Restauração ecológica: ligando prática e teoria
Transcription
Restauração ecológica: ligando prática e teoria
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Escola Nacional de Botânica Tropical Programa de Pós-graduação Stricto Sensu Tese de Doutorado Restauração ecológica: ligando prática e teoria Danielle Justino Capossoli Rio de Janeiro 2013 Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Escola Nacional de Botânica Tropical Programa de Pós-graduação Stricto Sensu Restauração ecológica: ligando prática e teoria Danielle Justino Capossoli Tese apresentada ao Programa de PósGraduação em Botânica, Escola Nacional de Botânica Tropical, do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, como parte dos requisitos necessários para a obtenção do título de Doutor em Botânica. Orientador: Fabio Rubio Scarano Coorientadora: Marinez Ferreira de Siqueira Rio de Janeiro 2013 i Restauração ecológica: ligando prática e teoria Danielle Justino Capossoli Tese submetida ao corpo docente da Escola Nacional de Botânica Tropical, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro - JBRJ, como parte dos requisitos necessários para a obtenção do grau de Doutor. Aprovada por: Prof. Dr. Fabio Rubio Scarano (Orientador) _________________________ Prof. Dra. Giselda Durigan _________________________ Prof. Dr. Reinaldo Bozelli _________________________ Prof. Dr. Luiz Fernando Duarte de Moraes _________________________ Prof. Dr. Pablo J. F. Pena Rodrigues _________________________ em 28/02/2013 Rio de Janeiro 2013 ii C345r Capossoli, Danielle Justino. Restauração ecológica: ligando prática e teoria / Danielle Justino Capossoli. – Rio de Janeiro, 2013. xi, 182 f. : il. ; 28 cm. Tese (doutorado) – Instituto de Pesquisas Jardim Botânico do Rio de Janeiro / Escola Nacional de Botânica Tropical, 2013. Orientador: Fabio Rubio Scarano Coorientadora: Marinez Ferreira de Siqueira. Bibliografia. 1.Ecologia da restauração. 2.Modelagem ecológica. 3.Trajetória ecológica. I. Título. II. Escola Nacional de Botânica Tropical. CDD 333.72 iii RESUMO A descrição ou previsão de trajetórias ecológicas de iniciativas de restauração ecológica é um exemplo de como a teoria ecológica pode solucionar problemas práticos. Tais trajetórias descrevem a via de desenvolvimento de um dado sistema ecológico ao longo do tempo, e englobam uma ampla, porém limitada, potencialidade de expressões ecológicas, descritas através de atributos estruturais e funcionais. Trajetórias ecológicas podem ser investigadas através do emprego de ferramentas preditivas, como por exemplo, modelos ecológicos. O uso de modelos ecológicos é recorrente na literatura, porém, são mais observados no contexto da Ecologia do que em estudos de caráter aplicado à restauração de ecossistemas. Esta tese revisa a aplicação de modelos ecológicos à previsão de trajetórias ecológicas em iniciativas de restauração ecológica, examina atributos biológicos habitualmente utilizados por pesquisadores brasileiros para previsões intuitivas de cenários futuros e, por fim, integra essas duas abordagens ao aplicar um modelo preditivo de trajetória ecológica a um projeto de reabilitação ecológica em igapó amazônico. Assim, esse trabalho visa construir um continuum que integra a base teórica ecológica com a vertente aplicada da restauração de ecossistemas. Os principais resultados encontrados foram: (a) os esforços de restauração de ecossistemas utilizaram prioritariamente análises estatísticas ao invés da modelagem ecológica; ademais, foram poucos os estudos que projetaram estados futuros destes esforços, (b) os atributos biológicos freqüentemente utilizados por pesquisadores brasileiros para avaliar o sucesso de esforços de restauração em diferentes biomas apresentam uma sobreposição com atributos biológicos utilizados para descrever e prever a dinâmica da vegetação no contexto dos estudos ecológicos, (c) o processo de reabilitação da floresta inundável amazônica obteve sucesso em termos de iv composição florística, estrutura e diversidade. Porém, a reabilitação ecológica do igapó amazônico ainda não atingiu o objetivo de estabelecer uma floresta auto-sustentável, (d) o processo de reabilitação não necessáriamente conduzirá as florestas artificiais a um estado similar àquele encontrado nas florestas naturais de igapó. Palavras-chave: Modelagem ecológica, Ecologia da Restauração, trajetória ecológica, previsão de estados futuros, continuum prática-teoria. v ABSTRACT The description and prediction of ecological trajectories in ecological restoration initiatives is an example of how ecological theory can assist the solution of practical problems. These trajectories describe the development of a given ecosystem over time, and encompass a wide, but limited, ecological expressions, described by structural and functional attributes. Ecological trajectories can be investigated through the use of predictive tools, such as ecological models. The use of ecological models is recurrent in the literature, however, they are mostly observed in the context of ecology than in the context of ecosystem restoration studies. This thesis reviews the application of ecological models to predict ecological trajectories in ecological restoration initiatives, examines biological attributes commonly used by Brazilian researchers to intuitively predict future scenarios, and finally integrates these two approaches by applying a predictive model of ecological trajectory on a rehabilitation project of an Amazonian flooded forest. Thus, this study aims to build a continuum that integrates the theoretical aspects with applied practices of ecological restoration. The principal results found here were: (a) ecological restoration projects applied mainly statistical analysis instead of ecological modelling; few studies projected future states of these projects, (b) biological attributes frequently used by Brazilian researchers to assess restoration success in different biomes showed a overlap with biological attributes used to describe and predict vegetation dynamics in the context of the ecological studies, (c) the rehabilitation process of the flooded Amazon forest has been successful in terms of floristic composition, structure and diversity. However, the ecological rehabilitation has not reached yet the goal of establishing a self-sustainable vi forest, (d) not necessarily the rehabilitation process will lead artificial forests to a state similar of the natural igapó forests. Key words: Ecological modeling, Ecological Restoration, ecological trajectory, future states prediction, continuum between theory and practice. vii AGRADECIMENTOS Agradeço ao meu orientador Fabio Rubio Scarano pela generosidade, apoio, dedicação, e acompanhamento do meu processo de crescimento e o amadurecimento profissional. Agradeço também à Marinez Siqueira por aceitar o convite da minha coorientação. Seu olhar crítico foi fundamental na estruturação desta tese. Obrigada pela confiança, incentivo, paciência e apoio, principalmente nos momentos em que fraquejei. Agradeço ao corpo docente e administrativo do Programa de Pós-Graduação Stricto Sensu em Botânica Diversidade Vegetal: Conhecer e Conservar - Escola Nacional de Botânica Tropical, e em especial à Hevelise Peregrino pelas orientações, lembranças de prazos e palavras de suporte em momentos críticos do doutorado. Agradeço o apoio financeiro do Núcleo de Tecnologias de Recuperação de Ecossistemas (NUTRE) durante os dois primeiros anos da pesquisa para o desenvolvimento das atividades acadêmicas e para a realização da “I Oficina sobre Trajetórias Sucessionais de Ecossistemas em Restauração”, e agradeço a bolsa concedida nos dois últimos anos do doutorado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Agradeço à Mineração Rio do Norte pelo apoio logístico durante as saídas de campo realizadas em Porto Trombetas, e aos pesquisadores Francisco Esteves, Reinaldo Bozelli, Luiz Roberto Zamith e Marcos Paulo Barros pelo trabalho em conjunto e agradável convívio. Agradeço também ao Jerônimo e Eraldo pela ajuda nas atividades de campo, pelas sugestões, e pelos momentos de descontração. Agradeço o incentivo, as sugestões, e o apoio dos amigos Mário Garbin, Andrea Sánches-Tapia. Em especial agradeço a Rodolfo de Abreu pela ajuda nas análises viii estatísticas e a Jerônimo por ter tido a paciência e generosidade de rodar o modelo matemático comigo passo-a-passo. Agradeço aos amigos que me ajudaram a manter a calma durante a minha caminhada: Tarsila Menezes (in memorian) e todos os Quixotescos e Quixotescas; à “galera da faculdade”; à Débora Aranha, Marina Freire e Gustavo Barreto; aos amigos da “Equipe Fixa” e todos os colegas de trabalho; e todos aqueles que levaram a sério a missão “Dani: sai um pouco do casulo”. Por fim, agradeço o carinho, o apoio, o incentivo, a paciência e as orações da minha querida mãe, da Tia Maria, e do meu pai. ix SUMÁRIO Introduction 12 Capítulo I - The application of ecological models to predict vegetation future states Abstract 23 Resumo 25 Introduction 27 Methods 33 Results 35 Discussion 52 References 56 Capítulo II – Biological attributes used to assess the success of Brazilian restoration projects Abstract 73 Resumo 75 Introduction 77 Methods 79 Results 80 Discussion 86 Appendix 1 88 Appendix 2 89 x References 90 Capítulo III – Previsão de estados futuros de florestas artificiais de igapó (Porto Trombetas, Pará, Brasil) Resumo 93 Abstract 95 Introdução 97 Materiais e métodos 100 Resultados 120 Discussão 169 Apêndice 3 172 Apêndice 4 173 Referências Bibliográficas 174 Final remarks 179 Anexo 1 - Tropical Artificial Forests 183 Anexo 2 - Modeling the Success of Restoration in Tropical Ecosystems 210 xi INTRODUCTION 12 INTRODUCTION1 Land use changes, and consequently natural habitat loss, represent the main driver of biodiversity loss worldwide (Alkemade et al. 2009). It is propelled by the increasing human population size and by the accelerating need for resources, which demands agricultural lands, pastures, plantations, built areas and infrastructure (Hanski 2011). Besides creating novel ecosystems which have their own structural and functional characteristic, biodiversity loss impacts the goods and services provided by ecosystems, such as food, fuel, climate control, water cycling, erosion and sediment retention, nutrient cycling, and soil formation (Secretariat of the Convention on Biological Diversity 2000). In face of the global threat to species and ecosystems, in 1992 the first global agreement on the conservation and sustainable use of biological diversity - the Convention on Biological Diversity (CBD) - was created. In its Strategic Plan the CBD adopted the target “to achieve by 2010 a significant reduction of the current rate of biodiversity loss at the global, regional and national level as a contribution to poverty alleviation and to the benefit of all life on Earth” (Secretariat of the Convention on Biological Diversity 2000). The 2010 Biodiversity target was endorsed by the World Summit on Sustainable Development in 2004, and incorporated into the Millennium Development Goals (MDGs) (United Nations 2010). However, little progress toward the 2010 target has been made. Studies showed that indicators of biodiversity status continue to decline, and that the drivers of biodiversity loss continue to increase despite international efforts (Alkemade et al. 2009, Butchart et al. 2010, United Nations 2010). 1 Partes do texto estão publicadas em: Capossoli, D.J., Sansevero, J.B.B., Garbin, M.L. & Scarano, F.R. 2009. Tropical Artificial Forests, in Tropical Biology, edited by Fabio Rubio Scarano and Ulrich Luttge, in Encyclopaedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK. [http://www.eolss.net] (vide Anexo 1 desta tese). 13 Those facts can undermine the achievement of the 2015 MDGs, since any reduction in extreme poverty will be attained only if environmental sustainability is also achieved (Sachs et al. 2009). Considering that social and economic sustainability are underpinned by ecological sustainability, and that the actual trend in biodiversity loss must be reversed to ensure human survival on Earth, the parties to the Convention on Biological Diversity adopted the “2011-2020 Strategic Plan for Biodiversity”. One of the 20 goals of this plan is to restore at least 15% of degraded land in the world by 2020 (Secretariat of the Convention on Biological Diversity 2010, Mittermeier et al. 2010). Ecological restoration is imperative for the reestablishment of biodiversity and the provision of ecosystem services, and it is estimated that over 1 billion hectares of previously forested areas could be restored, corresponding to about 6% of the total area of the planet (Global Partnership on Forest Landscape Restoration 2011). Restoration projects, in general, are successful when the goal is the conservation of biodiversity (Lindenmayer et al. 2010) and the improvement of ecosystem services (Benayas et al. 2009). Nevertheless, if properly done they can also increase economic opportunities and benefits, while enhancing the social, cultural, psychological and spiritual aspects of human well-being (Aronson et al. 2006). Ambitious efforts are being made to restore forests, ecosystem services, and biodiversity around the world. An example of a global scale effort to promote ecological restoration on regional and local scales is the “New York Declaration” adopted by Botanic Gardens around the world. The actions support Target 15 of the CBD’s Strategic Plan, which is the target relating to ecological restoration (Botanic Gardens Conservation International 2011). National efforts are emerging too. For instance, in Brazil different stakeholders such as NGOs, governments, corporations, universities, 14 research centers and farmers are joining forces to promote the restoration of 15 million hectares of Atlantic forest by 2050 through The Atlantic Forest Restoration Pact (The Atlantic Forest Restoration Pact 2011). The growing demand for ecological restoration is a major challenge for Restoration Ecology, the science that develops and tests its theoretical framework (Palmer et al. 1997). This young science has two major demands: the expansion of the conceptual basis that guides restoration efforts, and the development of better predictive tools (Suding et al. 2004). One path to achieve epistemological maturity of Restoration Ecology is through a better understanding of ecological trajectories of restoration projects and the capacity in predicting the time required to attain pre-established conditions based on reference systems. The ecological trajectory describes the path of development of an ecosystem over the time. In the field of Restoration Ecology this course begins with the degraded ecosystem and culminates in the desired state, expressed as goals that include reference values. It consists of all biotic and abiotic ecological attributes, and can be monitored by sequential measurements of different ecological variables. When plotted, these information can show trends that confirm or not if the restoration effort follows the desired trajectory (SER 2004). Ecological modelling is a useful tool for understanding and predicting vegetation dynamics, and thus, ecological trajectories. Numerous models have been published for these purposes (Liu & Ashton 1995). Models are verbal, visual (e.g. diagram) or mathematical (e.g. expressions, equations, coefficients) representations of a given object, idea, or condition. They may be conceptual or quantitative. The latter include mathematical expressions, and therefore are used to formulate predictions. In this case, they are called predictive models (Jackson 2000). Ecological models have the ability to capture the reality of recovery systems, and so, its use is promising in the study of 15 ecological trajectories, and can provide critical assistance in the decision-making (Anand & Desrochers 2004). Nevertheless, models can be considered an integral part of Restoration Ecology (Urban 2006). The application of modelling in Restoration Ecology can help to predict the development pathway and can provide information about changes or adjustments on restoration activities (Twilley et al. 1998). Artificial forests - used here as synonym of the terms ‘planted’ and ‘humanmade forests’, are defined as forests that are not produced by nature spontaneously, constitute a major challenge to the scientific community, environmental agencies and private initiative due to the high variation among such types of forests. Artificial forests differ from native forests in that they comprise both non-native and native tree species and differ in structure, composition and intensity of management and because of the orderliness and uniformity that they often show. Actually, they cover globally about 2 % of land area, which represents 7 % of global forest area (about 300 million hectares). There is a handful of reasons to implement artificial forests: (i) to compensate ecological and economic losses as well as social impoverishment caused by deforestation; (ii) to supply raw materials for industry such as pulp, paper and highquality products for both, domestic uses and exportation; (iii) to restore, recover and rehabilitate degraded sites in order to increase biological diversity and/or ecosystem services as well as genetic diversity; (iv) the higher wood productivity of planted forest when compared to native forests; and (v) other purposes such as rural development, to provide firewood, windbreaks, protection of water sources for irrigation, and also be carbon sequestration and storage. Restoration projects generally involve different stakeholders, and rarely are fully subsidized by governments. In this sense, the private sector becomes an important player. The sector faces the challenge of introducing the most appropriate operational 16 practices that ensure productivity to the company, but at the same time conserve biodiversity. Companies committed to the environment can support conservation and restoration initiatives. Thus, the implementation of protective forests can be seen as a business opportunity, able to promote competitive advantage, differentiation strategy, at the same time that it aggregates environmental responsibility to the company and contributes to long-term sustainability (Secretariat of the Convention on Biological Diversity 2006). The objective of this thesis is to evaluate tools used to predict future scenarios of ecosystems restoration initiatives. This thesis aims to strengthen the bridge between theory and practice related to the ecological restoration of ecosystems. Therefore, it is structured in the following way: (i) The first chapter reviews tools and biological variables more often applied to the description and prediction of ecological trajectories and vegetation dynamics; (ii) The second chapter compares biological indicators frequently used to predict ecological trajectories with those used by Brazilian researchers to evaluate the development of restoration efforts in the country; (iii) The third chapter applies an ecological model developed by our working group to predict future states of an artificial igapó forest, planted to rehabilitate an impacted Amazonian lake; (iv) Finally, in the conclusion chapter, a discussion is made about the applicability and generality of ecological models and its biological variables in tropical ecosystems. 17 REFERENCES Alkemade, R., van Oorschot, M., Miles, L., Nellemann, C., Bakkenes, M. & Brink, B. 2009. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems, 12: 374–390. Anand, M. & Desrochers, R.E. 2004. Quantification of restoration success using complex systems concepts and models. Restoration Ecology, 12 (1): 117-123. Aronson, J., Clewell, A.F., Blignaut, J.N. & Milton, S.J. 2006. Ecological restoration: A new frontier for nature conservation and economics. Journal for Nature Conservation, 14, 135–139. Benayas, J.M. R, et al. 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, 325: 121-124. Botanic Gardens Conservation International (BGCI). 2011. The Ecological Restoration on a Global Scale: Harnessing the Power of the World’s Botanic Gardens: The New York Declaration. New York, USA. Available in: http://www.bgci.org/resources/news/0790/. Access in: 30/05/2011. Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J.P.W., Almond, R.E.A., Baillie, J.E.M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J-F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Morcillo,M.H., Oldfield, T.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart,S.N., Symes, A., Tierney, M., Tyrrell,T.D., Vié, J-C., Watson, R. 2010. Global Biodiversity: Indicators of Recent Declines. Science, 328, 1164-1168. 18 Global Partnership on Forest Landscape Restoration (GPFLR). 2011. A world of opportunity. Available in: http://pdf.wri.org/world_of_opportunity_brochure_201109.pdf . Acess in: 30/05/2011. Hanski, I. 2011. Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation. AMBIO, 40: 248–255. Jackson, L.J., Trebitz, A.S & Cottingham, K.L. 2000. An Introduction to the Practice of Ecological Modeling. BioScience, 50: 694-706. Lindenmayer, D.B., Steffen, W., Burbidge, A.A., Hughes, L., Kitching, R.L., Musgrave, W., Smith, M.S. & Werner, P.A. 2010. Conservation strategies in response to rapid climate change: Australia as a case study. Biological Conservation, 143 (7): 15871593. Liu, J. & P.S. Ashton. 1995. Individual-based simulation models for forest succession and management. Forest Ecology and Management, 73 (1-3): 157–175. Mittermeier, R.A. Baião, P.C., Barrera, L., Buppert, T., McCullough, J., Langrand, O., Larsen, F.W. & Scarano, F.R. 2010. O Protagonismo do Brasil no Histórico Acordo Global de Proteção à Biodiversidade. Natureza & Conservação, 8 (2): 1-4. Palmer, M.A., Ambrose, R.F., & Poff, N.L. 1997. Ecological Theory and Community Restoration Ecology. Restoration Ecology, 5 (4): 291-300. Sachs, J.D., Baillie, J.E.M., Sutherland, W.J., Armsworth, P.R., Ash, N., Beddington, J., Blackburn, T.M., Collen, B., Gardiner, B., Gastonm K.J., Godfray, H.C.J., Green, R.E., Harvey, P.H., House, B., Knapp, S., Kumpel, N.F., Macdonald, D.W., Mace, G.M., Mallet, J., Matthews, A., May, R.M., Petchey, O., Purvis, A., Roe, D., Safi, K., Turner, K., Walpole, M., Watson, R. & Jones, K.E. 2009. Biodiversity conservation and the Millennium Development Goals. Science, 325: 1502-1503. 19 Secretariat of the Convention on Biological Diversity. 2000. Sustaining life on earth: how the Convention on Biological Diversity promotes nature and human wellbeing. Available in: http://www.cbd.int/convention/guide. Access in: 30/05/2011. Secretariat of the Convention on Biological Diversity. 2006. Global Biodiversity Outlook 2. Montreal, 81 + vii pages Available in: http://www.cbd.int/doc/gbo/gbo2/cbd-gbo2-en.pdf. Access in: 30/05/2011. Secretariat of the Convention on Biological Diversity. 2010. Strategic Plan for Biodiversity 2011 – 2020 and the Aichi Targets: living in harmony with nature. Available in: http://www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets- EN.pdf. Access in: 30/05/2011. SER (Society for Ecological Restoration). 2004. The SER International Primer on Ecological Restoration. Available http://www.ser.org/content/ecological_restoration_primer.asp. in: Access in: 04/10/2010. Suding, K.N., Gross, K.L. & Houseman, G.R. 2004. Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution, 19 (1): 46-53. The Atlantic Forest Restoration Pact. 2011. Mission and objectives. Available in: http://www.pactomataatlantica.org.br. Access in: 30/05/2011. Twilley, R.R., Rivera-Monroy, V.H., Chen, R. & Botero, L. 1998. Adapting an Ecological Mangrove Model to Simulate Trajectories in Restoration Ecology. Marine Pollution Bulletin, 37 (8-12): 404-419. United Nations. 2010. Millennium Development Goals Repot 2010. Available in: http://www.un.org/millenniumgoals/pdf/MDG%20Report%202010%20En%20r15% 20-low%20res%2020100615%20-.pdf. Acess in: 30/05/2011. 20 Urban, D.L. 2006. A modeling framework for Restoration Ecology. In: Foundations of Restoration Ecology. Eds: Falk, D.A., Palmer, M.A. & Zedler, J.B. Island Press. 