andcanbeseenasoneofthebestpitchingprojectionsystem currentlyavailable. 2016ResearchPapersCompetition Presentedby: 11 References [1]Fangraphs.com,“wOBA”,http://www.fangraphs.com/library/offense/woba/ [2]Hastie,T.J.andTibshiraniR.J.,“Generalizedadditivemodels”,1990 [3]Wood,S.N.,“Thin-plateregressionsplines”,JournaloftheRoyalStatisticalSociety(B),2003 [4]Nathan,A.,“DeterminingPitchMovementfromPITCHf/xData”, http://baseball.physics.illinois.edu/Movement.pdf,2012 [5]Greenhouse,J.“TheYearinPITCHf/xCalibration”, http://baseballanalysts.com/archives/2010/12/the_year_in_pit.php,2010 [6]Fast,M.,“AZoneofTheirOwn”, http://www.baseballprospectus.com/article.php?articleid=14572,2011 [7]Judge,J.,“FIP,InContext”,http://www.hardballtimes.com/fip-in-context/,2015 [8]Larson,W.,“2014ProjectionReview”http://www.fangraphs.com/community/2014projection-review-updated/;“Evaluating2013Projections”, http://www.fangraphs.com/community/evaluating-2013-projections/;“Evaluating2012 Projections”,http://www.fangraphs.com/community/evaluating-2012-projections/,2012-2014 2016ResearchPapersCompetition Presentedby: 12