21 CAPÍTULO I THE APPLICATION OF ECOLOGICAL MODELS TO PREDICT VEGETATION FUTURE STATES 22 ABSTRACT (The application of ecological models to predict vegetation future states) The extension of the conceptual basis to guide restoration efforts and the development of better predictive tools – for exemple, ecological models, are current demands of Restoration Ecology. Ecological models when applied in the context of Restoration Ecology can capture the reality of the restored system and predict the future states of these efforts. They can also assist the evaluation of the success of such initiatives and simulate more realistic endpoints. However, the use of ecological models is frequent in the domains of Ecology and Forestry sciences. The pressing need to monitor, assess, and quantify the success of restoration efforts requires the development and application of new methods to embrace the complexity of ecological ecological trajectories. Therefore, this study aimed to review ecological models, statistical analysis and biological attributes frequently used in the study of vegetation dynamics and ecological trajectories, responding the following questions: (1) how similar are the set of ecological models, statistical analysis, and biological variables used in Ecology with those used in Restoration Ecology? and (2) Among ecological models, statistical analysis, and biological variables compiled in this review, which are the most suitable for application in Restoration Ecology? To identify relevant papers ScienceDirect and SCOPUS databases were consulted. Inclusion and exclusion criteria were applied, and resulted in an analysis of 72 articles. This review showed that ecological modelling has more often focused on native vegetation dynamics from temperate zones of the Northern Hemisphere, than on artificial forests in tropical zones; studies conducted in the perspective of “Restoration” and that dealt with artificial forests frequently used statistical analyses rather than ecological modelling; few restoration efforts projected successional trajectories and future scenarios; and multiple biological attributes have 23 been used in the reviewed papers. The results suggests that the ecological literature owns a variety of appealing ecological models and input biological variables that could be used to guide restoration efforts in the sense of a more robust prediction of vegetation future states. This great variation in the models and attributes suggests that cases should be analyzed one by one. Consequently, different models should be applied in different cases. Key words: Prediction, vegetation dynamics, ecological trajectory, Restoration Ecology. 24 RESUMO (A aplicação de modelos ecológicos para prever estados vegetacionais futuros) A ampliação da base conceitual que guia os esforços de restauração e o desenvolvimento de melhores ferramentas preditivas - por exemplo, modelos ecológicos, são demandas atuais da Ecologia da Restauração. Modelos ecológicos quando aplicados no contexto da Ecologia da Restauração podem capturar a realidade dos sistemas restaurados e prever os estados futuros destes esforços. Eles também podem auxiliar a avaliação do sucesso destas iniciativas e simular pontos finais mais realísticos. Contudo, o uso de modelos ecológicos é mais freqüente no domínio da Ecologia e Silvicultura. A necessidade atual de monitorar, avaliar e quantificar o sucesso dos esforços de restauração requer o desenvolvimento e aplicação de novos métodos que compreendam a complexidade das trajetórias ecológicas. Sendo assim, este estudo teve como objetivo revisar modelos ecológicos, análises estatísticas e atributos biológicos frequentemente utilizados nos estudos de dinâmica vegetacional e trajetórias ecológicas, respondendo as seguintes respostas: (1) os modelos ecológicos, análises estatísticas e atributos biológicos utilizados no contexto da Ecologia são similares aos utilizados no âmbito da Ecologia da Restauração? e (2) Dentre os modelos ecológicos, análises estatísticas e atributos biológicos analisados, quais são mais adequados à Ecologia da Restauração? Para identificar os artigos relevantes as bases de dados ScienceDirect e SCOPUS foram consultadas. Critérios de inclusão e exclusão foram aplicados, resultando em 72 artigos considerados nesta revisão. Esta revisão mostrou que a modelagem ecológica focou com maoir frequência a dinâmica de vegetações nativas das zonas temperadas do hemisfério norte, do que as florestas artificiais tropicais; estudos conduzidos na perspectica da “Restauração” e que lidaram com florestas artificiais utilizaram frequentemente análises estatísitcas ao invés da modelagem ecológica; poucos esforços de restauração 25 projetaram as trajetórias ecológicas e cenários futuros; e múltiplos atributos biológicos foram utilizados nos artigos revisados. Os resultados sugerem que a literatura ecológica possui uma ampla variedade de modelos ecológicos e atributos biológicos que poderiam ser utilizados para guiar os esforços de restauração em busca de predições de estados vegetacionais futuros mais robustos. Esta grande variedade de modelos e atributos deve ser analisada caso a caso. Consequentemente, diferentes modelos devem ser aplicados a diferentes situações. Palavras-chave: Predição, dinâmica vegetacional, trajetória ecológica, Ecologia da Restauração. 26 INTRODUCTION2 Almost two-thirds of the world’s ecosystems have been directly converted by human activities, or have been degraded to some extent. Thus, major improvements and efforts are needed to restore and manage ecosystems (Millennium Ecosystem Assess 2005). Restoration costs are high, and can range from hundreds to thousands, or even hundreds of thousands of USD per restored hectare (UNEP 2010). Difficulties and expenses are mainly associated to restoration goals (Hobbs 2007). In fact, costs of restoration are almost 10-fold that of effectively managed protected areas. Nonetheless, these numbers are small compared to the estimated costs of losing these ecosystems services in the long-term. Restoration when well-planned can represent a profitable public investment, and can act as an engine of economy and a source of green employment (UNEP 2010). Ecological restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed (SER 2004). Different goals can guide restoration efforts. According to Ehrenfeld (2001) restoration projects can be speciesbased (recovery of target species populations), ecosystem-based (recovery ecosystem functions and proccess) or ecosystem service based (recovery of ecosystem services that benefit humankind). However, one common goal among those initiatives is the recovery of autogenic processes to the point where anthropogenic assistance is no longer needed (SER 2004). Considering the established goals, restoration efforts may produce different outcomes. In some cases, recovery can be rapid and complete; in others, recovery may be partial, or may not occur (Suding 2011). According to Maron et al. (2012) restoration hole in compensating for losses of biodiversity still requires evidence support. 2 Capítulo formatado de acordo com as regras de publicação do periódico “Natureza e Conservação”. 27 Restoration efforts success evaluation process is hampered by limited monitoring data, limited access to monitoring data, and lack of consensus regarding the standardization of evaluation criteria (Suding 2011). The process involves four important tasks: (a) develop a conceptual model about the system ecological behavior, (b) analyze how far from the target or desired condition the system is through an assessment of the system’s current state, (c) to conduct management experiments to guide the system in the desired condition; and (d) to assess the success of the experimental intervention through monitoring (Urban 2006). The established ecosystem should be capable to respond in a dynamic way to environmental changes (Walker & del Moral 2008). However, when ecological restoration is made impossible, the alternative is to rehabilitate the degraded ecosystem. In this case, new functions and conditions can be established, emphasizing the recovery of ecosystem processes, productivity and services without an explicit intention to restore the composition and structure of the original ecosystem (SER 2004, Costa et al. 2010, de Moraes et al. 2010). Restoration Ecology is the field that develops and tests the theoretical framework of restoration efforts (Palmer et al. 1997). It provides concepts, models, methodologies and tools for practitioners in support of their practice. Because it is a young science, restoration literature is highly fragmented and disjointed. Many conceptual approaches appear to offer little value to practitioners, as well as many practical approaches are characterized by minimal conceptual content (Lunt 2001). According to Sudding et al. (2004), Restoration Ecology has two important demands the extension of the conceptual basis to guide restoration efforts and the development of better predictive tools. 28 The extension of the conceptual basis to guide restoration efforts can be achieved by including the knowledge generated in restoration projects about ecosystem functioning (Lunt 2001), and by the application of some concepts of other sciences, such as Mathematics (Anand & Desrochers 2004) and Ecology (Palmer et al. 1997). The theoretical structure of Mathematics helps restoration scientists and practitioners to understand the behavior of complex systems, expands the range of approaches that attempt to understand the implications of non-linearity and emergence of unexpected behavior in dynamic systems (Anand & Desrochers 2004), increases the possibilities of observation and interpretation of biological data enabling closer to the reality of ecological systems (Souza & Buckeridge 2004), and assists the description of ecological trajectories (SER 2004). The diverse theoretical body of Ecology can be used to support restoration projects as well (Palmer et al. 2006). The understanding of assemblage rules is an essential step to ensure the future success of restoration projects (Halle & Fattorini 2004, Temperton & Hobbs 2004, Young et al. 2005). The application of the knowledge about ecological succession can accelerate the response of a degraded area to restorations efforts, thus, maximizing economy and efficiency (Walker & del Moral 2008). The second demand of Restoration Ecology, the development of better predictive tools, can be achieved through the application of models (either exploratory or predictive sense; Perry & Millington 2008) to understand and predict the ecological trajectories of recovered systems. In fact, the common view among restoration ecologists to look to the future (Lunt 2001) may benefit from this promising approach. Core subjects to Restoration Ecology – such as the determination of the final destination of the restoration effort, how this could be affected by initial conditions and stochastic 29 environmental disturbances (Anand & Desrochers 2004), and the description and prediction of ecological trajectories - could be addressed and developed under such perspective. Models represent real-world phenomena in terms of mathematical equations, and from them, useful information for understanding and predicting real systems can emerge (Avula 2003). They have been successfully used to generate and test hypotheses, to analyze complex systems, to synthesize multidisciplinary knowledge, and to guide assessment or optimization of decision making processes (Wu 1994). They are also applied to reveal hidden assumptions, and to recognize gaps of knowledge (Jackson 2000). Models are important tools for Restoration Ecology (Palmer et al. 2006). They can capture the reality of the recovered system more accurately and demonstrate how predictable are the results of a restoration effort (Palmer et al. 2006), assist the evaluation of the success of such initiatives, simulate more realistic endpoints (Twilley et al. 1999), and infer the necessary conditions needed to prompt the ecological system to follow its natural trajectory (Anand & Desrochers 2004). However, this approach has received little attention from restoration ecologists (Anand & Desrochers 2004). There are few examples available in the literature that applies specific modelling techniques to restoration efforts (Michener 1997). Instead, this kind of approach is more common within Ecology and Forestry sciences, in topics not necessarily involving directly practical applications such as restoration. Vegetation modelling studies place great emphasis on the vegetation component, since it provides the basic energy for biological activity as a whole, and also provides the mechanical structure of biological environment in that other organisms live (Jeffers 30 1988). In fact, forest ecosystems harbor two-thirds of terrestrial biodiversity (Millennium Ecosystem Assessment 2005). Modelling vegetation dynamics involves dealing with complexity, and other challenges, such as scale, representativeness, evaluation, validation procedures, use of adequate datasets to validate model processes, linking statistical approaches and modelling approaches, and linking theoretical and applied approaches (Perry & Enright 2006, Scheller & Mladenoff 2007, Larocque et al. 2011), and plant responses to disturbances (Purves & Pacala 2008). However, these difficulties have not prevented the development and refinement of these tools over the last three decades (Shugart et al. 1988). The advent of mathematical models on vegetation dynamics in the early 1960s, provided a precious and manipulatively formalization about successional mechanisms (Shugart 1984), and over the past three decades there has been a remarkable development of those computer models (Shugart et al. 1988). Prediction has become an important way of testing the fit between theory and observed phenomena (Pickett et al.1989), and nowadays, much of the advance in the theory of vegetation dynamics are related to forest modelling (Terradas 2005). A wide range of models have been developed to describe vegetation dynamics, hence, there is no ‘‘best modelling approach’’ (Urban & Shugart 1992). Each modelling approach has its pros and cons, therefore the context of its purpose should be considered (Carmel et al. 2001). Reviews about vegetation dynamics usually handle subsets of models (Busing & Mailly 2004, Peng 2000, Scheller & Mladenoff 2007) and its implementation in the context of forestry management (Taylor et al. 2009). The pressing need to monitor, assess, and quantify the success of restoration efforts (Holl & Howarth 2000) requires the development and application of new 31 methods to embrace the complexity of ecological recovery trajectories. Additionally, it is important to emphasize the lack and the need for a summary on the application of modelling in the context of Ecological Restoration. Since ecological modelling has become a global activity, there is a need for nations to publish their experiences in relation to modelling. The goal of the present study is to evaluate ecological models, statistical analysis and biological variables (species traits and community attributes) used in the study of vegetation dynamics and ecological trajectories, responding the following questions: (i) Is there similarity between the set of ecological models, statistical analysis, and biological variables used in Ecology and those used in Restoration Ecology? (ii) Among ecological models, statistical analysis, and biological variables compiled in this review, which are the most suitable for application in Restoration Ecology? 32 METHODS To identify papers relevant to this study, the ScienceDirect and SCOPUS databases were consulted. Search terms used were divided into three blocks of words: (a) model*, predict*, and simulat*, (b) forest*, vegetation*, and stand, and (c) dynamics, trajectory, and pathway. The search was carried out by the combination of the words of each block (for example: model* + vegetation* + dynamics). The operator (*) allowed the access to both the word root and its derivations. Recent papers (2000today) were selected if they contained in the title, abstract and keywords at least one of the terms of each block of words. The search resulted in about 900 papers. Articles that dealt with non-vegetation focal systems, population models, ecosystem models, ecophysiological models, dynamic vegetation global models, distribution models, growth-and-yield models, gap distribution models, and landscape dynamics models were excluded. The remaining articles (n=72) were analyzed according to Table 1. Therefore, this review is not exhaustive, but representative of modeling of future vegetation scenarios – either at natural settings or restoration settings. 33 Table 1. Criteria used in the characterization of the articles included in the literature review. Geographic region Africa, Central America, North America, South America, Asia, Europe, Oceania Boreal forest, Grassland, Mediterranean vegetation, Temperate forest, Tropical forest, Wetlands Biome >1 biome General characteristics Vegetation origin Native (Natural, Disturbed, Managed), Artificial, Hypothetic, Mixed Research line Ecology, Restoration Application purpose Exploratory, Predictive Ecological model Transition models, Gap models, Hybrid models, Others Linear comparison (regression, correlation, time trajectories), Group comparison (analysis of Methodological tool Statistical analysis variance, t test, Kruskall-Wallis), Ordination (Detrended correspondence analysis (DCA), canonical correspondence analysis (CCA), cluster analysis), Hybrid Analysis Biological variables Species-specific traits Dispersion, establishment, persistence Community attributes Structure, diversity Environmental drivers Climatic data, edaphic data, disturbance 34 RESULTS 1. General characteristics Of the 72 papers included in this review, 36% (n=26) were conducted in North America, 33% (n=24) in Europe, 13% (n=9) in Asia, 7% (n=5) in Oceania, 6% (n=4) in South America, 4% (n=3) in Africa and 1% (n=1) in Central America. The geographic regions that presented a greater number of studied biomes were Oceania, North America, and Europe (Table 2). Most studies took place in Temperate Forest (n=28, 39%). Tropical Forests were addressed in 14% (n=10) (Figure 1). Native forests were addressed in 76% (n=55) of the papers, whereas artificial forests were focused in only 8% (n=6) of the sampled studies. While native forests were the focus of studies in all biomes, artificial forests were targeted only in studies conducted in Temperate Forests, Boreal Forests and Grasslands (Figure 2). Studies designed in the context of Ecology were more frequent (n=64; 89%) than those designed in the framework of Restoration Ecology (n=8; 11%). Vegetation dynamics were predicted in 68% (n=49) of articles and described in 32% (n=23) of the cases. Tropical Forests were the target of Ecology-oriented studies only (Figure 3). 35 Figure 1: Proportion of papers included in this review per biome types. 36 Table 2: Diversity of biomes types considered in papers included in this review. Geographic region Number of biomes Africa 2 Asia 4 Central America 1 Europe 6 North America 6 Oceania 4 South America 1 37 Figure 2: Number of papers included in this review according to biome type and vegetation origins. 38 (a) (b) Figure 3: Proportion of papers included in this review according to research line and biome type: (a) Restoration ecology and (b) Ecology. 39 2. Methodological tool In 81% (n=58) of the sampled articles, ecological models were applied to the study of vegetation dynamics, while statistical analyses were employed in 19% (n=14) of the cases. The use of ecological models was ten times greater in the framework of Ecology when compared to Restoration. The latter used more frequently statistical analyses to study restoration processes (Figure 4). Ecological models and statistical analyses were recurrent in the study of native vegetation dynamics. Among papers conducted in artificial forests, statistical analyses were more frequently used to describe or predict the successional trajectory (Figure 5). Among papers performed in Tropical forests (N=10) 90% applied ecological models (Figure 6). Among ecological models, GAP models (n=33; 57%) and transition models (n=17; 29%) were more abundant in the reviewed literature. Meanwhile, hybrid analysis (n=8; 57%) was the most common statistical analyses employed in the study of vegetation dynamics (Figure 7). The identity of ecological models used by Restoration differed from those used in Ecology, but the model CANOPY was used in both research lines. Ecological models more often used in Ecology were: ZELIG, FORCLIM, and SORTIE (Table 3). Among statistical analysis applied in the context of Restoration group comparison and ordination were predominant in the study of ecological trajectories (Table 4). 40 Figure 4: Number of papers included in this review according to methodological tool (Ecological model and Statistical analysis) and research line (Ecology and Restoration). 41 (a) (b) Figure 5: Proportion of papers included in this review according to methodological tool and vegetation origins: (a) ecological model types and (b) statistical analysis types. 42 Figure 6: Number of papers included in this review according to methodological tool (Ecological model and Statistical analysis) and biome type. 43 (a) (b) Figure 7: Proportion of papers included in this review according to methodological tool. (a) Ecological model types and (b) Statistical analisys types. 44 Table 3: Ecological models applied in articles compiled in this review to study vegetation dynamics and ecological trajectory. Ecology Restoration ecology ASTROMOD1 EDS20 CANOPY2 CANOPY21 DRYADES3 YAFSIM22 FAREAST4 FORCLIM5 FORGRA6 FORMIX7 FORRUS8 FORSPACE9 Gap models GREFOS10 JABOWA11 LINKNZ12 MBI13 MOUNTAIN14 PPA15 SELVA16 SORTIE17 ZELIG18 No name19 Cellular automata23 Transition models Markov chain24 State-and-Transition25 45 Table 3: Contined… GAP model + Transition model26 Hybrid models ZELIG + Frost27 Compartment model28 Distribution model29 Other models Grid-based model30 Rule-based model31 Size-structure model32 GAP MODELS: 1 – Berardi 2002; 2 – Choi et al. 2001; 3 - Mailly et al. 2000; 4 - Xiaodong & Shugart 2005; 5 – Busing et al. 2007, Risch et al. 2005, Weber et al. 2008, Wehrli et al. 2005; 6 - van der Meer et al. 2002; 7 - Huth & Ditzer 2000, Huth & Tietjen 2007; 8 - Chumachenko et al. 2003; 9 - Kramer et al. 2003; 10 - Fyllas et al. 2007; 11 Ehman et al. 2002; 12 - Hall & Hollinger 2000; 13 - Picard & Franc 2001; 14 - Cordonnier et al. 2008; 15 - Purves et al. 2008; 16 - Verzelen et al. 2006; 17 - Coates et al. 2003, Tremblay et al. 2005; 18 - Larocque et al. 2006, Larocque et al. 2011, Pabst et al. 2008, Seagle & Liang 2001; 19 - Fyllas et al. 2010, Moraive & Robert 2003, Robert 2003, Wallentin et al. 2008; 20 - Ngugi et al. 2011; 21 - Choi et al. 2007; 22 - Nuttle & Haefner 2007; TRANSITION MODELS: 23 Aassine & El Jah 2002, Alonso & Sole 2000, Colasanti et al. 2007, Favier et al. 2004, Vega & Montana 2011; 24 Augustin et al. 2001, Baltzer et al. 2000, Risch et al. 2009, Spathelf & Durlo 2001; 25 – Bashari et al. 2009, Bar Massada et al. 2009, Gambiza et al. 2000, Joubert et al. 2008, Koniak & Noy-Meir 2009, Liang 2010, Perry & Enright 2007, Strand et al. 2009, Tahvonen et al. 2010; HYBRID MODELS: 26 - Acevedo et al. 2001; 27 - Ranson et al. 2001; OTHER MODELS: 28 - Gillet 2008; 29 - Picard & Franc 2001; 30 - Birch et al. 2000; 31 - Glenz et al. 2008; 32 Umeki et al. 2008. 46 Table 4: Statistical analyses applied in articles compiled in this review to study vegetation dynamics and ecological trajectory. Ecology Variance analysis6 Group comparison Linear comparison Restoration ecology Regression analysis1 PCA7 Ordination Linear comparison + Group comparison2 Group comparison + Linear comparison + Group Ordination4 Hybrid analyses comparison + Ordination3 Group comparison + Ordination4 Linear comparison + Ordination5 LINEAR COMPARISON: 1 - Carmel et al. 2001, Keith et al. 2007, Kurkowski et al. 2008; HYBRID ANALYSIS: 2 - Anderson et al. 2005; 3 - Capitanio & Carcaillet 2008; 4 - Drury & Runkle 2006, Måren et al. 2008, Rydgren et al. 2011; 5 - Fulton & Harcombe 2002, Lebrija-Trejos et al. 2010, Tzanopoulos et al. 2007; GROUP COMPARISON: 6 – Gutrich et al. 2009; ORDINATION: 7 - Anand & Desrochers 2004. 47 3. Biological variables Of the 72 papers included in this review, 38% (n=27) combined 3 classes of biological variables to study vegetation in flux, 26% (n=19) combined 2 classes, 21% (n=15) used only 1 class, and 15% (n=11) combined 4 classes of biological variables. While articles conceived through the lens of Ecology used frequently 3 classes of biological variables to describe or predict vegetation dynamics, those conceived through the lens of Restoration applied 1 to 3 classes of biological variables (Figure 8). Regarding the identity of the biological variables used, “Persistence” and “Establishment” were predominant as species-specific traits, while “Structure” was predominant as community-level attribute in both research lines. In Statistical analysis, Diversity was predominant in Restoration, and Structure was predominant in the context of Ecology (Table 5). The main biological variables used in the studies of vegetation dynamics and ecological trajectories can be visualized in Table 6. 48 (a) (b) Figure 8: Proportion of paper included in this review according to the number of biological variable classes used: (a) Ecology and (b) Restoration ecology. 49 Table 5: Frequencies of type of biological variables included in papers compiled in this review. Biological variable class Species-specific traits Ecological models Restoration Ecology Dispersion 2 11 Establishment 1 19 Persistence 2 42 Structure 2 17 Diversity 0 5 1 36 Dispersion 0 1 Establishment 0 3 Persistence 0 2 Structure 3 5 Diversity 4 1 2 2 Community attributes Environmental drivers Species-specific traits Statistical analysis Community attributes Environmental drivers 50 Table 6. Main species traits and community attributes used in ecological models and statistical analysis to describe and predict vegetation dynamics and ecological trajectories from papers compiled in this review. Biological variable class Biological variables Seed dispersal distance, seed production, dispersal Dispersion syndrome, diaspore size, seed size, seed mass, seed longevity Seedling establishment rate, seedling growth rate, seedling survival rate, seedling mortality rate, Establishment sprouting capacity, seed fecundity rate, seedling density, ability to fix nitrogen Longevity, habitat, size, growth rate, survival rate, mortality rate, stress tolerance, biomass, density, leaf Persistence parameters, allometric parameters, phenology, pollination syndrome, reproduction strategy, wood density, deciduousness Biomass, basal area, cover, dominance, density, size Structure distribution, vertical stratification Diversity Species composition, species richness, diversity index Edaphic conditions, climatic conditions, topography, Environmental drivers disturbance type, growing season 51 DISCUSSION This review showed that: (1) ecological modelling has more often focused on native vegetation dynamics from temperate zones of the Northern Hemisphere, than on artificial forests in tropical zones; (2) studies conducted in the perspective of “Restoration” and that dealt with artificial forests frequently used statistical analyses rather than ecological modelling; (3) few restoration efforts projected successional trajectories and future scenarios; (4) multiple biological variables have been used in the reviewed papers, although they can all be easily grouped into a few categories only. Moreover, the identity of these variables did not differ between “Ecology” and “Restoration” (see Table 5 and Table 6). With respect to the first item mentioned above, only 9% of the studies compiled in this review were conducted in tropical countries. According to Stocks et al. (2008) this geographical bias arises from the under representation of research emerging from tropical countries, and can be related to the following factors: limited investments in education and research, limited financial resources, limited infrastructure to research, political unrest, and policy of attraction and retention of foreign researchers. The analysis of bibliometric indicators, used to evaluate the results of investments in research and the publication of scientific articles, demonstrates that China, India, Australia and Brazil – considering tropical megadiversity countries alone, were ranked among the first 20 in scientific production volume worldwide. The other megadiverse countries account for only 2% of world scientific production (SCImago Journal & Country Rank 2011). Another point that must be emphasized is that none of the articles elaborated through the lens of “Restoration” compiled in this review were conducted in tropical countries. Reviewing the use of ecosystem attribute to determine restoration success, Ruiz52 Jaen & Aide (2005) found that most studies were conducted in the US and Europe. The authors suggest that this geographical bias was more related to environmental legislation demands and available financial resources than the actual degradation state. Legal instruments may motivate restoration efforts. Countries such as Brazil, USA, Australia and Canada possess legal instruments that may induce restorations efforts. However, specifically in Brazil, there is a debate within the academic and professional community about what should be the best practice for a given ecosystem or ecosystem type (Aronson 2010, Aronson et al. 2011). Despite the debate, this limited geographical perspective can negatively affect the task of generalizations and accurately assessing conservation priorities (Stocks et al. 2008). There is an untapped potential related to the application of ecological modelling in restoration efforts. Usually, the two fundamental questions involving the scientific assessment of restoration projects – determination of project goal and the evaluation of its success, are analyzed through statistical tools to make inferences (Osenberg et al. 2006), considering three approaches: (1) direct comparison between restored ecosystem parameters and reference systems parameters, (2) evaluation of attributes of restored ecosystems against a list of nine attributes that provide a basis for determining when the restoration is complete, and (3) plotting restored ecosystems information to analyze if they follow the desired trajectory (SER 2004). Restoration efforts should attempt to look to the future, since restored ecosystems should be sustainable in the future and should have multiple alternative goals and trajectories for unpredictable endpoints (Choi 2007). However, predictions derived from predictive models require a deliberate causal structuring which is based on ecological theory and must include a validation procedure (Legendre & 53 Legendre 2003). The lack of hypothesis testing and experimental design in restoration efforts, the short temporal monitoring of restoration efforts, and the choice of reference ecosystems are factors that impose difficulties in the application of ecological models in restoration efforts, mainly in the tropical zone. Nevertheless, no such difficulties prevented the application of ecological models in restoration efforts. For example, a GAP model (CANOPY) was applied to simulate effects of thinning on growth rates and development of old-growth structural features in secondgrowth northern hardwoods and investigate the effects of different restoration treatments (Choi et al. 2007). The authors concluded that if a heavy thinning treatment were applied in a forest stand, after 45 years, it would attain structural features of later stages of old-growth forests. More recently, Ngugi et al. (2011) applied another GAP model (EDS) to model vegetation growth dynamics in order to assist long-term planning and assess recovery success. They found that the projected species composition closely approximated (90% correspondence) the observed composition after 39-year period simulated. Other attribute simulated were tree density, basal area and biomass. They showed different relative bias compared to species composition projections. Finally, as regards to the use of multiple biological variables in the reviewed papers, structural communities attributes (basal area and biomass) were more frequent in the studies conducted under the perspective of Ecology and Restoration Ecology. In fact, RuizJaen & Aide (2005) reviewing the use of ecosystem attributes for determining the restoration success observed that the majority of studies compiled also used vegetational structural measurements. In this case, the authors credited three factors: (1) legislative demand, (2) the premise that fauna recovery follows vegetation structuring, and (3) facility 54 in measuring vegetation attributes. According to Ruiz-Jaen & Aide (2005), most of the work used multiple indicators to measure the success of restoration, corroborating the result found in this study. It is worth noting that information about input biological variables used in ecological models are often known only for a few species (Knevel et al. 2003), and remains scattered over many sources. Currently, there are initiatives to compile and systematize that information, mainly for temperate species. Those sources are available in various languages, and they are collected and stored in different ways, but not always integrated (Kleyer et al. 2008). Although this review is not an exhaustive literature verification, the results found here suggest that the ecological literature owns a variety of appealing ecological models and input biological variables that could be used to guide restoration efforts in the sense of a more robust prediction of vegetation future states. Depending on the original question or objective, the studies revised used different ecological models to describe or predict the dynamics of vegetation. This great variation in the models and their input biological variables suggests that cases should be analyzed one by one. Consequently, different models should be applied in different cases. However, in the search for generalization, some features should be considered in the choice of the most suitable ecological model to predict restored vegetation future states, such as, accessibility of inputs, capacity to include alternative scenarios, form of visualization of outputs, generality, and validation (Turner et al. 1995). Another important feature to be observed in the choice of models to be applied in restoration ecology is the flexibility and ability include plant functional types. 55 REFERENCES Aassine, S. & El Jah, M.C. 2002. Vegetation dynamics modelling: a method for coupling local and space dynamics. Ecological Modelling, 154: 237–249. Acevedo, M.F., Ablan, M., Urban, D.L. & Pamarti, S. 2001. Estimating parameters of forest patch transition models from gap models. Environmental Modelling & Software, 16: 649–658. Alonso, D. & Sole, R.V. 2000. The DivGame Simulator: a stochastic cellular automata model of rainforest dynamics. Ecological Modelling, 133: 131–141. Anand, M. & Desrochers, R.E. 2004. Quantification of restoration success using complex systems concepts and models. Restoration Ecology, 12 (1): 117-123. Anderson, A.B, Wang, G., Fang, S., Gertner, G.Z., Guneralp, B. & Jones, D. 2005. Assessing and predicting changes in vegetation cover associated with military land use activities using field monitoring data at Fort Hood, Texas. Journal of Terramechanics, 42: 207–229. Aronson, J. 2010. What can and should be legalized in Ecological restoration? Revista Árvore, 4 (3): 451-454. Aronson, J., Brancalion, P.H.S., Durigan, G., Rodrigues, R.R., Engel, V.L., Tabarelli, M., Torezan, J.M.D., Gandolfi, S., Melo, A.C.G., Kageyama, P.Y., Marques, M.C.M., Nave, A.G., Martins, S.V., Gandara, F.B., Reis, A., Barbosa, L.M. & Scarano F.R. 2011. What Role Should Government Regulation Play in Ecological Restoration? Ongoing Debate in São Paulo State, Brazil. Restoration Ecology, 19: 690-695. 56 Augustin, N.H., Cummins, R.P. & French, D.D. 2001. Exploring Spatial Vegetation Dynamics Using Logistic Regression and a Multinomial LogitModel. Journal of Applied Ecology, 38 (5): 991-1006. Avula, X.J.R. 2003. Mathematical Modeling. Encyclopedia of Physical Science and Technology (3ed). Pg. 219-230. Baltzer, H. 2000. Markov chain models for vegetation dynamics. Ecological Modelling, 126: 139–154. Bar Massada, A., Carmel, Y., Koniak, G. & Noy-Meir, I. 2009. The effects of disturbance based management on the dynamics of Mediterranean vegetation: A hierarchical and spatially explicit modeling approach. Ecological Modelling, 220: 2525–2535. Bashari, H., Smith, C. & Bosch, O.J.H. 2009. Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks. Agricultural Systems, 99: 23–34. Berardi, A. 2002. ASTROMOD: a computer program integrating vegetation dynamics modelling, environmental modelling and spatial data visualization in Microsoft Excel. Environmental Modelling & Software, 17: 403–412. Birch, C.D., Vuichard, N. & Werkman, B.R. 2000. Modelling the E€ ects of Patch Size on Vegetation Dynamics: Bracken [Pteridium aquilinum (L.) Kuhn] under Grazing. Annals of Botany, 85 (Supplement B): 63-76. Busing, R.T. & Mailly, D. 2004. Advances in spatial, individual-based modelling of forest dynamics. Journal of Vegetation Science, 15: 831-842. 57 Busing, R.T., Solomon, A.M., McKane, R.B. & Burdick, C.A. 2007. Forest dynamics in Oregon landscapes; evaluation and application of an individual-based model. Ecological Applications, 17: 1967–1981. Capitanio, R. & Carcaillet, C. 2008. Post-fire Mediterranean vegetation dynamics and diversity: A discussion of succession models. Forest Ecology and Management, 255: 431–439. Carmel, Y., Kadmon, R. & Nirel, R.2001. Spatiotemporal predictive models of Mediterranean vegetation dynamics. Ecological Applications, 11 (1): 268-280. Choi, J., Lorimer, C.G., Vanderwerker, J.M., Cole, W.G. & Martin, G.L. 2001. A crown model for simulating long-term stand and gap dynamics in northern hardwood forests. Forest Ecology and Management, 152: 235-258. Choi, W.D. 2007. Restoration Ecology to the Future: A Call for New Paradigm. Restoration Ecology, 15 (2): 351–353. Choi, J., Lorimer, C.G. & Vanderwerker, J.M. 2007. A simulation of the development and restoration of old-growth structural features in northern hardwoods. Forest Ecology and Management, 249: 204–220. Chumachenko, S.I., Korotkov, V.N., Palenova, M.M. & Politov, D.V. 2003. Simulation modelling of long-term stand dynamics at different scenarios of forest management for coniferous–broad-leaved forests. Ecological Modelling, 170: 345–361. Coates, D.K., Canhamb, C.D., Beaudet, M., Sachs, D.L. & Messier, C. 2003. Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecology and Management, 186: 297–310. 58 Colasanti, R.L., Hunt, R., Watrud, L. 2007. A simple cellular automaton model for highlevel vegetation dynamics. Ecological modeling, 203: 363–374. Cordonnier, T., Courbaud, B. Berger, F. & Franc, A. 2008. Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: A simulation study. Forest Ecology and Management, 256: 347–354. Costa, M.P., Nappo, M.E., Caçador, F.Ramos.D. & de Barros, H.H.D. 2010. Avaliação do processo de reabilitação de um trecho de floresta ciliar na bacia do Rio Itapemirim – ES. Revista Árvore, 34 (5): 835-851. de Moraes, L.F.D., Campello, E.F.C. & Franco, A.A. 2010. Restauração florestal: do diagnóstico de degradação ao uso de indicadores ecológicos para o monitoramento de ações Oecologia Australis, 14 (2): 437-451. Drury, S.A. & Runkle, J.R. 2006. Forest vegetation change in southeast Ohio: Do older forests serve as useful models for predicting the successional trajectory of future forests? Forest Ecology and Management, 223: 200–210. Ehman, J.L., Fan, W., Randolph, J.C., Southworth, J., Welch, N.T. 2002. An integrated GIS and modeling approach for assessing the transient response of forests of the southern Great Lakes region to a doubled CO2 climate. Forest Ecology and Management, 155: 237–255. Ehrenfeld, J.G. 2001. Defining the limits of restoration: the need for realistic goals. Restoration Ecology, 8 (1): 2-9. Favier, C., Chave, J., Fabing, A., Schwartz, D. & Dubois, M.A. 2004. Modelling forest– savanna mosaic dynamics in man-influenced environments: effects of fire, climate and soil heterogeneity. Ecological Modelling, 171: 85–102. 59 Fulton, M.R. & Harcombe, P.A. 2002. Fine-scale predictability of forest community dynamics. Ecology, 83 (5): 1204-1208. Fyllas, N.M., Phillips, O.L., Kunin, W.E., Matsinos, Y.G. & Troumbis, A.I. 2007. Development and parameterization of a general forest gap dynamics simulator for the North-eastern Mediterranean Basin (GREek FOrest Species). Ecological modeling, 204: 439–456. Fyllas, N.M., Politi, P.I., Galanidis, A., Dimitrakopoulos, P.G., Arianoutsou, M. 2010. Simulating regeneration and vegetation dynamics in Mediterranean coniferous forests. Ecological Modelling, 221:–1504. Gambiza, J., Bond, W., Frost, P.G.H. & Higgins, S. 2000. A simulation model of miombo woodland dynamics under different management regimes. Ecological Economics, 33: 353–368. Gillet, F. 2008. Modelling vegetation dynamics in heterogeneous pasture-woodland landscapes. Ecological Modelling, 217 (1–2): 1–18. Glenz, C., Iorgulescu, I., Kienast, F. & Schlaepfer, R. 2008. Modelling the impact of flooding stress on the growth performance of woody species using fuzzy logic. Ecological Modelling, 218: 18–28. Gutrich, J.J., Taylor, K.J. & Siobhan Fennessy, M. 2009. Restoration of vegetation communities of created depressional marshes in Ohio and Colorado (USA): The importance of initial effort for mitigation success. Ecological Engineering, 35: 351– 368. Hall, M.J. & Hollinger, D.Y. 2000. Simulating New Zealand Forest Dynamics with a Generalized Temperate Forest Gap Model. Ecological Applications, 10 (1): 115-130. 60 Halle, S. & Fattorini, M. 2004. Advances in restoration ecology. In: Assembly Rules and Restoration Ecology. Eds: Temperton, V.M., Hobbs, R.J., Nuttle & Halle, S. Island Press, London. 439 p. Hobbs, R.J. 2007. Setting effective and realistic restoration goals: key directions for research. Restoration Ecology, 15 (2): 354-357. Holl, K.D. & Howarth, R.B. 2000. Paying for restoration. Restoration Ecology, 8 (3): 260267. Huth, A. & Ditzer, T. 2000. Simulation of the growth of a lowland Dipterocarp rain forest with FORMIX3. Ecological Modelling, 134: 1–25. Huth, A. & Tietjen, B. 2007. Management strategies for tropical rain forests: Results of ecological models and requirements for ecological–economic modeling. Ecological Economics, 62: 207 – 215. Jackson, L.J., Trebitz, A.S. & Cottingham, K.L. 2000. An introduction to the practice of ecological modeling. BioScience, 50 (8): 694–706. Jeffers, J.N.R. 1988. SCOPE 34: Practitioner's Handbook on the Modelling of Dynamic Change in Ecosystems. Available in: http://www.icsu- scope.org/downloadpubs/scope34/index.html. Acess in: 10/10/2009. Joubert, D.F., Rothauge, A. & Smit, G.N. 2008. A conceptual model of vegetation dynamics in the semiarid Highland savanna of Namibia, with particular reference to bush thickening by Acacia mellifera. Journal of Arid Environments, 72: 2201–2210. Keith, D.A., Holman, L., Rodoreda, S., Lemmon, J. & Bedward, M. 2007. Plant functional types can predict decade-scale changes in fire-prone vegetation. Journal of Ecology, 95: 1324–1337. 61 Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P., Thompson, K., Sonnenschein, M., Poschlod, P., van Groenendael, J.M., Klimes, L., Klimesova, J., Klotz, S., Rusch, G. M., Hermy, M., Adriaens, D., Boedeltje, Beatrijs Bossuyt, G., Gent, U., Dannemann, A., Endels, P., Goetzenberger, L., Hodgson, J.G., Jackel, A-K., Kuehn, I., Kunzmann, D., Ozinga, W.A., Roemermann, C., Stadler, M., Schlegelmilch, J., Steendam, H.J., Tackenberg, O., Wilmann, B., Cornelissen, J.H.C., Eriksson, O., Garnier, E. & Peco, B. 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology, 96 (6): 1266-1274. Knevel, I.C., Bekker, R.M., Bakker, J.P. & Kleyer, M. 2003. Life-history traits of the Northwest European flora: The LEDA database. Journal of Vegetation Science, 14: 611-614. Koniak, G. & Noy-Meir, I. 2009. A hiearchical, multi-scale, management-responsive model of Mediterranean vegetation dynamics. Ecological Modelling, 220: 1148–1158. Kramer, K., Groen, T.A. & van Wieren, S.E. 2003. The interacting effects of ungulates and fire on forest dynamics: an analysis using the model FORSPACE. Forest Ecology and Management, 181: 205–222. Kurkowski, T.A., Mann, D.H., Rupp, T.S. & Verbyla, D.L. 2008. Relative importance of different secondary successional pathways in an Alaskan boreal forest. Can. J. For. Res., 38: 1911-1923. Larocque, G.R., Archambault, L. & Delisle, C. 2006. Modelling forest succession in two southeastern Canadian mixedwood ecosystem types using the ZELIG model. Ecological Modelling, 199: 350-362. 62 Larocque, G.R., Mailly, D., Yue, T.-X., Anand, M., Peng, C., Kazanci, C., Etterson, M., Goethals, P., Jørgensen, S.E., Schramski, J.R., McIntire, E.J.B., Marceau, D.J., Chen, B., Chen, G.Q., Yang, Z.F., Novotna, B., Luckai, N., Bhatti, J.S., Liu, J., Munson, A., Gordon, A.M. & Ascough II, J.C. 2011. Common challenges for ecological modelling: Synthesis of facilitated discussions held at the symposia organized for the 2009 conference of the International Society for Ecological Modelling in Quebec City, Canada, (October 6–9, 2009). Ecological Modelling, 222: 2456–2468. Lebrija-Trejosa, E., Meave, J.A., Poorter, L., Pérez-García, E.A, Bongers, F. 2010. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12: 267– 275. Legendre, P. & Legendre, L. 2003. Numerical ecology. Elsevier Science, Amsterdan. 853p. Liang, J. 2010. Dynamics and management of Alaska boreal forest: An all-aged multispecies matrix growth model. Forest Ecology and Management, 260: 491–501. Lunt, I. 2001. Enhancing the links between restoration ecology and ecological restoration. Ecological Management & Restoration, 2 (1): 3-4. Mailly, D., Kimmins, J.P., Busing, R.T. 2000. Disturbance and succession in a coniferous forest of northwestern North America: simulations with DRYADES, a spatial gap model. Ecological Modelling, 127: 183–205. Måren, I.E., Vandvika, V. & Ekelund, K. 2008. Restoration of bracken-invaded Calluna vulgaris heathlands: Effects on vegetation dynamics and non-target species. Biological Conservation, 141: 1032 – 1042. 63 Maron, M., Hobbs, R.J., Moilanen, A., Matthews J.W., Christie, K., Gardner, T.A., Keith, D.A., Lindenmayer, D.B. & McAlpine, C.A. 2012. Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biological Conservation, 155: 141–148. Michener, W.K. 1997. Quantitatively evaluating restoration experiments: Research design, statistical analysis, and data management considerations. Restoration Ecology. 5 (4): 324-337. Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington. D.C., USA. Available in: http://www.maweb.org/documents/document.354.aspx.pdf. Acess in: 24/05/2011. Moraive, M.-A. & Robert, A. 2003. A model to assess relationships between forest dynamics and spatial structure. Journal of Vegetation Science, 14: 823-834. Ngugi, M.R., Johnson, R.W. & McDonald, W.J.F. 2011. Restoration of ecosystems for biodiversity and carbon sequestration: Simulating growth dynamics of brigalow vegetation communities in Australia. Ecological Modelling, 222: 785–794. Nuttle, T. & Haefner, J.W. 2007. Design and validation of a spatially explicit simulation model for bottomland hardwood forests. Ecological Modelling, 200: 20–32. Osenberg, C.W., Bolker, B.M., White, J.S., Mary, C.M. & Shima, J.S. 2006. Statistical issues and study design in Ecological Restorations: lessons learned from marine reserves. In: Foundations of Restoration Ecology. Eds. Falk, D.A., Palmer, M.A. & Zedler, J.B. Society for Ecological Restoration International. 64 Pabst, R.J., Goslin, M.N., Garman, S.L. & Spies, T.A. 2008. Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range. Forest Ecology and Management, 256: 958–972. Palmer, M.A., Ambrose, R.F. & Poff, N.L. 1997. Ecological theory and community restoration ecology. Restoration Ecology, 5 (4): 291-300. Palmer, M.A. Falk, D.A. & Zedler, J.B. 2006. Ecological theory and restoration ecology. In: Foundations of Restoration Ecology. Eds. Falk, D.A., Palmer, M.A. & Zedler, J.B. Society for Ecological Restoration International. Peng, C. 2000. Growth and yield models for uneven-aged stands: past, present and future. Forest Ecology and Management, 132: 259-279. Perry, G.L.W. & Millington, J.D.A. 2008. Spatial modelling of succession-disturbance dynamics in forest ecosystems: Concepts and examples. Perspectives in Plant Ecology, Evolution and Systematics, 9: 191–210. Perry, G.L.W. & Enright, N.J. 2006. Spatial modelling of vegetation change in dynamic landscapes: a review of methods and applications. Progress in Physical Geography, 30 (1): 47-72. Perry, G.L.W. & Enright, N.J. 2007. Contrasting outcomes of spatially implicit and spatially explicit models of vegetation dynamics in a forest-shrubland mosaic. Ecological Modelling, 207: 327–338. Picard, N. & Franc, A. 2001. Aggregation of an individual-based space-dependent modelof forest dynamics into distribution-based and space-independent models. Ecological Modelling, 145: 69–84. 65 Pickett, S.T.A., Kolasa, J., Armesto, J.J. & Collins, S.L. 1989. The ecological concept of disturbance hierarchical levels and its expression at various. Oikos, 54: 129-136. Purves, D.W. & Pacala, S.W. 2008. Predictive models of forest dynamics. Science, 320 (5882): 1452-1453. Purves, D.W., Lichstein, J.W., Strigul, N. & Pacala, S.W. 2008. Predicting and understanding forest dynamics using a simple tractable model. PNAS, 105 (44): 17018–17022. Ranson, K.J., Sun,G., Knox,R.G., Levine,E.R., Weishampel, J.F. & Fifer, S.T. 2001. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing. Remote Sens. Environ., 75: 291–302. Risch, A.C., Heiri, C. & Bugmann, H. 2005. Simulating structural forest patterns with a forest gap model: a model evaluation. Ecological Modelling, 181: 161–172. Risch, A.C., Schütz, M. & Bugmann, H. 2009. Predicting long-term development of abandoned subalpine conifer forests in the Swiss National Park. Ecological Modelling, 220: 1578–1585. Robert, A. 2003. Simulation of the effect of topography and tree falls on stand dynamics and stand structure of tropical forests. Ecological Modelling, 167: 287–303. Ruiz-Jaen M.C. & Aide T.M. (2005). Restoration success: How is it being measured? Restoration Ecology, 13: 569-577. Rydgren, K., Halvorsen, H., Odland, A., Skjerdal, G, 2011. Restoration of alpine spoil heaps: Successional rates predict vegetation recovery in 50 years. Ecological Engineering, 37: 294–301. 66 Seagle, S.W. & Liang, S.-Y. 2001. Application of a forest gap model for prediction of browsing effects on riparian forest succession. Ecological Modelling, 144: 213–229. Scheller, R.M. & Mladenoff, D.J. 2007. An ecological classification of forest landscape simulation models: tools and strategies for understanding broad-scale forested ecosystems. Landscape Ecology, 22: 491-505. SCImago Journal & Country Rank (SJR). 2011. Available in: http://www.scimagojr.com. Access 28/01/2013. SER (Society for Ecological Restoration). 2004. The SER International Primer on Ecological Restoration. Available in: http://www.ser.org/content/ecological_restoration_primer.asp. Access in: 04/10/2010. Shugart, H.H. 1984. A theory of forest dynamics: The ecological implications of forest succession models. Springer-Verlag, New York. 278p. Shugart, H.H., Michaels, P.J., Smith, T.M., Weinstein, D.A. & Rastetter, E.B. 1988. Simulation models of forest succession. In: SCOPE 35 - Practitioner’s handbook on the modelling of dynamic chance in ecosystems, 1-20. Souza, G.M. & Buckeridge, M.S. 2004. Sistemas complexos: novas formas de ver a Botânica. Revista Brasileira de Botânica, 27 (3): 407-419. Spathelf, P. & Durlo, M.A. 2001. Transition matrix for modeling the dynamics of a subtropical seminatural forest in southern Brazil. Forest Ecology and Management, 151: 139-149. Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E.M. 2008. The Geographical and Institutional Distribution of Ecological Research in the Tropics . Biotropica, 40 (4): 397–404. 67 Strand, E.K., Vierling, L.A., Bunting, S.C. & Gessler, P.E. 2009. Quantifying successional rates in western aspen woodlands: Current conditions, future predictions. Forest Ecology and Management, 257: 1705–1715. Suding, K.N., Gross, K.L. & Houseman, G.R. 2004. Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution, 19 (1): 46-53. Suding, K.N. 2011. Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead. Annual Review of Ecology, Evolution, and Systematics, 42: 465– 487. Tahvonen, O., Pukkala, T., Laiho, O. Lähde, E. & Niinimäki, S. 2010. Optimal management of uneven-aged Norway spruce stands. Forest Ecology and Management, 260:106–115. Taylor, A.R., Chen, H.Y.H. & VanDamm, L. 2009. A Review of Forest Succession Models and Their Suitability for Forest Management Planning. Forest Science, 55 (1): 23-36. Temperton, V.M. & Hobbs, R.J. 2004. The search for ecological assembly rules and its relevance to restoration. In: Assembly Rules and Restoration Ecology. Eds: Temperton, V.M., Hobbs, R.J., Nuttle & Halle, S. Island Press, London. 439 p. Terradas, J. 2005. Forest dynamics: a broad view of the evolution of the topic, including some recent regional contributions. Invest Agrar: Sist Recur For, 14 (3): 525-537. Tremblay, M., Messier, C. & Marceau, D.J. 2005. Analysis of deciduous tree species dynamics after a severe ice storm using SORTIE model simulations. Ecological Modelling, 187: 297–313. 68 Turner, M.G., Arthaud, G.J., Engstrom, R.T., Hejl, S.J., Liu,J., Loeb, S. & McKelvey, K. 1995. Usefulness of Spatially Explicit Population Models in Land Management. Ecological Applications, 5 (1): 12-16. Twilley, R.R., Rivera-Monroy, V.H., Chen, R. & Botero, L. 1998. Adapting an Ecological Mangrove Model to Simulate Trajectories in Restoration Ecology. Marine Pollution Bulletin, 37 (8-12): 404-419. Tzanopoulos, J., Mitchley, J.J. & Pantis, J.D. 2007. Vegetation dynamics in abandoned crop fields on a Mediterranean island: Development of succession model and estimation of disturbance thresholds. Agriculture, Ecosystems and Environment,120: 370–376. Umeki, K., Lim, E.-M. & Honjo, T. 2008. A GIS-based simulation program to predict multi-species size-structure dynamics for natural forests in Hokkaido, northern Japan. Ecological Informatics, 3: 218 – 227. UNEP (United Nations Environment Programme). 2010. Dead Planet, Living Planet – Biodiversity and Ecosystem Restoration for Sustainable Development. A Rapid Response Assessment. Eds.: Nellemann, C. & E. Corcoran. Available in: http://www.unep.org/annualreport/2010/pdfs/UNEP-AR-2010-FULL-REPORT.pdf. Acess in: 30/04/2011. Urban, D.L. 2006. A modeling framework for Restoration Ecology. In: Foundations of Restoration Ecology. Eds: Falk, D.A., Palmer, M.A. & Zedler, J.B. Island Press. Urban, D.L. & Shugart, H.H. 1992. Individual-based models of forest succession. In: Plant Succession, Theory and Prediction. Eds. Glenn-Lewin, D.C., Peet, R.K. & Veblen, T.T. Chapman & Hall, London. Pp. 249–292. 69 van der Meer, P.J., Jorritsma, I.T.M. & Kramer, K. 2002. Assessing climate change effects on long-term forest development: adjusting growth, phenology, and seed production in a gap model. Forest Ecology and Management, 162: 39–52. Verzelen N., Picard, N., Gourlet-Fleury, S. 2006. Approximating spatial interactions in a model of forest dynamics as a means of understanding spatial patterns. Ecological Complexity, 3: 209 – 218. Vega, E. & Montana, C. 2011. Effects of overgrazing and rainfall variability on the dynamics of semiarid banded vegetation patterns: A simulation study with cellular automata. Journal of Arid Environments, 75: 70-77. Walker, L.R. & del Moral, R. 2008. Transition Dynamics in Succession: Implications for Rates, Trajectories and Restoration. In: New Models for Ecosystem Dynamics and Restoration. Editors: Suding, K. & R. J. Hobbs. Island Press. Wallentin, G.G., Ulrike, T., Strobl, J., & Tasserd, E. 2008. Understanding alpine tree line dynamics: an individual-based model. Ecological Modelling, 218: 235-246. Weber, P., Rigling, A., Bugmann, H. 2008. Sensitivity of stand dynamics to grazing in mixed Pinus sylvestris and Quercus pubescens forests: A modelling study. Ecological modeling, 210: 301–311. Wehrli, A., Zingg, A., Bugmann, H., Huth, A. 2005. Using a forest patch model to predict the dynamics of stand structure in Swiss mountain forests. Forest Ecology and Management, 205: 149–167. Wu, J. 1994. The role of theory and models in ecology: An overview. Chinese Journal of Ecology, 13 (3):76-79. 70 Xiaodong, Y. & Shugart, H.H. 2005. FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests. Journal of Biogeography, 32: 1641–1658. Young, T.P., Petersen, D.A. & Clary, J.J. 2005. The ecology of restoration: historical links, emerging issues and unexplored realms. Ecology Letters, 8: 662–673. 71 CAPÍTULO II BIOLOGICAL ATTRIBUTES USED TO ASSESS THE SUCCESS OF BRAZILIAN RESTORATION PROJECTS 72 ABSTRACT (Biological attributes used to assess the success of Brazilian restoration projects) Brazilian researchers have a considerable experience in ecological restoration, especially in the Atlantic Forest biome. However, one of the greatest challenges of ecological restoration worldwide is to ensure long-term success of those initiatives. In order to measure restoration success, a large number of qualitative and quantitative biological attributes have been proposed and applied. In acknowledgement of the actual demand for ecosystem restoration, the necessity of applying predictive modeling to strengthen the theoretical body of Restoration Ecology, and the notorious Brazilian experience in ecological restoration of tropical environment, the Center for Technologies and Recovery of Ecosystems conceived the 1st Workshop about Successional Trajectories of Restored Ecosystems (August 18-22, 2008). The event gathered several Brazilian researchers to discuss, based on their practical experiences and expertise, which would be the best biological attributes to assess the success of Brazilian restoration projects, and outline a general ecological model to describe and predict ecological trajectories of tropical restored environments. A list of 36 biological attributes was proposed to assess the success of Brazilian restoration initiatives in different biomes. These attribute were classified in species-specific, functional, structural, and diversity, and then, compared to the set of attributes compiled in the previous chapter. The results found here showed an overlap between biological attributes proposed by Brazilian scientists and those those used in vegetation dynamics studies. This overlap can be seen as an opportunity to integrate datasets originated from monitoring of ecological studies and restoration initiatives outputs. This fact contributes to a better understanding of restoration success and better support management actions. 73 Key words: Brazililian expertise, restoration ecology, biological attributes, restoration success. 74 RESUMO (Atributos biológicos utilizados para acessar o sucesso de projetos de restauração brazileiros) Pesquisadores brasileiros possuem considerável experiência em restauração ecológica, especialmente no domínio do bioma Floresta Atlântica. Porém, um dos maiores desafios da restauração ecológica no mundo é assegurar o sucesso em longo prazo destas iniciativas. Para medir o sucesso da restauração uma ampla gama de atributos biológicos, qualitativos e quantitativos foram propostos e aplicados. Tendo em vista a demanda atual pela restauração ecológica, a necessidade de aplicação da modelagem preditiva para fortalecer o arcabouço teórico da Ecologia da Restauração, e a notória experiência brasileira na Restauração de ambientes tropicais, o Núcleo de Técnicas de Recuperação de Ecossistemas concebeu a I Oficina sobre trajetórias sucessionais de ecossistemas restaurados (18 a 22 de agosto de 2008). O evento reuniu pesquisadores brasileiros para discutir, com base nas suas experiências e expertise, quais seriam os atributos biológicos mais indicados para medir o sucesso de iniciativas de restauração brasileiras, e desenvolver um modelo ecológico geral para descrever e prever trajetórias ecológicas de ambientes tropicais restaurados. Uma lista com 36 atributos biológicos foi proposta para acessar o sucesso de iniciativas brasileiras de restauração em diferentes biomas. Estes atributos foram classificados em espécie-específicos, funcionais, estruturais e de diversidade, e comparados com o conjunto de atributos compilados no capítulo anterior. Os resultados encontrados aqui mostraram uma sobreposição entre os atributos biológicos propostos pelos pesquisadores brasileiros e aqueles utilizados nos estudos sobre dinâmica vegetacional. Esta sobreposição pode ser considerada uma oportunidade de integrar os dados originados de estudos de monitoramento ecológico e resultados de iniciativas de restauração ecológica. 75 Este fato contribui para o melhor entendimento do sucesso da restauração e melhor suporte às ações de manejo. Palavras-chave: Conhecimento brasileiro, restauração ecológica, atributos biológicos, sucesso da restauração. 76 INTRODUCTION3 The previous chapter demonstrated that multiple biological attributes (speciesspecific traits, community attributes, ecosystem attributes and environmental variables) are applied in studies of vegetation dynamics modelling, as input and output data. It was also demonstrated that there are no differences between biological attributes employed in models used in the context of Restoration Ecology and Ecology. It is noteworthy that the application of modelling techniques to predict future states of restoration initiatives is infrequent, mainly in tropical countries. In fact, despite recent efforts (Siqueira et al. 2009, Giannini et al. 2012), Brazilian scientific productivity in the field of ecological modelling is still insignificant compared to the productivity of countries like United States, Germany and Canada (Jorgensen 2000). On the other hand, Brazil has a considerable experience in ecological restoration, especially in the Atlantic Forest biome. According to Rodrigues et al. (2009) although some past experiences did not result in self-perpetuating forests, restoration of high diversity forests is feasible and depends on the strategies applied and on the surrounding landscape. However, one of the greatest challenges of ecological restoration worldwide is to ensure long-term success of those initiatives (Kentula 2000, Doren et al. 2009, Le et al. 2012). In order to assess restoration success, a large number of qualitative and quantitative indicators and biological attributes have been proposed and applied (Le et al. 2012). In acknowledgement of the actual demand for ecosystem restoration, the necessity of applying predictive modeling to strengthen the theoretical body of Restoration Ecology, 3 Researchers cited in Appendix 1 of this chapter are co-authors. This chapter has been formatted according to the journal “Natureza e Conservação”. 77 and the notorious Brazilian experience in ecological restoration of tropical environments (Rodrigues et al. 2009), the Center for Technologies and Recovery of Ecosystems (NUTRE) at the Federal University of Rio de Janeiro conceived the 1st Workshop about Successional Trajectories of Restored Ecosystems (August 18-22, 2008), an event that gathered several Brazilian researchers to discuss, based on their practical experiences and expertise, which would be the best biological attributes to assess the success of Brazilian projects, and outlined a general ecological model to describe and predict ecological trajectories of tropical restored areas. The aim of the workshop was: (1) elaborate a list of biological attributes frequently used to evaluate success in restoration efforts in Brazil, and (2) develop an ecological model to describe and predict ecological trajectories of tropical restored areas. In this chapter, the biological attributes proposed by Brazilian researchers to measure the success of restoration projects will be compared with those attributes often used to describe and predict vegetation dynamics and ecological trajectories of restored systems compiled in the previous chapter. It is expected that there will be a large overlap between the two data sets. The description of the mathematical model proposed by the workgroup was not the target of this thesis, but can be found in the Annex 2 of this thesis. 78 METHODS The 1st Workshop about successional trajectories of restored ecosystems was organized by the Center for Technologies and Recovery of Ecosystems (NUTRE), a project supported by the Brazilian Oil Company (PETROBRAS) through its research center (CENPES) in partnership with the Federal University of Rio de Janeiro. The project was conceived in 2004 and the main goal was to diagnose environmental damage and to structure recovery actions through an articulated expert network. The workshop was held in Rio de Janeiro Botanical Gardens and NUTRE, both located in the city of Rio de Janeiro. It gathered ten Brazilian leading experts in the fields of ecological restoration, ecological modelling and vegetation dynamics. It also had the presence of Petrobras’s and NUTRE’s technical staff (Appendix 1 of this chapter). The event was designed to allow brainstorming sessions followed by synthesis meetings. During the brainstorming sessions were discussed issues related to the nature and scope of predictive models, their applicability in different biomes, and possible biotic and abiotic variables of responses (Appendix 2 of this chapter). The results of the 1st Workshop about successional trajectories of restored ecosystems were compiled and reported firstly as a scientific report, and secondarily as scientific papers. One paper addresses the ecological model proposed by Brazilian researchers (see Annex 2 of this thesis) and the other addresses the biological variables (this chapter). 79 RESULTS A list of 36 biological attributes was proposed during the 1st Workshop about successional trajectories of restored ecosystems to assess Brazilian restoration initiatives in different biomes (Table 1). Among those, 59% (n=21) were speciesspecific parameters mainly associated with Persistence, 22% (n=8) were functional attributes, 14% (n=5) were structure community attributes, and 6% were diversity attributes (n=2). Regarding the data sources, more than half of species-specific attributes were obtained from relevant literature (n=12, 57%). Structural attributes and diversity attributes were essentially from empirical origins. Functional attributes were obtained from empirical measurements or bibliographical consultation. Biological attributes proposed by Brazilian scientists in restoration efforts were included among those attributes used in pure and applied studies to describe and predict vegetation dynamics and ecological trajectories (Table 2). However, with respect to species-specific attributes the overlap was low, 11% (n=9) and 30% (n=17) for “Establishment” and “Persistence” attributes respectively. Among “Structural”, “Diversity” and “Environmental drives” attributes, the overlap was 31% (n=16), 33% (n=3) and 20% (n=5) respectively. 80 Table 1: Biological attributes frequently used by Brazilian researchers to evaluate the success of restoration projects implemented in different biomes. This list is the result of the 1st Workshop about successional trajectories of restored ecosystems (August 18-22, 2008), Rio de Janeiro, Brazil. Legend: (P) – Persistence; (D) – Dispersion, (E) – Establishment. Species-specific parameter Source Data type Potential height (P) Herbarium/bibliographic Continuous Longevity (P) Bibliographic Discrete Maximum diameter at breast height (P) Empirical Continuous Dispersion syndrome (D) Bibliographic Categorical Growth rate (P) Empirical/bibliographic Categorical Wood density (P) Bibliographic Continuous Nitrogen fixation (P) Bibliographic Categorical Deciduousness (P) Empirical Categorical Leaf width (P) Empirical Continuous Leaf length (P) Empirical Continuous Leaf shape (P) Bibliographic Categorical Pollination syndrome (E) Bibliographic Categorical Diaspore size (E) Bibliographic Continuous/categorical Seed size (E) Bibliographic Continuous/categorical Seed weight in grams (E) Empirical Continuous Habit (P) Empirical/bibliographic Categorical Seed longevity (E) Bibliographic Categorical Regeneration strategy (P) Empirical/bibliographic Categorical Tolerance to adverse conditions (P) Bibliographic Categorical Shade tolerance (P) Bibliographic Categorical 81 Table 1. continued… Reproductive system (P) Bibliographic Categorical Total basal area Empirical Continuous Total density Empirical Discret Structure sizes Empirical Categorical Total leaf area index Empirical Continuous Invasive grassland coverage Empirical Continuous Richness Empirical Categorical Equity Empirical/bibliographic Continuous Proportion of native seedlings Empirical/bibliographic Categorical Presence of nodulation Empirical Categorical Inventory of litter Empirical/bibliographic Continuous Litter deposition Empirical/bibliographic Continuous Litter moisture Empirical Continuous Percentage of soil exposed Empirical Continuous pH Empirical/bibliographic Continuous Soil organic matter Empirical/bibliographic Continuous Structure attributes Diversity attributes Functional attributes 82 Table 2: Biological attributes frequently used as input and output of ecological models applied to describe and predict vegetation dynamics and ecological trajectories. This list is the result of the previous chapter article review. Attributes followed by asterisk are frequently used by Brazilian researchers to evaluate the success of restoration projects implemented in different biomes. Legend: (P) – Persistence; (D) – Dispersion, (E) – Establishment. Species-specific parameters (n=34) Seed dispersal distance (D) Seed production (D) Dispersal period (D) Dispersal syndrome (D)* Seed mass (E)* Seed longevity (E)* Diaspore size (E)* Seed size (E)* Germination rate (E) Seedling establishment rate (E) Seedling growth rate (E) Seedling survival rate (E) Seedling mortality rate (E) Sprouting capacity (E) Seed fecundity rate (E) Seedling density (E) Pollination syndrome (E)* Longevity (P) Size (P)* 83 Table 2: continued... Age (P) Basal area (P) Growth rate (P)* Survival rate (P) Photosynthetic productivity (P) Ability to fix nitrogen (P)* Mortality rate (P) Stress tolerance (P)* Biomass (P) Density (P) Leaf parameters (P)* Allometric parameters (P) Wood density (P) Phenology (P) Crown parameters (P) Structure attributes (n=16) Biomass Crown class Crown radii Diameter Height Canopy diameter Basal area* Cover Dominance 84 Table 2: continued... Density* Wood density Age structure Size structure* Leaf area index* Invasive species cover* Vertical stratification Diversity attributes (=3) Species composition* Species richness Diversity index Environmental drivers (n=5) Edaphic conditions* Climatic conditions Topography Disturbance type Growing season 85 DISCUSSION A wide range of methodologies for the establishment of criteria and indicators of restoration success can be found in the literature. Kearns & Barnett (1998) proposed a field procedure called “Ecosystem Function Analysis” based on easy to measure and scientifically credible ecosystem indicators. Silveira (2012) proposed a methodology for assessment and monitoring restoration success based on low cost, legal criteria and literature recommendations. Fonseca (2011) proposed the development of indicators on the perspective of the paradigm of ecological integrity, considering three attributes ecosystem: composition, structure and ecological processes. Herrick et al. (2006) elaborated an approach based on the combination of soil and vegetation indicators for monitoring restoration success of arid and semi-arid upland ecosystems. Nevertheless, despite efforts aiming to evaluate success, the lack of appropriated monitoring data and its reporting, and the uncertainty regarding the definition about successful restoration represents a hindrance to the evaluation of Ecological Restoration effectiveness as an applied science. There is also a need to compile data about when and why projects have succeeded (Suding 2011). Besides that, there is another important gap knowledge that must be considered. Some especies-specifics attributes are known for a few species, and even if this information exists, it is not always included in any published ecological research or data base (Knevel et al. 2003). According to Kleyer et al. 2008 knowledge about species traits is growing, especially in Europe. However, this information remains scattered over many sources, not always integrated. This kind of gap constitute an important point of fragility of sciences that deal with vegetation dynamics and the description of ecological trajectories, associated to the difficulty to choose the adequate ones to simulate, predict and project vegetation states. In fact, results found here showed that species trait, mainly associated to persistence and 86 establishment, were not generally applied by Brazilian researches. This can be a reflection of the lack of tropical species-specific information. Although not exhaustive, the proposed list of biological attributes frequently used by Brazilian researchers to assess restoration success in different biomes shows a overlap with biological attributes used to describe and predict vegetation dynamics in the context of the ecological studies. This overlap can be seen as an opportunity to integrate dataset bases originated from monitoring of ecological studies and restoration initiatives outputs. This fact contributes to a better understanding of restoration success and better support management actions, and can also contribute to the generalization of predictive tools used to guide restored systems trajectories. However, there is an important need for further test and to validate the sensitivity of those attributes to changes in the trajectory of the ecosystem. According to Vallauri et al. (2005) the set indicators used to assess restoration success should be agreed upon and then tested to reflect their evolution. 87 Appendix 1. Participants of the 1st Workshop about successional trajectories of restored ecosystems (August 18-22, 2008), Rio de Janeiro, Brazil. General Coordination Fabio Rubio Scarano Botanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro Antônio C.G. Melo Forestry Institute of São Paulo (IF), São Paulo Enio Egon Sosinski Junior State University of Campinas (UNICAMP), São Paulo Giselda Durigan Forestry Institute of São Paulo (IF), São Paulo Gislene Maria da Silva Ganade University of the Sinos Valley (UNISINOS), Rio Grande do Sul Luiz Roberto Zamith Coelho Leal Parks and Gardens Foundation, (FPJ), RJ Guest Researchers Marcia Cristina Mendes Marques Federal University of Paraná (UFPR), Paraná Pablo J. F. Pena Rodrigues Botanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro Sergio Miana de Faria The Brazilian Agricultural Research Corporation (EMBRAPA), Rio de Janeiro Tania Sampaio Pereira Botanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro Valério De Patta Pillar Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul Vera Lex Engel State University of Júlio de Mesquita Filho (UNESP), São Paulo Danielle Justino Capossoli National School of Tropical Botany (ENBT), Rio de Janeiro Postgraduate students Jerônimo B. Barreto Sansevero National School of Tropical Botany (ENBT), Rio de Janeiro Mário Luís Garbin Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 88 Appendix 2. Schedule of the 1st Workshop about successional trajectories of restored ecosystems (August 18-22, 2008), Rio de Janeiro, Brazil. Monday Tuesday Wednesday Thursday Friday Time 18th august 19th august 20th august 21th august 22th august (NUTRE) (JBRJ) (JBRJ) (JBRJ) (NUTRE) Entrepreneurs: experiences Group A and B: 09:00 – 10:30 Suggestions, criticisms and expectations Biotic variables Guided visit to Rio de 10:30 – 10:50 Arrivals Coffee break Coffee break Janeiro Botanical Coffee break Garden Researchers: experiences and Future directions, work 10:50 – 12:00 Plenary session expectations schedule 12:00 – 13:30 Lunch Lunch Lunch Lunch Lunch 13:30 – 14:00 NUTRE project Synthesis Synthesis Final session History and perspectives of Group A: 14:00 – 15:00 ecological Nature Group A and B: restoration in and scope ecological model Group A and B: Brazil of Gruop B: Biomes development Abiotic variables Use of predictive ecological models models in Departures 15:00 – 16:00 Restoration Ecology 16:00 – 16:20 Coffee break Coffee break Coffee break Coffee break Presentation of Group A and B: 16:20 – 18:00 the workshop Plenary session Plenary session ecological model agenda development NUTRE: Federal University of Rio de Janeiro (UFRJ) - campus Cidade Universitária – Rio de Janeiro; JBRJ: Research Institute of Rio de Janeiro Botanical Garden – Rio de Janeiro. 89 REFERENCES Doren, R.F., Trexler, J.C., Gottlieb, A.D. & Harwell, M.C. 2009. Ecological indicators for system-wide assessment of the greater everglades ecosystem restoration program. Ecological Indicators, 9s: s2-s16. Fonseca, V.H.C. 2011. Seleção de indicadores ecológicos para avaliação de planos de restauração de áreas degradadas. Universidade Federal de São Carlo. 86p. Giannini, T.C., Siqueira, M.F., Acosta, A.L., Barreto, F.C.C., Saraiva, A.M. & Alves dos Santos, I. 2012. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia 63: 733-749. Herrick, J.E., Schuman, G.E. & Rango, A. 2006. Monitoring ecological processes for restoration projects. Journal for Nature Conservation, 14: 161-171. Jorgensen, S.E. & Bendoricchio, G. 2001. Fundamentals of Ecological Modelling. Elsevier. 530 p. Kearns, A. & Barnett, G. 1998. Use of ecosystem function analysis in the mining industry. In: Proceedings of Workshop on Indicators of Ecosystem Rehabilitation Success. Eds. Asher, C.J. & Bell, L.C. pp. 31-46. Kentula, M.E. 2000. Perspectives on setting success criteria for wetland restoration. Ecological Engineering, 15: 199–209. Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P., Thompson, K., Sonnenschein, M., Poschlod, P., van Groenendael, J.M., Klimes, L., Klimesova, J., Klotz, S., Rusch, G. M., Hermy, M., Adriaens, D., Boedeltje, Beatrijs Bossuyt, G., Gent, U., Dannemann, A., Endels, P., Goetzenberger, L., Hodgson, J.G., Jackel, A-K., Kuehn, I., Kunzmann, D., Ozinga, W.A., Roemermann, C., Stadler, M., Schlegelmilch, J., Steendam, H.J., Tackenberg, O., Wilmann, B., Cornelissen, J.H.C., Eriksson, O., Garnier, E. & Peco, B. 2008. The LEDA Traitbase: a database 90 of life-history traits of the Northwest European flora. Journal of Ecology, 96 (6): 1266-1274. Knevel, I.C., Bekker, R.M., Bakker, J.P. & Kleyer, M. 2003. Life-history traits of the Northwest European flora: The LEDA database. Journal of Vegetation Science, 14: 611-614. Le, H.D., Smith, C., Herbohn, J. & Harrison, S. 2012. More than just trees: Assessing reforestation success in tropical developing countries. Journal of Rural Studies, 28: 5-19. Vallauri, D., Aronson, J., Dudley, N. & Vallejo, R. 2005. Monitoring and Evaluating Forest Restoration Success. In: Forest Restoration in Landscapes. Ed. Mansourian, S., Vallauri, D., Dudley, N. Springer, New York. Pg. 150-158. Rodrigues, R.R., Lima, R.A.F., Gandolfi, S. & Nave, A.G. 2009. On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation, 142 (6): 1242-1251. Silveira, C.J.A. 2012. Proposta de indicadores para a avaliação de projetos de restauração de ecossistemas no Alto Jequitinhonha. Dissertação de Mestrado. Universidade Federal dos Vales do Jequitinhonha e Mucuri. 130 p. Siqueira, M.F.; Durigan, G., de Marco Júnior, P., Townsend, P.A. 2009. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. Journal for Nature Conservation 17: 25-32. Suding, K.N. 2011. Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead. Annual Review of Ecology, Evolution, and Systematics, 42: 465–487. 91 CAPÍTULO III PREVISÃO DE ESTADOS FUTUROS DE FLORESTAS ARTIFICIAIS DE IGAPÓ (PORTO TROMBETAS, PARÁ, BRASIL) 92 RESUMO (Previsão de estados futuros de florestas artificiais de igapó - Porto Trombetas, Pará, Brasil) Entre os anos de 1979 e 1989 a Mineração Rio do Norte lançou cerca de 24 milhões de toneladas de rejeito oriundo do beneficiamento do minério de bauxita na região noroeste do lago Batata, o que afetou aproximadamente 30% da sua superfície causando a morte da vegetação local, e, conseqüente a desestruturação dos habitats para a fauna e flora. A partir de 1993, a empresa deu início ao programa de reabilitação do lago Batata, com o intuito de sistematizar o plantio de espécies típicas de igapó sobre o rejeito de bauxita. Este estudo teve como objetivo analisar a similaridade florística e o processo de reabilitação das florestas artificiais de igapó plantadas nas áreas marginais do lago Batata (Porto Trombetas, Pará), e prever, através de análise funcional e de cadeia de Markov, seus potenciais estados futuros. Para tanto, foram selecionadas áreas com florestas artificiais de diferentes idades (três áreas com plantios de cinco anos, três áreas com plantios de dez anos e três áreas com plantios de quinze anos) e três áreas de florestas naturais de igapó, consideradas controles. Em cada uma das áreas selecionadas a vegetação foi amostrada através de dez quadrados de 25 m2 distribuídos ao longo de quatro de transectos. Dentro de cada quadrado, todas as plantas foram medidas (altura, diâmetro da base e cobertura da copa). Para a análise da similaridade florística entre as florestas artificiais e florestas naturais de igapó foi construída uma matriz de similaridade considerando a abundância das espécies amostradas. A avaliação do processo de reabilitação se deu através da comparação dos indicadores ecológicos de sucessos por análise de variância hierarquizada. A Análise de Componentes Principais foi empregada para ordenar as áreas com florestas artificiais de distintas idades e florestas naturais de igapó em relação as variáveis biológicas de diversidade (riqueza de espécies), de estrutura vegetacional (altura, diâmetro, área basal, cobertura de copa e 93 densidade) e de processos ecossistêmicos (densidade e riqueza de regenerantes). A modelagem dos estados futuros dos plantios foi realizada com base na identificação de tipos funcionais de plantas ótimos, e a projeção futura da composição de tipos funcionais foi realizada segundo a cadeia Markoviana. Os resultados demonstraram similaridade florística entre as florestas artificiais e as florestas naturais de igapó e a existência de uma tendência à convergência de valores da floresta plantada em relação à floresta natural de igapó, com exceção da área basal média que apresentou valores menores e estacionários quando comparados aos das florestas de igapó naturais. A análise funcional identificou três tipos funcionais. A projeção da composição de tipos funcionais futura mostrou que a atividade de reabilitação no lago Batata não necessariamente conduzirá as florestas artificiais a estados similares àqueles encontrados nas florestas naturais de igapó após 175 anos. Palavras-chave: Trajetória ecológica, rejeito de bauxita, tipos funcionais de plantas. 94 ABSTRACT (Artificial wetland forests future states prediction - Porto Trombetas, Pará, Brasil) Between 1979 and 1989, the Mineração Rio do Norte disposed about 24 million tons of bauxite tailings in the northwestern portion of Batata Lake, which affected approximately 30% of its surface, and caused the supression of part of the local vegetation and consequent disruption of habitats for fauna and flora. Since 1993, the company initiated a rehabilitation program in Batata Lake, which systematized the planting of native wetland species on bauxite tailings. This study aimed to analize the floristic similarity and the rehabilitation process of artificial wetland forests planted in marginal areas of Lake Batata (Porto Trumpets, Pará), and, through functional analysis and Markov chain, predict its potential future states. For that, artificial forests with different ages were selected (three plantations with five years, three with 10 years and three with 15 years), and compared with three natural forest areas igapó, considered controls. Vegetation was sampled in ten 25 m2 plots distributed along four transects in each artificial and natural forest. Within each plot, all plants were measured (height, diameter of the base and canopy cover). For the floristic similarity analysis a similarity matrix considering the abundance of the species was constructed. The rehabilitation process evaluation was made through the comparison of ecological indicators through hierarchical analysis of variance. The Principal Component Analysis was used to sort the areas with artificial forests of diferent ages and natural igapó forests in relation to biological variables of diversity (richness), structure (height, diameter, basal area, canopy and density) and ecosystem process (density and richness of seedlings). The modeling of future states of plantations was based on the identification of optimal plant functional types, and future projection of functional types was performed according to the Markov chain. The results showed floristic similarity between the artificial forests 95 and natural igapó forests and the existence of a trend towards convergence of the planted forest in relation to natural forest igapó, with the exception of average basal area which showed lower values when compared to stationary and natural forests. Functional analysis identified three functional types. The projection of future functional types showed that activity of rehabilitation in Lake Batata not necessarily lead artificial forests to a state similar to that found in natural forests igapó after 175 years. Key words: Ecological trajectory, bauxite tailings, plant functional type. 96 INTRODUÇÃO4 A modelagem ecológica é uma ferramenta útil para o entendimento e projeção da dinâmica vegetacional, e inúmeros modelos já foram publicados para estes fins (Liu & Ashton 1995). Modelos ecológicos possuem a habilidade em capturar a realidade de sistemas em vias de recuperação, e neste sentido, seu uso no estudo de trajetórias ecológicas é promissor e pode gerar informações importantes no auxílio a tomadas de decisões (Anand & Desrochers 2004). A trajetória ecológica é o caminho de desenvolvimento do ecossistema ao longo do tempo, e no campo da Ecologia da Restauração, ela tem início com o ecossistema degradado, e culmina em um estado vegetacional desejável, que pode ser expresso em valores de referência. Na ausência de dados originados de monitoramentos de unidades amostrais permanentes, a trajetória ecológica pode ser avaliada através da substituição do espaço pelo tempo, ou seja, fazendo uso de sítios restaurados com diferentes idades, que representam diferentes estágios ao longo da trajetória sucessional de recuperação (Twilley et al. 1998). Ela é monitorada através de medidas seqüenciadas de diferentes variáveis ecológicas (SER 2004). Tais variáveis podem ser consideradas indicadores ecológicos quando são perfeitamente identificáveis, fáceis de medir e compreender, e representativas da condição do ambiente ou das tendências de mudança destas condições ao longo do tempo (Dale & Beyeler 2001). A aplicação da modelagem no estudo das trajetórias ecológicas pode gerar informações sobre o tempo necessário para obtenção de condições previamente estabelecidas, embasadas em valores dos sistemas de referência (Twilley et al. 1998). A 4 Capítulo formatado de acordo com as regras de publicação do periódico Restoration Ecology. Este capítulo testa o modelo matemático descrito no artigo Modeling the Success of Restoration in Tropical Ecosystems - Mário L. Garbin, Danielle J. Capossoli, Giselda Durigan, Vera L. Engel, Sergio M. de Faria, Gislene Ganade, Carla Madureira, Marcia C. M. Marques, Antônio C.G. Melo, Tania S. Pereira, Pablo J. F. P. Rodrigues, Jerônimo B. B. Sansevero, Fabio R. Scarano, Enio E. Sosinski Jr., Luiz R. Zamith & Valério P. Pillar, que encontra-se em etapa final de redação. (vide Anexo 2 desta tese). 97 aplicação de modelos ecológicos também contribui para o entendimento das trajetórias ecológicas de associadas ao sucesso dos projetos de reabilitação, principalmente naquelas situações em que a recuperação ambiental se torna particularmente difícil por lidar com ecossistemas sujeitos a condições ambientais severas (longos períodos de inundação e baixa disponibilidade de nutrientes). Este é o caso do esforço de rehabilitação de uma floresta artificial de igapó, plantada sobre áreas marginais do lago Batata que foram soterradas por rejeito de bauxita, e que permanecem expostas apenas durante o período de águas baixas (setembro-dezembro) (Dias et al. 2012). Sendo assim, a aplicação de algoritmos e modelos matemáticos constitui uma importante oportunidade para o fortalecimento do continuum que integra a base teórica ecológica com a vertente aplicada da restauração de ecossistemas. A expectativa é que haja uma retro-alimentação entre a teoria e a prática. Objetivos Este estudo tem como objetivos realizar o diagnóstico fitossociológico, avaliar o desempenho e prever através de análise funcional e cadeia de Markov os estados futuros das florestas artificiais plantadas nas áreas marginais do lago Batata (Porto Trombetas, Pará). Pretende-se responder às seguintes perguntas: A composição florística dos plantios é similar à composição florística dos regenerantes das áreas de plantios? A composição florística dos regenerantes presentes nas áreas de plantios é similar à composição florística das florestas naturais de igapó? Os atributos estruturais e de diversidade nas florestas artificiais de igapó alcançaram os valores dos atributos das florestas naturais de igapó? As florestas artificiais apresentarão atributos de estrutura similares às 98 florestas naturais de igapó? 99 MATERIAIS E MÉTODOS 1. Área de estudo Este estudo foi conduzido em áreas marginais do lago Batata (1º25’ e 1º35’S, 56º 15’ e 56º25’W), localizado no distrito de Porto Trombetas, município de Oriximiná, região oeste do Estado do Pára (Figura 1). O clima da região corresponde ao Am de Koppen, isto é tropical úmido de monções com precipitação excessiva durante alguns meses. A precipitação anual varia entre 2.500 a 3.000 mm e a temperatura média anual é de 26ºC. A estação chuvosa (precipitação média de 265 mm/m3) ocorre entre dezembro a maio, e a estação seca (precipitação média de 73 mm/m3) entre julho a outubro (Reis 2006). De acordo com a Mineração Rio do Norte, localizada no distrito de Porto Trombetas, a temperatura média anual da região onde está inserido o lago Batata é de 27ºC (mínimo média de 22ºC e máxima média de 33ºC), e a umidade relativa do ar cerca de 82%. O lago Batata está localizado à margem direita do rio Trombetas (Figura 1), bacia do médio rio Amazonas. Sua bacia de drenagem possui área aproximada de 271,6 km2 e perímetro de 72 km, e nela escoam 87 canais, regionalmente denominados igarapés. O complexo formado pelo rio Amazonas e seus tributários pertence à categoria dos rios de águas claras, que tipicamente possuem alta transparência, baixa quantidade de partículas em suspensão (matéria orgânica e inorgânica), pH variando de baixo a neutro e baixa disponibilidade de nutrientes (Dias et al. 2012). Ele está sujeito a grandes variações sazonais do nível da água. O pulso hidrológico determina uma intensa variação no nível fluviométrico do lago Batata ao longo do ano, o que lhe confere grande oscilação entre o caráter lêntico (durante a época de águas baixas) e lótico (durante a época de águas altas) (Bozelli et al. 2000). Na fase de águas altas, o volume do lago Batata e do rio Trombetas se expande sobre suas planícies de inundação, 100 promovendo grande interação entre o ambiente terrestre e o ambiente aquático, uma vez que este dois corpos hídricos encontram-se constantemente conectados. 101 (a) (b) Figura 1: Bacia Hidrográfica Amazônica. (a) Localização do rio Trombetas (distrito de Porto Trombetas, município de Oriximiná, Estado do Pará) na bacia hidrográfica do médio Amazonas; (b) Localização do lago Batata no sistema rio-planície de inundação do rio Trombetas (1º25’ e 1º35’S, 56º 15’ e 56º25’W). Os pontos vermelhos indicam a região impactada pelo rejeito da bauxita. A seta indica o local onde este estudo foi conduzido (Fontes: Estrada 2007). 102 2. Processo de degradação e recuperação ecológica do lago Batata Entre os anos de 1979 e 1989, a Mineração Rio do Norte lançou cerca de 24 milhões de toneladas do rejeito oriundo do beneficiamento do minério de bauxita sobre o sedimento natural da região noroeste do lago Batata. O fato ocasionou o assoreamento de cerca de 30% da sua superfície, o que corresponde à 630 ha (Lapa 2000), e desencadeou várias alterações nos processos ecológicos do sistema, que persistem até os dias atuais. A espessa camada de rejeito, com 4-6 metros de profundidade, causou a assoreamento de áreas de floresta inundável, a formação de novas áreas de igapó que surgiram a partir do assoreamento das áreas permanentemente inundadas, formação de novo substrato sobre o sedimento natural em cerca de 30% do lago, e aumento dos valores de sólidos em suspensão na coluna d’água. O rejeito de bauxita consiste em 75% de argila, 21% de lama, 3% de areia fina, e 1% de areia grossa. Já o solo do igapó não impactado é composto por 49% de argila, 37% de lama, e 13% areia fina. A exposição freqüente e prolongada do rejeito de bauxita à luz solar promove a desidratação e consolidação do substrato (Dias et al. 2012). A presença de partículas em suspensão na coluna d’água provoca intenso efeito físico de bloqueio da passagem da luz com aumento na turbidez. O assoreamento ocasionou também a expansão da área marginal do lago sobre uma área originalmente inundável, criando um novo ambiente a ser colonizado. Estas áreas se caracterizam por apresentar substrato pobre em matéria orgânica, resultante da presença das argilas e, portanto, potencialmente desfavoráveis ao estabelecimento de comunidades vegetais. Esta situação é única no Brasil e no mundo, e representa uma oportunidade importante para o estudo da sucessão ecológica em resposta às alterações ambientais (Esteves 2000). 103 A partir de 1993 a Mineração Rio do Norte deu início a um programa de recuperação ambiental do lago Batata, cuja principal ação foi o plantio de espécies típicas de igapó sobre o rejeito de bauxita. Os plantios foram realizados em diferentes porções da área impactada do lago de forma aleatória. Espécies de igapó foram plantadas em linhas com espaçamento de 1m x 1m, 1,5m x 1,5m, 1,6m x 1,6m, 2,0m x 2,0m (Figura 2). A composição de espécies e freqüência variou entre os plantios em função da disponibilidade de sementes e produção de mudas no Horto da MRN. Atualmente, os plantios já cobrem praticamente toda a área impactada e apenas ações complementares para substituição dos indivíduos que morrem são implementadas. Além do impacto ambiental, a imagem da empresa também foi comprometida pela presença do passivo ambiental. Atualmente a companhia possui um dos maiores custos ambientais dentre as empresas que atuam no ramo da mineração no Estado do Pará, e a recuperação do lago Batata e de suas áreas marginais representa uma grande parcela destes gastos (Enríquez 2009). A partir deste episódio a empresa modernizou seus métodos de descarte, sendo considerada atualmente uma referência na operação de mineração sustentável (MNR 2009). 104 (a) (b) (a) (c) (a) Figura 2: Processo de reflorestamento realizado em 2004 em área marginal do Lago Batata Porto Trombetas, Pará. (a) Abertura de covas; (b) Plantio de mudas; (c) Mudas plantadas. 105 3. Áreas de estudos Para a realização deste estudo foram selecionadas áreas reflorestadas de diferentes idades e áreas de florestas naturais. Foram consideradas três áreas com reflorestamentos de cinco anos (plantio de 1998 mensurado em 2003, plantio de 2001 mensurado em 2006, e plantio de 2003 mensurado em 2008), três áreas com reflorestamentos de dez anos (plantio de 1994 mensurado em 2003, plantio de 1996 mensurado em 2006, e plantio de 1998 mensurado em 2008), três áreas de reflorestamentos de quinze anos (plantio de 1994 mensurado em 2009, plantio de 1995 mensurado em 2010 e plantio de 1997 mensurado em 2010), e três áreas de florestas naturais de igapó (mensuração em 2003, 2006 e 2010) (Tabela 1). É importante ressaltar que os plantios estudados permanecem inundados durante o período de águas altas. A inundação pode durar de quatro a oito meses dependendo do ano e da topografia da área onde estão localizados. 106 Tabela 1. Descrição das áreas de estudos localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Área Ano da Nº inicial de Área amostrada Tratamento Código Espaçamento aforestada mensuração indivíduos (ha) Plantio de 1994 2003 10 anos DI 1x1 e 1,5x1,5 25 e 11 3,5 Plantio de 1994 2009 15 anos QI 1x1 e 1,5x1,5 25 e 11 3,5 Plantio de 1995 2010 15 anos QII 2x2 6 7,0 Plantio de 1996 2006 10 anos DII 1,5x1,5 11 10,0 Plantio de 1997 2010 15 anos QIII 1,6x1,6 10 7,0 Plantio de 1998 2003 5 anos CI 1,6x1,6 10 8,5 Plantio de 1998 2008 10 anos DIII 1,6x1,6 10 8,5 Plantio de 2001 2006 5 anos CII 1,5x1,5 11 10,5 Plantio de 2003 2008 5 anos CIII 1,5x1,5 11 10,0 Igapó natural 2003 Referência RI Igapó natural 2006 Referência RII Igapó natural 2010 Referência RIII - Nº de mudas 17,660 17,660 21,400 36,530 27,956 33,229 33,229 46,749 42,718 - Nº de espécies 18 18 25 28 24 22 22 22 30 - 107 4. Amostragem da vegetação A amostragem da vegetação foi realizada através de transectos (quatro por área) cujos comprimentos variaram entre 50 m a 100 m de acordo com a declividade e distância em relação a áreas permanentemente inundadas. A distância entre transectos em cada área variou de 5 a 10 metros. Ao longo de cada transecto foram implantados dez parcelas de 25 m2, totalizando uma área amostrada de 0,1 ha por plantio. Devido à inclinação natural do terreno, os transectos foram posicionados perpendicularmente à linha de vegetação natural, permitindo a amostragem da vegetação em diferentes zonas topográficas. Dentro de cada parcela, todos os indivíduos plantados foram medidos (altura, diâmetro da base e cobertura da copa) (Figura 3). Os indivíduos estabelecidos através de replantios foram excluídos das análises. A regeneração natural foi quantificada em dois quadrados de 1 m2 instalados em extremidades opostas das parcelas de 25 m2. Os regenerantes foram identificados e mensurados (altura e diâmetro da base). Nas áreas de igapó natural, o mesmo delineamento amostral foi utilizado. Nas parcelas de 25 m2 foram mensurados os indivíduos com altura igual ou superior a 1,50 m. Nos quadrados de 1 m2 foram mensurados todos os indivíduos regenerantes. A cobertura da copa de cada indivíduo foi obtida através do cálculo da área da elipse, que teve como base a medida do maior e menor diâmetro da copa. Para o cálculo da sobrevivência das mudas plantadas, foi estimado um número inicial de indivíduos nas parcelas de acordo com os espaçamentos utilizados. Para o cálculo da área foliar, área foliar específica, massa foliar e massa foliar específica foram selecionados cinco indivíduos das espécies mais abundantes nos plantios. Para cada indivíduo foram coletadas três folhas totalmente expandidas. Para 108 cada folha foi medido o peso fresco e tomada a medida de área com o auxílio de um scanner. O material foi depositado em uma estufa a 75°C por três dias. Após esse período foram realizadas as medidas de peso seco. 109 (a) (b) (c) (d) Figura 3: Equipe de campo realizando as medições dos indivíduos amostrados em plantios com 10 e 15 anos, localizados em áreas marginais do Lago Batata - Porto Trombetas, Pará. (a) Mensuração do maior e menor diâmetro da copa de indivíduo em plantio com 15 anos; (b) Mensuração do diâmetro de regenerante em parcela de regeneração em plantio com 15 anos; (c) Mensuração de altura de indivíduo em plantio com 10 anos; (d) Vista parcial do plantio com 10 anos. 110 5. Análise dos dados 5.1. Composição florística e estrutura fitossociológica das florestas artificiais e florestas naturais de igapó Os parâmetros fitossociológicos foram calculados com o software Mata Nativa 2 de acordo com Mueller-Dumbois & Ellenberg (1974) (densidade, dominância, valor de cobertura, valor de importância), Magurran (1988) (Indice de Shannon-Weaver) e Brower & Zar (1988) (Índice de Simpson). 5.2. Similaridade florística entre as florestas artificiais e florestas naturais de igapó A similaridade florística entre as florestas artificiais e florestas naturais de igapó foi determinada através da análise de agrupamentos. Primeiramente foi considerada a abundância total das espécies amostradas por áreas com plantios da mesma idade. Posteriormente a abundância das espécies amostradas em cada área de plantio e em cada floresta natural de igapó foi considerada separadamente. Em ambas análises foram construídas matrizes de similaridades considerando a abundância das espécies amostradas (n=79). A medida de similaridade empregada foi a média de agrupamentos por médias não-ponderadas (UPGMA), e o coeficiente de distância considerado foi o de Bray-Curtis. Essas análises foram realizadas por meio do software PAST versão 2.17c (Hammer et al. 2001), e os seus resultados foram expressos na forma de dendrogramas. 5.3. Avaliação do processo de reabilitação do lago Batata através de indicadores ecológicos O processo de reabilitação das áreas marginais do lago Batata foi conduzido através do acompanhamento temporal de indicadores ecológicos. Segundo Dale & 111 Beyeler (2001) indicadores ecológicos compreendem variáveis de fácil identificação, mensuração e compreensão, e quando aplicados à ecologia da restauração, permitem o monitoramento de alterações na biodiversidade e processos ecológicos do ecossistema em vias de restauração, tendo como referência um estado desejável (de Moraes et al. 2010, de Oliveira 2011). Neste trabalho, foram considerados como indicadores ecológicos as variávies biológicas relacionadas à estrutura vegetacional (altura, diâmetro, área basal, cobertura de copa e densidade), diversidade de espécies (riqueza de espécies) e processos ecológicos (densidade e riqueza de regenerantes). As florestas naturais de igapó foram consideradas sistemas de referências (Ruiz-Jaen & Aide 2005, de Moraes et al. 2010). A análise de variância hierarquizada foi aplicada para comparar os valores das variáveis biológicas supracitadas entre as florestas artificiais e naturais de igapó, considerando as variações entre as diferentes idades dos plantios (hipótese nula: os valores médios dos variáveis biológicas não variam entre as distintas idades) e entre as diferentes áreas amostradas (hipótese nula: os valores médios dos variáveis biológicas não variam entre as áreas amostradas) (“Área” aninhada à “Idade”). O Teste de Tukey modificado para amostras com números diferentes foi utilizado para comparar as múltiplas médias, a 5% de significância. Todos os dados foram transformados (Log [x+1]) para obtenção da normalidade (Zar 1999). A análise foi realizada no pacote estatístico Statistica 6.0. Foram excluídas da análise as parcelas vazias, isto é, aquelas cuja mortalidade de indivíduos plantados foi de 100% no caso dos plantios, ou que não apresentaram nenhum indivíduo no caso das florestas naturais de igapó. Para a análise da cobertura de copa foram excluídos os indivíduos cujas projeções de copas não puderam ser mensuradas devido ao alto grau de intercepção das copas, fato que ocorreu predominantemente nas florestas naturais de igapó. Para a análise da sobrevivência, as 112 áreas de igapó natural também foram excluídas. Os indivíduos regenerantes foram analisados separadamente. A análise de componentes principais, com base na matriz de correlação, foi empregada para ordenar as áreas com florestas artificiais de distintas idades e florestas naturais de igapó em relação às variáveis biológicas de estrutura vegetacional (altura, diâmetro, área basal, cobertura de copa e densidade), de diversidade de espécies (riqueza de espécies), e de processos ecológicos (densidade e riqueza de regenerantes). Os dados foram transformados (Log [x+1]). A análise foi realizada no software PAST versão 2.17c (Hammer et al. 2001). 5.4. Modelagem de estados futuros com base em tipos funcionais de plantas A modelagem dos estados futuros dos reflorestamentos conduzidos nas margens do lago Batata foi realizada com base no modelo matemático proposto por Garbin et al. (em preparação – vide Anexo 2). Esta ferramenta preditiva foi concebida com o intuito de descrever e prever as trajetórias sucessionais de esforços de restauração ecológica de ecossitemas tropicais com base em tipos funcionais de plantas (Garbin et al. em preparação). De acordo com Pillar & Sosinsky (2003), os tipos funcionais ótimos são grupos de plantas que, independente das relações filogenéticas, apresentam um conjunto de características similares. Sendo assim, tais organismos respondem de forma similar à determinadas variáveis ambientais. A alta diversidade de espécies encontrada nos ambientes tropicais pode representar uma limitação à modelagem matemática por requerer a construção de modelos complexos. Desta forma, o emprego da abordagem baseada em tipos funcionais é uma maneira de simplificar o sistema modelado, fato que facilita o entendimento sobre a estrutura e funcionamento do mesmo. 113 O modelo matemático proposto é composto por seis passos independentes. No entanto, nesta tese, apenas os dois primeiros passos serão aplicados. Eles serão descritos de forma sucinta. Informações mais detalhadas podem ser obtidas em Pillar (1999), Pillar & Sosinski (2003), Pillar et al. (2009), Carlucci et al. (2012). 5.4.1. Primeiro passo: seleção dos atributos ótimos e definição dos tipos funcionais de plantas das florestas artificiais O primeiro passo envolveu três etapas: a delimitação de critérios para a inclusão de espécies, a escolha dos atributos a serem mensurados, e a elaboração de três matrizes que contemplam os dados de entrada do modelo (Fonseca & Ganade 2001, Pillar 1999). Os critérios utilizados para a inclusão de espécies na modelagem dos estados futuros foram respectivamente o valor de importância e a disponibilidade de dados acerca dos atributos espécie-específicos. Com base nos dados fitossociológicos, foram selecionadas as cinco espécies com os maiores valores de importância nas florestas artificiais e naturais de igapó. Do total de doze espécimes, quatro foram exclusos por ausência de dados secundários ou dados foliares (Gladonia Griseb., Leopoldina pulchra Mart., Ouratea Aubl. e Parkia pendula (Willd.) Benth. ex Walp.). As oito espécies remanescentes podem ser observadas na Tabela 2. A escolha dos atributos espécie-específicos foi baseada nos atributos listados durante o 1º Workshop sobre trajetórias sucessionais de ecossistemas restaurados (vide capítulo anterior desta tese). Estes atributos foram compilados através de consultas ao Banco de Dados da Flora Brasileira (JABOT) e bibliografia especializada, com exceção dos atributos foliares (largura foliar, altura foliar, área foliar específica e massa foliar específica), obtidos através de medidas empíricas (Tabela 2). Após a seleção das espécies e dos atributos espécies-específicos, as três matrizes 114 de dados de entrada foram elaboradas. A Matriz B descreve as espécies por atributos espécie-específicos (Tabela 2). A Matriz W descreve a densidade dos indivíduos por áreas (Tabela 3). A Matriz E descreve as comunidades vegetais por áreas (Tabela 4). As análises foram realizadas no software SYNCSA for Windows - Version 2.6.9 (©V.Pillar 1992-2010). Os tipos funcionais de plantas foram definidos pelo método de agrupamento UPGMA baseado no Índice de Similaridade de Gower. A Distância de Cordas foi utilizada como função de semelhança entre as comunidades. Durante a seleção dos atributos ótimos, tanto os padrões de convergência como os de divergência foram utilizados como critérios de classificação. 115 Tabela 2: Atributos espécie-específicos compilados para as oito espécies consideradas na modelagem dos estados futuros dos reflorestamentos localizados em áreas marginais do Lago Batata - Porto Trombetas, Pará. Estes dados foram utilizados na elaboração da Matriz B. Al Di Lf Af Ae Me Ts An Zo Hi Ti Fn (m) (cm) (cm) (cm) (cm2g-1) (g-1cm2) (cm2) Acosmium nitens 30 35 77,06 36,51 939,32 0,0010 1 0 0 * 1 1 Couepia paraensis 20 50 10,43 5,62 72,83 0,0171 0 1 0 12 1 0 Couepia paraensis subsp. glaucescens 19 46 22,32 11,49 125,27 0,0084 0 1 0 6 1 0 Dalbergia inundata 7 15 53,86 19,21 3499,99 0,0000 0 0 1 1 1 1 Eschweilera blanchetiana 33 32 13,86 7,23 103,02 0,0101 0 1 0 3 * 1 Genipa spruceana 30 50 16,05 6,56 96,70 0,0107 0 1 0 4 1 * Macrolobium acaciifolium 40 60 59,50 22,82 921,28 0,0011 0 1 0 15 1 0 Swartzia polyphylla 30 60 73,87 31,75 681,59 0,0010 0 0 1 25 0 1 Legenda: Al – Altura máxima, Di – Diâmetro máximo, Lf – Largura foliar, Af – Altura foliar, Ae – Área foliar específica, Me – Massa foliar específica, An - Anemocoria, Zo Zoocoria, Hi - Hidrocoria, Ts – Tamanho da semente, Ti - Tolerância a inundação e Fn - Capacidade de fixar nitrogênio. An, Zo, Hi, Ti e Fn são dados dicotômicos (0 = ausência do atributo; 1 = presença do atributo). (*) Dados não encontrados na bibliografia consultada. 116 Tabela 3: Abundância das oito espécies consideradas na modelagem dos estados futuros dos reflorestamentos localizados em áreas marginais do Lago Batata - Porto Trombetas, Pará. Estes dados foram utilizados na elaboração da Matriz W. Igapó 5 anos 10 anos 15 anos natural Acosmium nitens 77 128 36 21 Couepia paraensis 82 114 25 84 Couepia paraensis subsp. glaucescens 5 48 19 0 Dalbergia inundata 109 30 6 10 Eschweilera blanchetiana 67 84 18 8 Genipa spruceana 115 62 26 0 Macrolobium acaciifolium 0 3 67 4 Swartzia polyphylla 3 27 9 50 117 Tabela 4: Variáveis biológicas (estrutura vegetacional, diversidade de espécies e processos ecológicos) utilizadas na modelagem dos estados futuros dos reflorestamentos localizados em áreas marginais do Lago Batata - Porto Trombetas, Pará. Estes dados foram utilizados na elaboração da Matriz E. Alt (m) Dia (cm) Cob (%) Ab (m2.ha-1) Den (ind.ha-1) Riq Der (ind.ha-1) Rir 5 anos 1,20 1,79 6,33 2,62 3060 33 16567 25 10 anos 2,41 3,88 42,47 13,14 2807 34 21149 32 15 anos 3,09 5,39 33,80 9,68 1473 22 24583 26 Igapó Natural 4,22 10,73 95,98 99,26 2193 54 28049 39 Legenda: Alt – altura média do estande (m), Dia – diâmetro médio do estande (cm), Cob – cobertura média do estande (%), Ab – área basal média do estande (m2.ha-1); Den – densidade média de indivíduos (ind.ha-1), Riq - riqueza máxima do estande, Der – densidade média de regenerantes (ind.ha-1), Rir - riqueza máxima de regenerantes do estande. 118 5.4.2. Segundo passo: previsão dos estados futuros No segundo passo da modelagem, os estados futuros das florestas artificiais foram previstos através da cadeia Markoviana. Esta análise foi realizada no software MULTIV v.2.95β com base na abundância dos tipos funcionais de plantas das florestas artificiais resultante da análise funcional descrita no passo anterior. Como dado de entrada, foi considerada a abundância relativa dos tipos funcionais de plantas nas florestas artificiais, organizados na Matriz X. A abundância dos tipos funcionais de plantas das florestas naturais de igapó não foi inclusa nesta análise. Foram considerados três estados (floresta artificial com cinco anos, floresta artificial com dez anos e floresta artificial com quinze anos) e dois passos. O intuito desta etapa foi verificar o momento em que a comunidade permanece no mesmo estado estacionário (Orloci et al. 1993). Após determinar a composição dos tipos funcionais de plantas do estado estacionário (estabilização), a mesma foi comparada com a composição das florestas naturais de igapó (referência) através do Teste do Qui-quadrado. Esta análise foi conduzida no pacote estatístico Statistica 6.0. 119 RESULTADOS 1. Composição florística e estrutura fitossociológica O levantamento fitossociológico realizado nas florestas artificiais e florestas naturais de igapó localizadas nas margens do lago Batata registrou, em 1,2 hectares, o total de 2,562 indivíduos adultos, distribuídos em 21 famílias, 47 gêneros e 51 espécies. As famílias que apresentaram maior representatividade foram Fabaceae (19 espécies), Chrysobalanaceae (4 espécies), Euphorbiaceae (3 espécies), Malpighiaceae (3 espécies) e Myrtaceae (3 espécies) (Tabela 5). Nas florestas artificiais (cinco, dez e quinze anos), em 0,9 hectares foram registrados 2,063 indivíduos adultos, distribuídos em 18 famílias, 41 gêneros e 43 espécies. As famílias de maior representatividade foram Fabaceae (16 espécies), Chrysobalanaceae e Euphorbiaceae (3 espécies), Clusiaceae, Malpighiaceae, Myrtaceae, Rubiaceae e Sapotaceae (2 espécies respectivamente). Já nas florestas naturais de igapó foram registrados, em 0,3 hectares, 499 indivíduos adultos, distribuídos em 16 famílias, 51 gêneros e 54 espécies. As famílias de maior representatividade foram Fabaceae (16 espécies), Myrtaceae (3 espécies), e Clusiaceae, Chrysobalanaceae Euphorbiaceae, Malpighiaceae (2 espécies respectivamente). Dezesseis taxons não foram identificados. Dentre as espécies inventariadas, doze foram encontradas tanto nas florestas artificiais (cinco, dez e quinze anos) quanto nas florestas naturais de igapó (Acosmium nitens, Buchenavia oxycarpa, Couepia paraensis, Dalbergia inundata, Eschweilera blanchetiana, Glandonia spp., Ormosia excelsa, Panopsis rubescens, Parkia pendula, Swartzia polyphylla, Tabebuia barbata e Zygia cauliflora), treze espécies ocorreram apenas nas florestas artificiais (Burdachia prismatocarpa, Cassia ssp., Catostemma albuquerquei, Chrysophyllum oppositum, Couepia paraensis subsp. glaucescens, Genipa spruceana, Hevea brasiliensis, Martiodendron parviflorum, Miconia ssp., 120 Micropholis spp., Poraqueiba sericea, Simarouba spp. e Vatairea guianensis), e nove espécies estavam presentes apenas nas florestas naturais de igapó (Andira retusa, Calliandra spp., Dicypellium manausense, Leopoldinia pulchra, Licania bracteata, Ouratea, Psidium spp.1, Psidium spp.2 e Pterocarpus amazonicus). Com relação aos indivíduos regenerantes, o levantamento fitossociológico nas florestas artificiais e naturais registrou 1,351 indivíduos, distribuídos em 20 famílias, 34 gêneros e 39 espécies. As famílias de maior riqueza florística foram Fabaceae (14 espécies), Myrtaceae (5 espécies), Chrysobalanaceae (3 espécies), e Clusiaceae, Euphorbiaceae, Malphigiaceae e Rubiaceae (2 espécies respectivamente) (Tabela 6). Nas áreas de florestas artificiais foram registrados 891 indivíduos regenerantes, distribuídos em 18 famílias, 37 gêneros e 38 espécies. As famílias de maior riqueza florística foram Fabaceae (14 espécies), Chrysobalanaceae (3 espécies), Clusiaceae, Euphorbiaceae, Malpighiaceae, Myrtaceae e Rubiaceae (2 espécies respectivamente). Já nas áreas de igapó natural foram registrados 460 indivíduos regenerantes, distribuídos em 13 famílias, 24 gêneros e 28 espécies. As famílias de maior riqueza florística foram Fabaceae (11 espécies), Myrtaceae (5 espécies), e Malpighiaceae (2 espécies). Dentre as espécies regenerantes inventariadas, nove estavam presentes nas florestas artificiais (5, 10 e 15 anos) e nas florestas naturais de igapó (Acosmium nitens, Buchenavia oxycarpa, Byrsonima spp., Dalbergia inundata, Eschweilera blanchetiana, Leopoldina pulchra, Panopsis rubescens, Parkia pendula e Tabebuia barbata), quatorze espécies regenerantes foram encontradas somente às florestas artificiais (Chrysophyllum oppositum, Couepia paraensis subsp. glaucescens, Genipa spruceana, Licania apetala, Mabea nitida, Macrolobium multijugum, Martiodendron parviflorum, Miconia spp. Naucleopsis caloneura, Ouratea spp., Pterocarpus amazonicus, Rheedia macrophylla, Ruprechtia spp. e Simaba guianensis), e seis espécies regenerantes foram comuns 121 apenas às florestas naturais de igapó (Psidium spp.1, Psidium spp.2, Psidium spp.3, Psidium spp.4, Systemonodaphne spp., Tapirira guianensis). As florestas artificiais, sobretudo aquelas com quinze anos de idade, apresentaram menores valores de riqueza total de espécies e diversidade florística quando comparadas com as florestas naturais de igapó (Tabela 7). As florestas artificiais mais jovens (cinco e dez anos) apresentaram valores riqueza de espécies total e de diversidade florística de regenerantes inferiores aos valores das florestas artificiais com quinze anos e florestas naturais de igapó (Tabela 8). 122 Tabela 5. Relação das espécies inventariadas em florestas artificias com diferentes idades e florestas de igapó naturais localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. Nome científico Família 5 anos 10 anos 15 anos Igapó natural Acosmium nitens (Vogel) Yakovlev Fabaceae X X X X Alchornea schomburgkii Klotzsch Euphorbiaceae X X Andira retusa (Poir.) DC. Fabaceae X Buchenavia oxycarpa (Mart.) Eichler Combretaceae X X X X Burdachia prismatocarpa A. Juss. Malpighiaceae X Byrsonima Rich. ex Juss. Malpighiaceae X X Calliandra Benth. Fabaceae X Calophyllum brasiliense Cambess. Clusiaceae X X X Campsiandra comosa Benth. Fabaceae X X X Cassia L. Fabaceae X Catostemma albuquerquei Paula Malvaceae X Chrysophyllum oppositum (Ducke) Ducke Sapotaceae X X X Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. Chrysobalanaceae X X X X Couepia paraensis subsp. glaucescens (Spruce ex Hook. f.) Prance Chrysobalanaceae X X X Crataeva benthamii Eichler Capparaceae X X Cynometra spruceana Benth. Fabaceae X X X Dalbergia inundata Spruce ex Benth. Fabaceae X X X X Dicypellium manausense W.A. Rodrigues Lauraceae X Eschweilera blanchetiana (O. Berg) Miers Lecythidaceae X X X X Genipa spruceana Steyerm. Rubiaceae X X X Glandonia Griseb. Malpighiaceae X X X X Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. Euphorbiaceae X X Leopoldinia pulchra Mart. Arecaceae X Licania apetala (E. Mey.) Fritsch Chrysobalanaceae X X X Licania bracteata Prance Chrysobalanaceae X 123 Continuação Tabela 5... Nome científico Mabea nitida Spruce ex Benth. Macrolobium acaciifolium (Benth.) Benth. Macrolobium multijugum (DC.) Benth. Martiodendron parviflorum (Amshoff) R. Koeppen Miconia Ruiz & Pav. Micropholis (Griseb.) Pierre Myrciaria dubia (Kunth) McVaugh Naucleopsis caloneura (Huber) Ducke Ormosia excelsa Benth. Ouratea Aubl. Panopsis rubescens (Pohl) Rusby Parkia pendula (Willd.) Benth. ex Walp. Peltogyne venosa (Vahl) Benth. Pithecellobium Mart. Poraqueiba sericea Tul. Psidium spp.1 Psidium spp.2 Pterocarpus amazonicus Huber Rheedia macrophylla (Mart.) Planch. & Triana Simarouba Aubl. Stachyarrhena Hook. f. Swartzia polyphylla DC. Tabebuia barbata (E. Mey.) Sandwith Tachigali paniculata Aubl. Vatairea guianensis Aubl. Zygia cauliflora (Willd.) Killip Família Euphorbiaceae Fabaceae Fabaceae Fabaceae Melastomataceae Sapotaceae Myrtaceae Moraceae Fabaceae Ochnaceae Proteaceae Fabaceae Fabaceae Fabaceae Icacinaceae Myrtaceae Myrtaceae Fabaceae Clusiaceae Simaroubaceae Rubiaceae Fabaceae Bignoniaceae Fabaceae Fabaceae Fabaceae 5 anos X X 10 anos X X X X 15 anos X Igapó natural X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 124 Continuação Tabela 5... Nome científico Indet. 1 Indet. 2 Indet. 3 Indet. 5 Indet. 6 Indet. 7 Indet. 8 Indet. 10 Indet. 11 Indet. 12 Indet. 13 Indet. 14 Indet. 15 Indet. 16 Indet. 17 Indet. 19 Família Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada 5 anos 10 anos 15 anos Igapó natural X X X X X X X X X X X X X X X X 125 Tabela 6. Relação das espécies regenerantes inventariadas em florestas artificias com diferentes idades e florestas de igapó naturais localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. Nome científico Família 5 anos 10 anos 15 anos Igapó natural Fabaceae Acosmium nitens (Vogel) Yakovlev X X X X Euphorbiaceae Alchornea schomburgkii Klotzsch X X X Combretaceae Buchenavia oxycarpa (Mart.) Eichler X X X X Malpighiaceae Byrsonima Rich. ex Juss. X X X X Chrysophyllum oppositum (Ducke) Ducke Clusiaceae X X Chrysobalaneceae Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. X X X Chrysobalaneceae Couepia paraensis subsp. glaucescens (Spruce ex Hook. f.) Prance X Fabaceae Cynometra spruceana Benth. X X Fabaceae Dalbergia inundata Spruce ex Benth. X X X X Lecythidaceae Eschweilera blanchetiana (O. Berg) Miers X X X X Rubiaceae Genipa spruceana Steyerm. X X X Malpighiaceae Glandonia Griseb. X X Arecaceae Leopoldinia pulchra Mart. X X X X Chrysobalanaceae Licania apetala (E. Mey.) Fritsch X X Euphorbiaceae Mabea nitida Spruce ex Benth. X X X Fabaceae Macrolobium acaciifolium (Benth.) Benth. X X X Fabaceae Macrolobium multijugum (DC.) Benth. X X Fabaceae Martiodendron parviflorum (Amshoff) R. Koeppen X Melastomataceae Miconia Ruiz & Pav. X X X Myrtaceae Myrciaria dubia (Kunth) McVaugh X X Moraceae Naucleopsis caloneura (Huber) Ducke X Fabaceae Ormosia excelsa Benth. X X X Ochnaceae Ouratea Aubl. X Proteaceae Panopsis rubescens (Pohl) Rusby X X X X 126 Continuação Tabela 6... Nome científico Parkia pendula (Willd.) Benth. ex Walp. Peltogyne venosa (Vahl) Benth. Pithecellobium Mart. Psidium spp.1 Psidium spp.2 Psidium spp.3 Psidium spp.4 Pterocarpus amazonicus Huber Rheedia macrophylla (Mart.) Planch. & Triana Ruprechtia C.A. Mey. Simaba guianensis Aubl. Stachyarrhena Hook. f. Swartzia polyphylla DC. Systemonodaphne Mez Tabebuia barbata (E. Mey.) Sandwith Tachigali paniculata Aubl. Tapirira guianensis Aubl. Zygia cauliflora (Willd.) Killip Indet. 1 Indet. 2 Indet. 4 Indet. 6 Indet. 8 Indet. 10 Indet. 12 Indet. 13 Família Fabaceae Fabaceae Fabaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Fabaceae Clusiaceae Polygonaceae Simaroubaceae Rubiaceae Fabaceae Lauraceae Bignoniaceae Fabaceae Anacardiaceae Fabaceae Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada 5 anos 10 anos 15 anos Igapó natural X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 127 Continuação Tabela 6... Nome científico Indet. 14 Indet. 15 Indet. 18 Indet. 20 Indet. 21 Indet. 22 Indet. 23 Família Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada Indeterminada 5 anos 10 anos 15 anos Igapó natural X X X X X X X X 128 Tabela 7. Índices de diversidade das florestas artificiais e florestas naturais de igapó localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. N S H' J Floresta artificial com 5 anos 918 33 2,96 0,84 Floresta artificial com 10 anos 821 34 2,88 0,82 Floresta artificial com 15 anos 324 22 2,44 0,77 Floresta natural de igapó 499 54 3,16 0,79 N: número de indivíduos, S: riqueza de espécies, H': índice de Shannon-Weaver, C: índice de Simpson. 129 Tabela 8. Índices de diversidade dos indivíduos regenerantes amostrados nas florestas artificiais e florestas naturais de igapó localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. N S H' J Floresta artificial com 5 anos 222 24 2,27 0,83 Floresta artificial com 10 anos 315 32 2,46 0,84 Floresta artificial com 15 anos 354 26 2,64 0,90 Floresta natural de igapó 460 39 2,82 0,89 N: número de indivíduos, S: riqueza de espécies, H': índice de Shannon-Weaver, C: índice de Simpson. 130 1.1. Florestas artificiais com cinco anos Nas florestas artificiais com cinco anos foram amostrados 918 indivíduos oriundos de plantios, distribuídos em 33 espécies. As espécies com os maiores valores de importância (VI) foram C. paraensis, D. inundata, G. spruceana, A. nitens e E. blanchetiana. Juntas, elas totalizaram 450 indivíduos, que corresponderam a 46% do VI (Tabela 9). Foram amostrados 222 indivíduos oriundos da regeneração natural nas florestas artificiais com cinco anos, distribuídos em 25 espécies, sendo que destas, quatro não foram identificadas. Dentre as espécies regenerantes, G. spruceana, D. inundata, M. nitida, Byrsonima spp. e E. blanchetiana foram as dominantes. Elas totalizaram 162 indivíduos, que correponderam a 64% do VI (Tabela 10). A. schomburgkii, Byrsonima spp., L. pulchra, Miconia spp. e as quatro espécies não identificadas são espécies regenerantes oriundas da dispesão natural, uma vez que não estavam inclusas dentre as espécies utilizadas nos plantios. 131 Tabela 9. Parâmetros fitossociológicos das espécies adultas inventariadas em florestas artificiais com 5 anos localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. Dalbergia inundata Spruce ex Benth. Genipa spruceana Steyerm. Acosmium nitens (Vogel) Yakovlev Eschweilera blanchetiana (O. Berg) Miers Myrciaria dubia (Kunth) McVaugh Tabebuia barbata (E. Mey.) Sandwith Burdachia prismatocarpa A. Juss. Glandonia Griseb. Rheedia macrophylla (Mart.) Planch. & Triana Panopsis rubescens (Pohl) Rusby Pithecellobium Mart. Ormosia excelsa Benth. Buchenavia oxycarpa (Mart.) Eichler Zygia cauliflora (Willd.) Killip Mabea nitida Spruce ex Benth. Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. Tachigali paniculata Aubl. Cynometra spruceana Benth. Parkia pendula (Willd.) Benth. ex Walp. Calophyllum brasiliense Cambess. Chrysophyllum oppositum (Ducke) Ducke Crataeva benthamii Eichler Simarouba Aubl. Swartzia polyphylla DC. 82 109 115 77 67 65 54 35 37 44 18 28 19 20 20 15 13 15 17 9 8 12 9 7 3 8.9100 11.8500 12.5000 8.3700 7.2800 7.0700 5.8700 3.8000 4.0200 4.7800 1.9600 3.0400 2.0700 2.1700 2.1700 1.6300 1.4100 1.6300 1.8500 0.9800 0.8700 1.3000 0.9800 0.7600 0.3300 15.4400 10.6300 8.1000 10.4900 8.9600 5.4300 5.9100 7.4000 3.0400 1.6300 4.3100 1.5700 2.4700 1.6700 1.7500 1.7700 1.5500 0.9500 0.6400 1.5800 1.4700 0.4300 0.2500 0.4600 0.8400 12.1800 11.2400 10.3000 9.4300 8.1200 6.2500 5.8900 5.6000 3.5300 3.2100 3.1300 2.3100 2.2700 1.9200 1.9600 1.7000 1.4800 1.2900 1.2400 1.2800 1.1700 0.8700 0.6100 0.6100 0.5800 10.4600 9.9000 9.2800 8.5600 7.8200 6.1800 5.9500 5.1000 4.1100 3.9600 2.9400 2.7700 2.6200 2.2600 2.2200 1.9100 1.7700 1.7700 1.7400 1.3100 1.3000 1.2300 0.9300 0.8000 0.5800 132 Continuação Tabela 9... Nome Científico N DR DoR VC (%) VI (%) Couepia paraensis subsp. glaucescens (Spruce ex Hook. f.) Prance 5 0.5400 0.3400 0.4400 0.5500 Naucleopsis caloneura (Huber) Ducke 4 0.4300 0.1300 0.2800 0.4500 Micropholis (Griseb.) Pierre 4 0.4300 0.2000 0.3200 0.4100 Catostemma albuquerquei Paula 3 0.3300 0.0800 0.2000 0.3300 Macrolobium multijugum (DC.) Benth. 1 0.1100 0.2400 0.1800 0.1800 Poraqueiba sericea Tul. 1 0.1100 0.0600 0.0900 0.1200 Licania apetala (E. Mey.) Fritsch 1 0.1100 0.0100 0.0600 0.1100 Peltogyne venosa (Vahl) Benth. 1 0.1100 0.0200 0.0700 0.1100 Total 918 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 133 Tabela 10. Parâmetros fitossociológicos das espécies regenerantes inventariadas em florestas artificiais com 5 anos localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Genipa spruceana Steyerm. Dalbergia inundata Spruce ex Benth. Mabea nitida Spruce ex Benth. Byrsonima Rich. ex Juss. Eschweilera blanchetiana (O. Berg) Miers Leopoldinia pulchra Mart. Macrolobium multijugum (DC.) Benth. Acosmium nitens (Vogel) Yakovlev Buchenavia oxycarpa (Mart.) Eichler Ormosia excelsa Benth. Tabebuia barbata (E. Mey.) Sandwith Parkia pendula (Willd.) Benth. ex Walp. Panopsis rubescens (Pohl) Rusby Indet. 2 Miconia Ruiz & Pav. Indet. 10 Indet. 20 Alchornea schomburgkii Klotzsch Rheedia macrophylla (Mart.) Planch. & Triana Licania apetala (E. Mey.) Fritsch Zygia cauliflora (Willd.) Killip Peltogyne venosa (Vahl) Benth. Chrysophyllum oppositum (Ducke) Ducke Indet. 12 25 77 19 36 5 10 1 5 7 8 5 2 1 4 5 2 2 1 1 1 1 1 1 1 11.6700 33.9000 8.3900 15.3200 2.2000 4.9900 0.4000 2.3900 3.3200 4.0800 2.1700 0.7900 0.5200 2.0400 2.4600 0.9100 0.7900 0.5200 0.4900 0.4900 0.4900 0.4900 0.4000 0.4000 44.5500 1.4200 6.0300 0.1700 12.5400 1.0700 10.4100 5.1000 0.2300 3.3000 3.3100 5.2800 4.9200 0.2500 0.0600 0.0400 0.1100 0.6000 0.2300 0.1600 0.1300 0.0100 0.0600 0.0000 28.1100 17.6600 7.2100 7.7500 7.3700 3.0300 5.4000 3.7400 1.7800 3.6900 2.7400 3.0400 2.7200 1.1500 1.2600 0.4800 0.4500 0.5600 0.3600 0.3300 0.3100 0.2500 0.2300 0.2000 22.5500 18.7600 8.3000 8.0200 6.1800 4.2400 3.9200 3.4500 3.4100 3.4100 3.1000 2.6600 2.1300 2.0300 1.7900 0.9500 0.9300 0.6900 0.5600 0.5400 0.5300 0.4800 0.4700 0.4500 134 Continuação Tabela 10... Nome Científico N DR DoR VC (%) VI (%) Ouratea Aubl. 1 0.4000 0.0000 0.2000 0.4500 Total 222 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 135 1.2. Florestas artificiais com dez anos Foram amostrados 821 indivíduos distribuídos em 34 espécies nos plantios com dez anos de idade. As cinco espécies com maiores VI foram C. paraensis, A. nitens, E. blanchetiana, Gladonia sp. e G. spruceana. Juntas, totalizaram 463 indivíduos, que corresponderam a 52% do VI (Tabela 11). Nestes plantios foram amostrados 315 indivíduos oriundos da regeneração natural, distribuídos em 32 espécies. Quatro táxons não foram identificados. As espécies mais abundantes foram D. inundata, P. pendula, A. nitens, Miconia spp. e Stachyarrhena spp. Elas totizaram 182 indivíduos, que corresponderam a 61% do VI (Tabela 12). Dentre as espécies que regeneraram naturalmente, L. pulchra, Miconia spp., Pithecellobium spp., Pterocarpus amazonicus e Ruprechtia spp. não estavam inclusas dentre as espécies plantadas. 136 Tabela 11. Parâmetros fitossociológicos das espécies adultas inventariadas em florestas artificiais com 10 anos localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. Acosmium nitens (Vogel) Yakovlev Eschweilera blanchetiana (O. Berg) Miers Glandonia Griseb. Genipa spruceana Steyerm. Couepia paraensis subsp. glaucescens (Spruce ex Hook. f.) Prance Macrolobium multijugum (DC.) Benth. Swartzia polyphylla DC. Dalbergia inundata Spruce ex Benth. Tabebuia barbata (E. Mey.) Sandwith Rheedia macrophylla (Mart.) Planch. & Triana Ormosia excelsa 2Benth. Buchenavia oxycarpa (Mart.) Eichler Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. Myrciaria dubia (Kunth) McVaugh Panopsis rubescens (Pohl) Rusby Peltogyne venosa (Vahl) Benth. Vatairea guianensis Aubl. Micropholis (Griseb.) Pierre Tachigali paniculata Aubl. Parkia pendula (Willd.) Benth. ex Walp. Mabea nitida Spruce ex Benth. Chrysophyllum oppositum (Ducke) Ducke Naucleopsis caloneura (Huber) Ducke Campsiandra comosa Benth. 114 128 84 75 62 48 32 27 30 20 26 20 20 17 13 10 13 5 12 11 8 6 6 5 5 13.8500 15.6500 10.2000 9.0700 7.5000 5.8600 3.9100 3.3000 3.5900 2.4500 3.1500 2.4900 2.3900 2.1100 1.6300 1.2300 1.5700 0.6100 1.4700 1.3800 0.9800 0.7300 0.7500 0.6000 0.6000 20.7300 15.4500 12.5100 5.6000 4.9800 8.1800 5.5800 5.5700 3.2500 3.6100 0.8500 1.5800 1.3900 0.6600 0.2800 2.0100 0.3700 3.2300 0.3500 0.2000 0.9000 0.5200 0.1200 0.1700 0.4300 17.2900 15.5500 11.3500 7.3300 6.2400 7.0200 4.7500 4.4400 3.4200 3.0300 2.0000 2.0400 1.8900 1.3900 0.9600 1.6200 0.9700 1.9200 0.9100 0.7900 0.9400 0.6300 0.4300 0.3800 0.5200 14.6100 13.3700 10.1700 7.5800 6.7700 6.2600 4.3500 4.1400 4.0200 3.3600 2.8300 2.5400 2.5300 2.0300 1.5900 1.5600 1.4400 1.4400 1.4000 1.2400 0.9400 0.8100 0.7600 0.6500 0.5800 137 Continuação Tabela 11... Nome Científico N DR DoR VC (%) VI (%) Licania apetala (E. Mey.) Fritsch 5 0.6000 0.4300 0.5200 0.5800 Psidium spp.1 4 0.4800 0.1600 0.3200 0.4500 Macrolobium acaciifolium (Benth.) Benth. 3 0.3700 0.2500 0.3100 0.4400 Zygia cauliflora (Willd.) Killip 4 0.4800 0.0900 0.2800 0.4300 Cynometra spruceana Benth. 2 0.2500 0.1700 0.2100 0.3000 Calophyllum brasiliense Cambess. 2 0.2500 0.0900 0.1700 0.2700 Martiodendron parviflorum (Amshoff) R. Koeppen 2 0.2500 0.0600 0.1600 0.2600 Cassia L. 1 0.1200 0.1200 0.1200 0.1600 Stachyarrhena Hook. f. 1 0.1200 0.0800 0.1000 0.1500 Total 821 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 138 Tabela 12. Parâmetros fitossociológicos das espécies regenerantes inventariadas em florestas artificiais com 10 anos localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Dalbergia inundata Spruce ex Benth. Parkia pendula (Willd.) Benth. ex Walp. Acosmium nitens (Vogel) Yakovlev Miconia Ruiz & Pav. Stachyarrhena Hook. f. Byrsonima Rich. ex Juss. Buchenavia oxycarpa (Mart.) Eichler Genipa spruceana Steyerm. Mabea nitida Spruce ex Benth. Indet. 12 Leopoldinia pulchra Mart. Tachigali paniculata Aubl. Ruprechtia C.A. Mey. Martiodendron parviflorum (Amshoff) R. Koeppen Panopsis rubescens (Pohl) Rusby Eschweilera blanchetiana (O. Berg) Miers Macrolobium acaciifolium (Benth.) Benth. Indet. 1 Indet. 2 Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. Myrciaria dubia (Kunth) McVaugh Licania apetala (E. Mey.) Fritsch Ormosia excelsa Benth. Swartzia polyphylla DC. 111 10 15 38 8 31 10 11 14 16 4 7 9 4 3 3 2 2 2 2 2 1 1 1 36.8100 2.5500 4.1400 9.4100 1.9800 8.1800 4.4000 5.7100 4.6300 5.1800 0.9900 3.3800 2.9100 1.3000 1.1000 0.8200 0.6500 0.8500 0.6500 0.5000 0.5000 0.2500 0.6000 0.3200 9.6300 33.0100 23.8500 1.6100 15.2500 2.9400 4.7000 2.7700 1.0200 0.0700 2.8100 0.2600 0.0200 0.0100 0.1800 0.0300 0.5500 0.0500 0.1000 0.1000 0.0000 0.8100 0.0200 0.1000 23.2200 17.7800 14.0000 5.5100 8.6200 5.5600 4.5500 4.2400 2.8200 2.6300 1.9000 1.8200 1.4700 0.6500 0.6400 0.4200 0.6000 0.4500 0.3700 0.3000 0.2500 0.5300 0.3100 0.2100 21.3100 13.2500 11.6600 7.4000 7.1400 5.8000 5.1300 4.4600 4.2100 2.9200 2.2000 2.1400 1.4500 1.1300 1.1200 0.9800 0.8700 0.7700 0.7100 0.6700 0.6300 0.5900 0.4400 0.3700 139 Continuação Tabela 12... Nome Científico N DR DoR VC (%) VI (%) Cynometra spruceana Benth. 1 0.3200 0.0000 0.1600 0.3400 Indet. 10 1 0.3200 0.0100 0.1700 0.3400 Psidium spp.1 1 0.3200 0.0100 0.1700 0.3400 Macrolobium multijugum (DC.) Benth. 1 0.2500 0.0500 0.1500 0.3300 Naucleopsis caloneura (Huber) Ducke 1 0.2500 0.0000 0.1200 0.3200 Pithecellobium Mart. 1 0.2500 0.0200 0.1300 0.3200 Pterocarpus amazonicus Huber 1 0.2500 0.0000 0.1200 0.3200 Tabebuia barbata (E. Mey.) Sandwith 1 0.2500 0.0000 0.1200 0.3200 Total 315 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 140 1.3. Florestas artificiais com quinze anos Foram amostrados 324 indivíduos distribuídos em 22 espécies. As cinco espécies com maiores VI amostradas nos plantios com quinze anos de idade foram M. acaciifolium, Gladonia spp., A. nitens, C. paraensis subsp. glaucescens e P. pendula. Juntas, totalizaram 203 indivíduos, que corresponderam a 58% do VI (Tabela 13). Com relação aos indivíduos oriundos da regeneração natural, foram amostrados nestes plantios 354 indivíduos distribuídos em 26 espécies. As espécies dominates foram D. inundata, C. paraensis, C. paraenses subsp. glaucescens, A. nitens e Byrsonima spp. Elas somaram 169 indivíduos, que corresponderam a 49% do VI (Tabela 14). Três táxons não foram identificados. Dentre as espécies que regeneraram naturalmente nos plantios de quinze anos, L. pulchra, M. nitida, S. guianensis e T. paniculata não estavam inclusas dentre as espécies plantadas. 141 Tabela 13. Parâmetros fitossociológicos das espécies adultas inventariadas em florestas artificiais com 15 anos localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Macrolobium acaciifolium (Benth.) Benth. 67 19.0800 14.8500 16.9700 16.9300 Glandonia Griseb. 68 19.1100 11.5500 15.3300 15.2400 Acosmium nitens (Vogel) Yakovlev 36 10.3100 9.3800 9.8500 9.9800 Couepia paraensis subsp. glaucescens (Spruce ex Hook. f.) Prance 19 5.3600 16.7000 11.0300 8.5600 Parkia pendula (Willd.) Benth. ex Walp. 13 7.1200 9.9900 8.5500 7.7100 Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. 25 7.1400 8.2900 7.7200 7.1500 Genipa spruceana Steyerm. 26 7.6200 2.8500 5.2400 6.9000 Tabebuia barbata (E. Mey.) Sandwith 14 4.5900 4.5200 4.5500 5.6500 Eschweilera blanchetiana (O. Berg) Miers 18 5.1500 4.8500 5.0000 5.3400 Swartzia polyphylla DC. 9 3.8100 8.4100 6.1100 5.2800 Dalbergia inundata Spruce ex Benth. 6 1.7300 1.2100 1.4700 1.9800 Alchornea schomburgkii Klotzsch 5 1.4400 2.9700 2.2100 1.6700 Ormosia excelsa Benth. 3 1.4800 1.0100 1.2400 1.4300 Campsiandra comosa Benth. 5 1.4000 0.9700 1.1900 1.3900 Panopsis rubescens (Pohl) Rusby 1 0.5900 1.1000 0.8500 0.7700 Zygia cauliflora (Willd.) Killip 2 0.8800 0.2100 0.5500 0.7700 Buchenavia oxycarpa (Mart.) Eichler 2 0.5600 0.0400 0.3000 0.6000 Stachyarrhena Hook. f. 1 0.2900 0.5800 0.4300 0.4900 Pithecellobium Mart. 1 0.2900 0.2200 0.2600 0.3700 Chrysophyllum oppositum (Ducke) Ducke 1 0.2900 0.1200 0.2100 0.3400 Byrsonima Rich. ex Juss. 1 0.2900 0.0000 0.1500 0.3000 Miconia Ruiz & Pav. 1 0.2900 0.0100 0.1500 0.3000 Total 324 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 142 Tabela 14. Parâmetros fitossociológicos das espécies regenerantes inventariadas em florestas artificiais com 15 anos localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Dalbergia inundata Spruce ex Benth. Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. Couepia paraensis subsp. glaucescens (Spruce ex Hook. f.) Prance Acosmium nitens (Vogel) Yakovlev Byrsonima Rich. ex Juss. Parkia pendula (Willd.) Benth. ex Walp. Indet. 1 Buchenavia oxycarpa (Mart.) Eichler Eschweilera blanchetiana (O. Berg) Miers Miconia Ruiz & Pav. Alchornea schomburgkii Klotzsch Panopsis rubescens (Pohl) Rusby Indet. 12 Leopoldinia pulchra Mart. Stachyarrhena Hook. f. Glandonia Griseb. Genipa spruceana Steyerm. Tachigali paniculata Aubl. Mabea nitida Spruce ex Benth. Pithecellobium Mart. Simaba guianensis Aubl. Macrolobium acaciifolium (Benth.) Benth. Tabebuia barbata (E. Mey.) Sandwith Indet. 21 81 9 1 24 54 33 19 5 12 22 13 14 17 11 5 4 7 4 6 3 2 3 2 1 23.2900 3.5400 0.5600 6.8900 12.4300 8.6300 3.5700 1.7700 3.5300 4.2100 4.0200 4.0100 6.7500 3.8300 1.1100 1.1100 2.4200 2.2500 1.9700 0.8400 1.1300 1.0300 0.4600 0.2800 6.8400 22.4700 26.0100 10.5200 1.0000 2.3800 2.2000 8.6800 4.4100 0.8100 3.8600 1.7900 0.1000 0.0700 3.8200 3.2400 0.0000 0.0700 0.2900 0.5300 0.7600 0.0800 0.0100 0.0100 15.0600 13.0100 13.2800 8.7100 6.7100 5.5000 2.8900 5.2300 3.9700 2.5100 3.9400 2.9000 3.4300 1.9500 2.4700 2.1800 1.2100 1.1600 1.1300 0.6900 0.9400 0.5500 0.2400 0.1400 14.1400 9.9700 9.0400 8.0400 7.8300 5.9000 4.5300 4.4100 4.3200 4.2800 4.1200 3.9800 3.5900 2.9800 2.2000 2.0100 1.7400 1.3300 1.3100 1.0200 1.0000 0.9300 0.5300 0.2800 143 Continuação Tabela 14... Nome Científico N DR DoR VC (%) VI (%) Chrysophyllum oppositum (Ducke) Ducke 1 0.1800 0.0400 0.1100 0.2600 Zygia cauliflora (Willd.) Killip 1 0.1800 0.0000 0.0900 0.2500 Total 354 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 144 1.4. Florestas naturais de igapó Foram amostrados 499 indivíduos distribuídos em 54 espécies. Dezesseis táxons não foram identificados. As espécies mais abundantes foram S. polyphyla C. paraensis, Ouratea spp., L. pulchra e A. nitens. Juntas, elas totalizaram 237 indivíduos, que corresponderam a 44% do VI (Tabela 15). Nas florestas naturais de igapó foram registrados 460 indivíduos oriundos da regeneração natural, distribuídos em 39 espécies. Onze táxons não foram identificados. As cinco espécies dominantes foram C. paraenses, Stachyarrhena spp., A. nitens e A. schomburgkii. Junta, elas totalizaram 249 indivíduos, que corresponderam a 53% do VI (Tabela 16). 145 Tabela 15. Parâmetros fitossociológicos das espécies adultas inventariadas em florestas naturais de igapó localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Swartzia polyphylla DC. Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. Ouratea Aubl. Leopoldinia pulchra Mart. Indet. 8 Acosmium nitens (Vogel) Yakovlev Stachyarrhena Hook. f. Psidium spp.2 Byrsonima Rich. ex Juss. Peltogyne venosa (Vahl) Benth. Eschweilera blanchetiana (O. Berg) Miers Glandonia Griseb. Andira retusa (Poir.) DC. Dalbergia inundata Spruce ex Benth. Indet. 14 Panopsis rubescens (Pohl) Rusby Indet. 6 Pithecellobium Mart. Buchenavia oxycarpa (Mart.) Eichler Parkia pendula (Willd.) Benth. ex Walp. Indet. 1 Licania bracteata Prance Calophyllum brasiliense Cambess. Macrolobium acaciifolium (Benth.) Benth. Indet. 16 50 84 46 36 37 21 29 25 15 7 8 10 4 10 6 6 5 10 7 5 3 6 3 4 5 10.3000 15.0900 11.6000 7.4100 9.3300 3.8600 5.2200 4.3900 2.6300 1.3300 1.3900 1.7600 0.6600 1.6700 1.0500 1.2100 1.0100 1.7100 1.2100 1.0200 0.7600 1.5100 0.6000 1.0100 0.8800 22.2200 12.6500 8.2200 2.9400 3.4600 2.0900 3.2600 2.3000 2.3700 2.6100 2.2200 1.3800 4.1100 0.7900 2.2800 1.6000 2.3100 0.7400 1.6500 1.8400 2.6900 0.8500 2.9500 1.0600 0.5500 16.2600 13.8700 9.9100 5.1800 6.4000 2.9700 4.2400 3.3500 2.5000 1.9700 1.8000 1.5700 2.3900 1.2300 1.6700 1.4000 1.6600 1.2300 1.4300 1.4300 1.7200 1.1800 1.7800 1.0400 0.7100 13.1500 13.0000 7.1800 5.4700 4.9900 4.2900 4.2700 4.1100 2.6800 2.1800 2.0700 1.9100 1.8800 1.8300 1.8300 1.8000 1.6900 1.5400 1.5300 1.5300 1.4400 1.3700 1.3300 1.2700 1.2000 146 Continuação Tabela 15... Nome Científico N DR DoR VC (%) VI (%) Indet. 13 Zygia cauliflora (Willd.) Killip Tachigali paniculata Aubl. Alchornea schomburgkii Klotzsch Mabea nitida Spruce ex Benth. Myrciaria dubia (Kunth) McVaugh Licania apetala (E. Mey.) Fritsch Cynometra spruceana Benth. Calliandra Benth. Ormosia excelsa Benth. Indet. 19 Psidium spp.1 Campsiandra comosa Benth. Naucleopsis caloneura (Huber) Ducke Indet. 17 Indet. 5 Pterocarpus amazonicus Huber Dicypellium manausense W.A. Rodrigues Macrolobium multijugum (DC.) Benth. Indet. 3 Indet. 2 Rheedia macrophylla (Mart.) Planch. & Triana Indet. 10 Tabebuia barbata (E. Mey.) Sandwith Crataeva benthamii Eichler Indet. 7 5 4 3 3 4 4 3 2 2 2 1 2 2 2 1 2 1 3 1 1 1 1 1 1 1 1 0.8800 0.6800 0.6700 0.6700 0.8400 0.6600 0.5000 0.3400 0.5000 0.5000 0.1800 0.5000 0.3300 0.5000 0.1800 0.3300 0.1700 0.5000 0.1700 0.1700 0.2500 0.2500 0.2500 0.2500 0.1800 0.2500 1.7300 0.5900 0.8200 0.5900 0.2000 0.7400 0.2800 0.7700 0.5100 0.4500 1.1000 0.1900 0.2300 0.0300 0.7000 0.0700 0.5600 0.1600 0.3300 0.3300 0.1400 0.0900 0.0800 0.0700 0.0800 0.0000 1.3100 0.6400 0.7500 0.6300 0.5200 0.7000 0.3900 0.5500 0.5100 0.4800 0.6400 0.3400 0.2800 0.2700 0.4400 0.2000 0.3600 0.3300 0.2500 0.2500 0.2000 0.1700 0.1700 0.1600 0.1300 0.1300 1.1600 1.0000 0.9300 0.8500 0.7800 0.7600 0.6900 0.6600 0.6300 0.6100 0.5700 0.5200 0.4700 0.4700 0.4400 0.4200 0.3800 0.3600 0.3100 0.3100 0.2800 0.2600 0.2600 0.2500 0.2300 0.2300 147 Continuação Tabela 15... Nome Científico N DR DoR VC (%) VI (%) Indet. 11 1 0.2500 0.0100 0.1300 0.2300 Indet. 12 1 0.2500 0.0000 0.1300 0.2300 Indet. 15 1 0.1800 0.0000 0.0900 0.2000 Total 499 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 148 Tabela 16. Parâmetros fitossociológicos das espécies regenerantes inventariadas em florestas naturais de igapó localizadas nas áreas marginais do lago Batata - Porto Trombetas, Pará. Nome Científico N DR DoR VC (%) VI (%) Couepia paraensis (Mart. & Zucc.) Benth. ex Hook. f. Indet. 22 Stachyarrhena Hook. f. Leopoldinia pulchra Mart. Acosmium nitens (Vogel) Yakovlev Alchornea schomburgkii Klotzsch Indet. 12 Eschweilera blanchetiana (O. Berg) Miers Dalbergia inundata Spruce ex Benth. Buchenavia oxycarpa (Mart.) Eichler Parkia pendula (Willd.) Benth. ex Walp. Macrolobium acaciifolium (Benth.) Benth. Byrsonima Rich. ex Juss. Panopsis rubescens (Pohl) Rusby Peltogyne venosa (Vahl) Benth. Psidium spp.2 Ormosia excelsa Benth. Psidium spp.1 Tabebuia barbata (E. Mey.) Sandwith Swartzia polyphylla DC. Glandonia Griseb. Indet. 14 Indet. 8 Pithecellobium Mart. 89 15 108 21 26 5 28 12 11 13 11 8 15 10 7 9 6 10 3 6 5 4 4 5 19.1800 2.7600 19.9500 4.7100 7.1900 1.4000 5.4000 3.4200 2.6300 2.8100 2.3300 3.4100 2.8200 2.0800 2.0700 1.6600 2.0700 1.8400 0.6700 1.4000 0.9200 0.7400 0.9800 0.9200 33.5000 28.7000 0.1700 18.6300 3.8400 9.5300 0.0600 0.0800 0.8800 0.6300 0.1600 0.3800 0.0000 0.2700 0.1100 0.0400 0.3800 0.1600 1.4500 0.6000 0.0000 0.0000 0.0200 0.0200 26.3400 15.7300 10.0600 11.6700 5.5100 5.4700 2.7300 1.7500 1.7500 1.7200 1.2400 1.8900 1.4100 1.1800 1.0900 0.8500 1.2300 1.0000 1.0600 1.0000 0.4600 0.3700 0.5000 0.4700 22.1600 11.2800 10.6700 9.5300 6.2100 4.2800 3.4100 2.5900 2.4400 2.4200 1.9400 1.9000 1.8900 1.7400 1.5200 1.5200 1.4500 1.3000 1.1800 1.1400 0.9400 0.8800 0.8100 0.7900 149 Continuação Tabela 16... Nome Científico N DR DoR VC (%) VI (%) Myrciaria dubia (Kunth) McVaugh 3 0.7300 0.0700 0.4000 0.7400 Cynometra spruceana Benth. 3 1.0400 0.0500 0.5400 0.6800 Tapirira guianensis Aubl. 3 0.7300 0.0100 0.3700 0.5600 Indet. 13 3 0.5500 0.0000 0.2800 0.5000 Indet. 15 3 0.5500 0.0000 0.2800 0.5000 Zygia cauliflora (Willd.) Killip 2 0.3700 0.0200 0.1900 0.4500 Tachigali paniculata Aubl. 2 0.3700 0.0000 0.1900 0.4400 Indet. 4 2 0.4900 0.0900 0.2900 0.3500 Indet. 20 1 0.4300 0.1000 0.2600 0.3300 Systemonodaphne Mez 2 0.4900 0.0100 0.2500 0.3200 Psidium spp.4 1 0.1800 0.0200 0.1000 0.2300 Indet. 18 1 0.1800 0.0000 0.0900 0.2200 Indet. 23 1 0.1800 0.0000 0.0900 0.2200 Indet. 6 1 0.1800 0.0000 0.0900 0.2200 Psidium spp.3 1 0.1800 0.0000 0.0900 0.2200 Total 460 100.0000 100.0000 100.0000 100.0000 N: número de indivíduos, DR: densidade relativa (%), DoR: dominância relativa, VC (%): valor de cobertura relativo, VI (%): valor de importância relativo. 150 2. Similaridade florística entre as florestas artificiais e florestas naturais de igapó A primeira a análise de agrupamento indicou a formação de dois grupos: um grupo composto pelas florestas naturais de igapó (adultos e regenerantes) e florestas aritificiais, considerando apenas os indivíduos plantados, e outro grupo formado pelas florestas artificiais considerando apenas a regeneração natural. Cerca de 25% das espécies que regeneram naturalmente nas áreas de plantios estão presentes nas florestas naturais de igapó e nas florestas artificiais (Figura 4). As maiores similaridades florísticas observadas dentro do primeiro grupo ocorreram entre os indivíduos adultos e os regenerantes nas florestas naturais de igapó, e entre os plantios com cinco e dez anos. Os plantios com quinze anos apresentaram a maior distinção florística dentre as florestas artificiais (Figura 4). No segundo grupo, a maior similaridade florística ocorreu entre os regenerantes das florestas artificiais com dez e quinze anos. A composição florística dos regenerantes das florestas artificiais com cinco anos foi distinta das demais florestas artificiais (Figura 4). A segunda análise de agrupamento, que considerou separadamente as áreas amostradas, demonstrou que plantio realizado em 1995 e mensurado em 2010 (floresta artificial com quinze anos) diferiu das demais áreas em termos de composição florística (similaridade florística de cerca de 10%). A floresta natural de igapó mensurada em 2006 apresentou um padrão de composição florística distinto das demais áreas de referência. As espécies regenerantes desta área se distinguiram das espécies adultas. A composição florística de regenerantes desta área apresentou maior similaridade com a composição florística das florestas artificiais (Figura 5). 151 5r 15r 10r 15p 5p 10p Rr Ra 1.0 0.9 Similaridade (Bray-Curtis) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Figura 4: Dendrograma de similaridade florística entre as florestas artificiais com distintas idades (5, 10 e 15 anos) e florestas naturais de igapó (referência) localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. Nesta análise a abundância das espécies amostradas nas áreas de plantios com a mesma idade foi agrupada, assim como nas florestas naturais de igapó. Legenda: 5p – florestas artificiais com cinco anos considerando somente os indivíduos plantados; 5r - florestas artificiais com cinco anos considerando somente os indivíduos oriundos da regeneração natural; 10p – florestas artificiais com dez anos considerando somente os indivíduos plantados; 10r - florestas artificiais com dez anos considerando somente os indivíduos oriundos da regeneração natural; 15p – florestas artificiais com quinze anos considerando somente os indivíduos plantados; 15r - florestas artificiais com quinze anos considerando somente os indivíduos oriundos da regeneração natural; Ra – florestas naturais de igapó considerando somente os indivíduos adultos; Rr - florestas naturais de igapó considerando somente os indivíduos oriundos da regeneração natural. 152 RIa RIr RIIIa RIIIr DIp QIp QIIIp CIIp CIIIp DIIp DIIIp CIp RIIa DIr QIr QIIr CIr CIIr DIIr CIIIr DIIIr QIIIr RIIr QIIp 1.0 0.9 Similaridade (Bray-Curtis) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Figura 5: Dendrograma de similaridade florística entre as nove áreas com florestas artificiais (cinco, dez e quinze anos) e três áreas de florestas naturais de igapó localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. Nesta análise foram consideradas as abundâncias das espécies amostradas em cada área de plantio e em cada floresta natural de igapó. As legendas das áreas podem ser consultadas na Tabela 1. A letra “p” indica que apenas os indivíduos plantados foram considerados; a letra “r” indica que apenas os indivíduos regenerantes foram considerados; e a letra “a” indica que apenas os adultos nas áreas de referência foram considerados. 153 3. Avaliação do processo de reabilitação do lago Batata através de indicadores ecológicos Os resultados das ANOVAs hierarquizadas revelaram que os valores médios dos indicadores biológicos variaram entre as distintas idades de plantios (Apêndice 3 deste capítulo). Os indivíduos amostrados nas florestas artificiais com cinco anos apresentaram valores médios de altura menores do que aqueles amostrados nas florestas artificiais com quinze anos, que por sua vez, apresentaram valores médios similares aos encontrados nas florestas naturais de igapó. As florestas artificiais com dez anos apresentaram indivíduos cujos valores médios de altura foram intermediários. O diâmetro médio e a área basal média dos indivíduos aumentaram com o passar do tempo nas florestas artificiais. No entanto, as florestas naturais de igapó apresentaram os maiores diâmetros e áreas basais médios quando comparados com as outras florestas. A cobertura de copa média dos indivíduos amostrados nas florestas artificiais com cinco anos foi inferior àquela registrada nas florestas artificiais com quinze anos, que não alcançaram o valor médio das florestas naturais de igapó. A densidade média de indivíduos plantados nas florestas artificiais diminuiu com o passar do tempo. As florestas artificiais com quinze anos apresentam atualmente densidades médias similares àquelas registradas nas florestas naturais de igapó. A riqueza média de espécies diminui com o passar do tempo nas florestas artificiais, e atualmente, as florestas artificias com quinze anos apresentam riqueza média menor do que a das florestas naturais. Com relação à regeneração, as maiores densidades médias de regenerantes foram registradas nas florestas naturais de igapó. As florestas artificiais com quinze anos de idade e as florestas naturais de igapó apresentaram os maiores riquezas médias de espécies (Tabela 17). 154 As ANOVAs hierarquizadas demonstraram ainda diferenças significativas nos variáveis biológicas mensuradas em áreas com florestas da mesma idade, com exceção da área basal média, que foi similar entre as áreas com a mesma idade (Apêndice 4 deste capítulo). As variáveis de estrutura vegetacional, de diversidade e de processos ecológicos não variaram entre as três florestas artificiais com cinco anos de idade (CI, CII e CIII). O plantio de 1998 mensurado em 2008 (DIII) apresentou valores médios de altura, cobertura de copa e densidade de indivíduos inferiores das outras duas florestas artificiais com dez anos. Já as florestas artificiais com quinze anos (QI, QII e QIII) apresentaram variações entre si quanto à densidade média de indivíduos e riqueza média de indivíduos. Na floresta plantada em 1997 e mensurada em 2010 (QIII) foram registrados os maiores valores de densidade e riqueza quando comparada com a floresta plantada em 1995 e mensurada em 2010 (QII). As florestas naturais de igapó apresentaram diferenças na altura, diâmetro, densidade e riqueza de regenerantes (Figura 6). 155 Tabela 17: Valor médio ± desvio padrão das variáveis biológicas mensuradas em florestas artificiais e florestas naturais de igapó localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. Médias seguidas da mesma letra não diferem estatisticamente a 5% de probabilidade. Densidade de Riqueza de Área basal Cobertura de Densidade Riqueza de Altura (m) Diâmetro (cm) regenerantes espécies 2 -1 -1 (m ha ) copa (%) (ind. ha ) espécies (ind. ha-1) regenerantes 5 anos 1,20 ± 0,03 c 1,79 ± 0,05 d 0,02 ± 0,00 c 6,33 ± 0,49 c 3060 ± 101 a 6 ± 0,17 a 16567 ± 2655 b 2 ± 0,19 b 10 anos 2,41 ± 0,08 b 3,88 ± 0,11 c 0,11 ± 0,01 b 42,47 ± 4,54 ab 2737 ± 125 a 5 ± 0,13 b 21148 ± 2830 b 2 ± 0,18 ab 15 anos 3,09 ± 0,12 a 5,39 ± 0,28 b 0,11 ± 0,02 b 33,80 ± 5,33 b 1080 ± 111 b 2 ± 0,13 d 24583 ± 3169 b 3 ± 0,24 a Referência 4,22 ± 0,31 a 10,73 ± 1,02 a 1,09 ± 0,20 a 95,98 ± 16,60 a 1663 ± 234 b 3 ± 0,24 c 28048 ± 3935 a 3 ± 0,25 a 156 (b) 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 a a a a a a b b a Diâmetro médio (cm) Altura média (cm) (a) a b a CI CIII CII DII DI QI DIII QIII QII 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 -2.0 a a b a a a RII RI a a CIII DII CII DI QIII QII RII RI RIII Áreas (d) 200 a 180 160 140 120 100 a a 80 a a 60 a a b 40 a a a 20 0 -20 -40 CI CII CIII DI DII DIII QI QII QIII RI RII 2.0 Área basal média (m2 ha -1) (c) Cobertura de copa média (%) QI DIII Áreas a a 1.5 a 1.0 0.5 a a a a a a a a a 0.0 -0.5 -1.0 CI CIII CII DII DI QI DIII QIII QII RII RI RIII Áreas Áreas (f) Densidade média (ind. ha -1) 4500 a a 4000 a a a 3500 3000 b a a a a 2500 b 2000 1500 c 1000 500 0 -500 -1000 CI CIII DII QI QIII RII CII DI DIII QII RI RIII 8 Riqueza média de espécies (e) 7 a a a 6 a a a 5 a 4 a ab 3 a a b 2 1 0 -1 CI CIII CII DII DI QI DIII Áreas QIII QII RII RI RIII Áreas (h) 60000 a 50000 40000 -1 ha ) a a a 30000 a a a a a a b b 20000 10000 0 -10000 CI CIII CII DI DII QI QIII RII DIII QII RI RIII Áreas Riqueza média de regenerantes (g) Densidade de regenerantes (ind. a a a CI RIII a 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 a a a a a a a a a b b a CI CIII CII DII DI QI DIII QIII QII RII RI RIII Áreas Figura 6: Comparação das variáveis biológicas mensuradas entre florestas artificiais com a mesma idade e entre as três florestas naturais de igapó localizadas áreas marginais do lago Batata - Porto Trombetas, Pará. (a) Altura média (m); (b) Diâmetro médio (cm); (c) Cobertura da copa média (%); (d) Área basal média (m2 ha-1); (e) Densidade média (ind.ha-1); (f) Riqueza média de espécies; Densidade média de regenerantes (ind.ha -1); h) Riqueza média de espécies regenerantes. As barras verticais indicam intervalos de confianças (p<0,05). Médias seguidas da 157 mesma letra não diferem estatisticamente a 5% de probabilidade ao examinar áreas com a mesma idade. As legendas das áreas podem ser consultadas na Tabela 1. 158 A relativização das variáveis biológicas possibilitou a visualização das distintas trajetórias de recuperação. A altura média, o diâmetro médio e a densidade média de indivíduos plantados e a densidade média de regenerantes apresentaram trajetórias de recuperação que convergiram para as áreas de florestas naturais de igapó. A cobertura de copa média e o somatório da área basal apresentaram trajetórias de recuperação estáveis e abaixo dos valores obtidos nas florestas naturais (Figura 7). 159 1.60 1.40 Valores relativizados 1.20 1.00 0.80 0.60 0.40 0.20 0.00 5 anos 10 anos 15 anos Altura média (m) Diâmetro médio (m) Cobertura de copa média (%) Somatório da área basal (m2 ha-1) Densidade média (ind. ha-1) Riqueza máxima de espécies Densidade média de regenerantes (ind. ha-1) Riqueza máxima de regenerantes Figura 7. Relativização (florestas artificiais/florestas naturais) dos valores das variáveis biológicas mensuradas ao longo de áreas marginais do lago Batata - Porto Trombetas, Pará. A linha contínua em vermelho representa o valor relativizado das florestas naturais de igapó. 160 A análise de componentes principais revelou que a variância total acumulada nos dois primeiros eixos foi de 69,45%. O primeiro eixo separou as áreas de referência entre si (RI e RII nos quadrantes superiores e RIII nos quadrantes superiores) e duas florestas artificiais (CIII e DIII) das demais florestas artificiais. O segundo eixo separou as florestas artificiais das mais jovens (CI, CII, CIII e DIII) das mais antigas (QI, QII e QIII) e áreas de referência (RI, RII e RIII) (Figura 8). 161 RII Eixo 2 (27,37%) riq RI ab den cob das DIII CIII CI CII DII DI QIII h QI riqr RIII denr QII Eixo 1 (42,08%) Figura 8. Diagrama de ordenação produzido pela análise dos componentes principais (PCA) das variáveis biológicas mensuradas nas florestas artificiais e naturais de igapó localizadas ao longo de áreas marginais do lago Batata - Porto Trombetas, Pará. Os resultados do PCA demonstram que 69,45% da variação total foram atribuídos aos dois primeiros eixos. Legenda: Áreas: CI, CII, CIII (áreas com plantios de cinco anos de idade), DI, DII, DIII (áreas com plantios de 10 anos de idade), QI, QII, QIII (áreas com plantios de 15 anos de idade) e RI, RII, RIII (áreas com florestas naturais de igapó); Variáveis de estrutura vegetacional: h (altura), d (diâmetro), cob (cobertura de copa), ab (área basal), den (densidade); Variável de diversidade: riq (riqueza de espécies); Variáveis de processos ecológicos: denr (densidade de regenerantes), riqr (riqueza de espécies de regenerantes). 162 4. Modelagem de estados futuros com base em tipos funcionais de plantas 4.1. Seleção dos atributos ótimos e definição dos tipos funcionais de plantas das florestas artificiais Os resultados do processo de modelagem dos dados mostraram que o maior valor do critério de classificação encontrado na análise da seleção os atributos ótimos foi de 0,99. Além disso, foram determinados três subconjuntos de tipos funcionais de plantas, definidos pelos seguintes atributos: largura foliar, área foliar, zoocoria, tolerância a inundação e capacidade de fixar nitrogênio (Tabela 18). Os atributos ótimos foram considerados no cálculo da semelhança entre os três tipos funcionais de plantas, cuja identidade e caracterização pode ser visualizada na Tabela 19. 163 Tabela 18: Resultados da análise para seleção dos atributos ótimos e definição dos tipos funcionais de plantas nas florestas artificiais e naturais de igapó localizadas ao longo de áreas marginais do lago Batata - Porto Trombetas, Pará. As análises foram realizadas no software SYNCSA for Windows - Version 2.6.9. Valor do critério de classificação Número de grupos funcionais ótimos Conjunto de atributos ótimos 0.880926 3 Ti 0.994508 6 Af, Ti 0.990086 4 Ts, Ti, Fn 0.988959 5 Lf, Zo, Ts, Ti 0.998247 3 Lf, Af, Zo, Ti, Fn 0.995352 6 Lf, Ae, Me, Zo, Ts, Ti 0.987738 3 Lf, Af, Ae, Me, An, Zo, Ti 0.967783 3 Al, Lf, Af, Ae, An, Zo, Ti, Fn, 0.954691 3 Al, Di, Af, Ae, Zo, Hi, Ts, Ti, Fn 0.943317 3 Di, Af, Ae, Me, An, Zo, Hi, Ts, Ti, Fn 0.938234 3 Al, Di, Af, Ae, Me, An, Zo, Hi, Ts, Ti, Fn 0.919306 3 Al, Di, Lf, Af, Ae, Me, An, Zo, Hi, Ts,Ti, Fn Legenda: Al – Altura máxima, Di – Diâmetro máximo, Lf – Largura foliar, Af – Altura foliar, Ae – Área foliar específica, Me – Massa foliar específica, An - Anemocoria, Zo - Zoocoria, Hi - Hidrocoria, Ts – Tamanho da semente, Ti - Tolerância a inundação e Fn - Capacidade de fixar nitrogênio. An, Zo, Hi, Ti e Fn são dados dicotômicos (0 = ausência do atributo; 1 = presença do atributo). 164 Tipos funcionais ótimos Tabela 19: Valores médios dos atributos dos tipos funcionais de plantas (TFP) identificados através da análise funcional nas florestas artificiais e naturais de igapó localizadas ao longo de áreas marginais do lago Batata - Porto Trombetas, Pará. As análises foram realizadas no software SYNCSA for Windows - Version 2.6.9. Al Di Lf Af Ae Me Ts An Zo Hi Ti Fn (m) (cm) (cm) (cm) (cm2g-1) (g-1cm2) (cm2) Acosmium nitens TFP 1 18,5 25 65,46 27,86 2219,66 0,0005 0,5 0 0,5 0,5 1 1 Dalbergia inundata Couepia paraensis Couepia paraensis subsp. glaucescens TFP 2 Eschweilera blanchetiana 28,4 47,6 24,4 10,7 263,8 0,009 0 1 0 8 0,8 0,2 Genipa spruceana Macrolobium acaciifolium TFP 3 Swartzia polyphylla 30 60 73,9 31,7 681,6 0,001 0 0 1 25 0 1 Legenda: Al – Altura máxima, Di – Diâmetro máximo, Lf – Largura foliar, Af – Altura foliar, Ae – Área foliar específica, Me – Massa foliar específica, An - Anemocoria, Zo Zoocoria, Hi - Hidrocoria, Ts – Tamanho da semente, Ti - Tolerância a inundação e Fn - Capacidade de fixar nitrogênio. 165 4.2 Previsão dos estados futuros Após a seleção dos atributos ótimos e delimitação dos tipos funcionais de plantas para as florestas artificiais com diferentes idades e para a floresta artificial de igapó, a abundância dos tipos funcionais de plantas foi estimada para as florestas artificiais (Tabela 20). Estas informações foram utilizadas como dados de entrada (Matrix X) para a modelagem com base na Cadeia de Markov da abundância relativa dos tipos funcionais de plantas das florestas artificiais no futuro. A projeção futura da abundância dos tipos funcionais de plantas nas florestas artificiais demonstrou que os níveis de instabilidade entre os estados markovianos foi inferior a 1% no estado 35, ou seja, as abundâncias futuras dos tipos funcionais atingiram a estabilidade após 175 anos, considerando a última medida empírica, isto é, os plantios de 15 anos (Figura 9). A projeção futura da abundância dos tipos funcionais de plantas sugere um incremento do número de indivíduos de Acosmium nitens e Dalbergia inundata (TFP1) em detrimento das outras espécies plantadas. É importante considerar que tais projeções consideraram apenas os indivíduos plantados (Figura 9). Posteriormente, a abundância futura dos tipos funcionais de plantas nas florestas artificiais foi comparada com a abundância de tipos funcionais das florestas naturais de igapó. Após 175 anos, os valores de abundância encontrados para as florestas naturais de igapó e florestas artificiais diferiram significativamente (χ2=4.33; g.l.=2; p < 0.00) (Figura 9). 166 Tabela 20: Abundância estimada dos tipos funcionais de plantas definidos através da análise funcional utilizada na modelagem dos estados futuros dos reflorestamentos localizados em áreas marginais do Lago Batata - Porto Trombetas, Pará. Estes dados foram utilizados na elaboração da Matriz X. Esta matriz contem os dados de entrada da modelagem da abundância futura dos TFP nas florestas artificiais. TFP 1 TFP 2 TFP 3 Florestas artificiais com 5 anos 0,40611 0,58734 0,00655 Florestas artificiais com 10 anos 0,31855 0,62702 0,05444 Florestas artificiais com 15 anos 0,20388 0,75243 0,04369 167 1.00 0.90 Abundância relativa 0.80 0.70 PFT3 0.60 PFT2 0.50 PFT1 0.40 0.30 0.20 0.00 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 Ref. 0.10 Anos Figura 9: Análise dos cenários futuros com base na abundância relativa de tipos funcionais das florestas artificiais localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. Legenda: PFT: tipo funcional de plantas; Ref: referência (Floresta de igapó natural). O teste do chi-quadrado mostrou que a composição de PFT do estado vegetacional com 185 anos diferiu significativamente da composição do estado vegetacional de referência (χ2=4.33; g.l.=2; p < 0.00). 168 DISCUSSÃO 1. Similaridade florística entre as florestas artificiais e a floresta natural de igapó De acordo com Müller-Dombois & Ellenberg (1974) formações vegetais podem ser consideradas semelhantes quando apresentam ao menos 25% de concordâncias florísticas. Os resultados aqui encontrados mostram que as florestas artificiais e a floresta natural de igapó compartilham cerca de 30% das espécies. As florestas artificiais de cinco e dez anos compartilharam cerca de 40% das espécies vegetais entre si e entre a floresta natural de igapó, enquanto que as florestas artificiais com quinze anos compartilharam cerca de 27% das espécies com as outras florestas artificiais e com a floresta natural de igapó (vide Figura 4). Estes distintos graus de similaridade florística observados entre as florestas artificiais entre si e entre as florestas naturais de igapó podem ter sido determinados pela variação entre as condições gerais de execução dos plantios, proporções de espécies utilizadas e qualidade das mudas (Bozelli et al. 2000). As florestas artificiais apresentaram 25% de concordância em relação às espécies que regeneram naturalmente nas margens do lago Batata. É provável que as diferenças na composição e riqueza de espécies verificadas nas florestas artificiais e florestas naturais estejam associadas às variações topográficas. Nas planícies de inundação amazônicas as comunidades vegetais respondem ao tipo de solo, à topografia e à hidrologia (Lockaby et al. 2008). Contudo, o tempo de inundação é a condição ambiental local mais importante para a determinação da composição de espécies e riqueza de espécies vegetais (Junk et al. 1989, Ferreira & Almeida 2005, Lockaby et al. 2008). Segundo Jones et al. (1994), a elevação topográfica foi um importante fator de predição do fluxo e da densidade de regenerantes. Os autores demonstraram que o pico de densidade populacional de regenerantes ocorreu nas áreas mais elevadas quando comparadas com áreas mais baixas. 169 O processo de regeneração natural nas áreas de estudo, além de ser determinado pelo período de inundação, também é influenciado pela proximidade com a vegetação natural, pelo padrão de circulação das correntes internas do lago Batata (Bozelli et al. 2000), e atributos espécie-específicos. Nas florestas de igapó, as plantas apresentam algumas características que lhes conferem a capacidade de tolerar a submersão prolongada ou escapar dela (Parolin 2002), como por exemplo, germinação hipógea, cotilédones carnosos, grandes e persistentes, sementes grandes, folhas longevas e esclerófilas, crescimento lento. Segundo Parolin (2001, 2002) as adaptações morfológicas são limitadas em virtude da baixa disponibilidade de nutrientes no igapó. De uma maneira geral, pode-se dizer que em termos de composição florística os plantios abtiveram sucesso em comparação com as florestas naturais de igapó. No entanto, é possível que no futuro as florestas artificiais formem um mosaico de formações vegetais com graus distintos de similaridade florística. Neste contexto, é importante considerar múltiplos destinos alternativos (Choi 2007) para a avaliação do sucesso do processo de restauração no lago Batata. 2. Análise da efetividade dos plantios e trajetórias ecológicas A análise dos atributos estruturais e de diversidade revelou uma tendência à convergência de valores em relação à floresta natural de igapó, com exceção da área basal e cobertura de copa (vide Tabela 17 e Figura 7). As florestas de igapó são sistemas sujeitos à inundação sazonal, fator que, além de influenciar diretamente a distribuição e o estabelecimento das plântulas (Klinge et al. 1995), reduz a duração da estação de crescimento das plantas (Schongart et al. 2005). As condições desfavoráveis e a baixa disponibilidade de nutrientes na água contribuem para o lento crescimento das espécies plantadas. Neste caso, é importante a promoção de práticas capazes de acelerar o 170 processo de restauração no lago Batata, como por exemplo, a adição de liteira concomitantemente à adição de sementes (Dias et al. 2012). Os resultados aqui encontrados demonstram que as atividades de restauração conduzidas nas margens do lago Batata apresentaram sucesso em termos estruturais e de diversidade. De acordo com Zedler & Callaway (1999) o sucesso da restauração deve ser avaliado com base na estrutura e no funcionamento do ecossistema, no entanto, os autores consideram mais importante restaurar o componente estrutural inicialmente. Portanto, torna-senecessário que o processo de monitoramento seja continuado para acompanhamento do crescimento e mortalidade das espécies plantadas. Assim, será possível avaliar a necessidade de replantio de mudas em áreas com alta mortalidade de plantas, como por exemplo, as áreas mais baixas dos plantios, sujeitas a períodos maiores de inundação. Além disso, é essencial que atributos de funcionamento ecossistêmico, como por exemplo, acúmulo de matéria orgânica no solo, presença de microorganismos no solo, presença de agentes polinizadores, sejam monitorados e comparados com os valores encontrados nas florestas de igapó natural. 3. Modelagem de estados futuros com base em tipos funcionais de plantas A modelagem dos dados demonstrou que a atividade de reabilitação no lago Batata não necessariamente conduzirá as florestas artificiais a um estado similar aquele encontrado nas florestas naturais de igapó. Portanto, é essencial neste caso, considerar distintos alvos ao avaliar o sucesso das práticas adotadas. É importante ressaltar que a projeção futura é uma probabilidade e não uma certeza. Ela serve como base a avaliação de metas, e para o desenvolvimento de um modelo de referência, que engloba as realidades contemporâneas e antecipa direções futuras no desenvolvimento da trajetória do ecossistema histórico (Clewell & Aronson 2007). 171 Apêndice 3: Resultados das ANOVAs hierarquizadas para a comparação dos atributos estruturais e de diversidade mensurados em florestas artificiais e florestas naturais de igapó localizadas em áreas marginais do lago Batata - Porto Trombetas, Pará. Variável dependente Altura (m) Diâmetro (cm) Cobertura (%) 2 Área basal (m /ha) Densidade (indivíduos.ha-1) Sobrevivência dos indivíduos plantados (%) Riqueza de espécies plantadas (sp/25m2) Fonte da variação Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro g.l. 3 8 468 3 8 468 3 8 468 3 8 468 3 8 468 2 6 351 QM 0,69 0,46 0,05 1,55 0,85 0,10 1,56 0,95 0,06 0,00 0,00 0,00 6,76 0,94 0,07 21,07 3,17 0,14 F 13,07 8,67 p 0,00* 0,00* 15,69 8,59 0,00* 0,00* 24,04 14,71 0,00* 0,00* 27,55 0,62 0,00* 0,76 92,01 12,83 0,00* 0,00* 152,27 22,91 0,00* 0,00* Idade Áreas (Idade) Erro 3 8 468 6,50 0,44 0,04 159,29 10,75 0,00* 0.00* Valores seguidos por asterístico são siginificativos (α=0,05). 172 Apêndice 4: Resultados das ANOVAs hierarquizadas para a comparação dos atributos estruturais e de diversidade mensurados em florestas artificiais e florestas naturais de igapó (considerando apenas a regeneração natural) localizadas áreas marginais do lago Batata - Porto Trombetas, Pará. Variável dependente Altura (m) Diâmetro (cm) 2 Cobertura da copa (m ) 2 Área basal (m /ha) -1 Densidade (indivíduos.ha ) Densidade de espécies (espécies/25m2) Fonte da variação g.l. QM F p Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro Idade Áreas (Idade) Erro 3 8 468 3 8 468 3 8 468 3 8 468 3 8 468 3 8 468 0,14 0,09 0,02 0,13 0,15 0,03 0,03 0,04 0,00 0,00 0,00 0,00 0,61 1,86 0,12 0,36 1,08 0,06 8,64 5,43 0,00* 0,00* 4,72 5,40 0,00* 0,00* 5,51 7,65 0,00* 0,00* 1,59 1,79 0,19 0,08 5,15 15,71 0,00* 0,00* 5,57 16,86 0,00* 0,00* Valores seguidos por asterístico são siginificativos (α=0,05). 173 REFERÊNCIAS BIBLIOGRÁFICAS Anand, M. & Desrochers, R.E. 2004. Quantification of restoration success using complex systems concepts and models. Restoration Ecology 12 (1): 117-123. Bozelli, R.L., Esteves, F.A. & Roland. F. 2000. Mitigação do impacto: passado, presente e futuro. In: Lago Batata: impacto e recuperação de um ecossistema amazônico. Eds: Bozelli, R.L., Esteves, F.A. & Roland, F. IB-UFRJ/SBL, 342p. Brower, J.E., Zar, J.H. & van Ende, C.N. 1988. Field and laboratory methods for general ecology. WCB. McGraw-Hill, 273p. Carlucci, M.B., Streit, H., Duarte, L.D.S & Pillar, V.D. 2012. Individual-based trait analyses reveal assembly patterns in tree sapling communities. Journal of Vegetation Science 23: 176–186. Choi, Y.D. 2007. Restoration Ecology to the future: a call for new paradigm. Restoration Ecology, 15 (2): 351-353. Clewell, A.F. & Aronson, A. 2007. Introduction and Essential Background. In: Ecological restoration: principles, values, and structure of an emerging profession. Ed.: Clewell, A.F. & Aronson, A. Island Press. Dale, V.H. & Beyeler, S.C. 2001. Challenges in the development and use of ecological indicators. Ecological Indicators, 1: 3-10. de Moraes et al. 2010. Restauração florestal: do diagnóstico de degradação ao uso de indicadores ecológicos para o monitoramento das ações. Oecologia Australis, 14 (2): 437-451. de Oliveira, R.E. 2011. O estado da arte da ecologia da restauração e sua relação com a restauração de ecossistemas florestais no bioma mata atlântica. Tese de doutorado. Universidade Estadual Paulista “Júlio de Mesquita Filho”. 241p. 174 Dias, A.T.C., Bozelli, R.L., Darigo, R.M., Esteves, F.A., dos Santos, H.F., FigueiredoBarros, M.P., Nunes, M.F.Q.S., Roland, F., Zamith, L.R. & Scarano, F.S. 2012. Rehabilitation of a bauxite tailing substrate in Central Amazonia: the effect of litter and seed addition on flood-prone forest restoration. Restoration Ecology 20 (4): 483–489. Enríquez, M.A.R.S. 2009. Mineração e desenvolvimento sustentável - é possível conciliar? Revista Iberoamericana de Economía Ecológica, 12: 51-66. Disponível em: URL: http://www.redibec.org/IVO/rev12_04.pdf. Acesso em 05/10/2010. Esteves, F.A. 2000. Princípios ecológicos para mitigação do impacto antrópico. In: Lago Batata: impacto e recuperação de um ecossistema amazônico. Eds: Bozelli, R.L., Esteves, F.A. & Roland, F. IB-UFRJ/SBL. 342p. Estrada, C.H.E.D. 2007. Aporte de matéria orgânica oriunda de planície de inundação em ambiente aquático na Amazônia Central (PA). Dissertação de Mestrado. Universidade Federal de Juiz de Fora. 107p. Ferreira, L.V. & Almeida, S.S. 2005. Relação entre a altura de inundação, riqueza específica de plantas e o tamanho de clareiras naturais em uma floresta inundável de igapó na Amazônia Central. Revista Árvore, 29 (3): 445-453. Fonseca, C.R. & Ganade, G. 2001. Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology, 89: 118–125. Hammer, O., Harper, D.A.T. & Ryan, P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Eletronica 4 (1): 9. Jones, R.H., Sharitz, R.R., Dixon, P.M., Segal, D.S. & Schneider, R.L. 1994. Woody Plant Regeneration in Four Floodplain Forests. Ecological Monographs, 64 (3): 345-367. 175 Junk, W.J., Bayley, P.B. & Sparks, R.E. 1989. The flood pulse concept in riverfloodplain systems. In: Proceedings of the International Large River Symposium Can. Spec. Publ. Fish. Aquat. Sci. Ed.: Dodge, D.P. pp. 110-127. Klinge, H., Adis, J. & Worbes, M. 1995. The vegetation of a seasonal várzea forest in the lower Solimões river, Brazilian Amazonia. Acta Amazônica 25: 201-220. Lapa, R.P. 2000. A bauxita e o rejeito da bauxita. In: Lago Batata: impacto e recuperação de um ecossistema amazônico. Eds: Bozelli, R.L., Esteves, F.A. & Roland, F. IB-UFRJ/SBL. 342p. Liu, J. & Ashton, P.S. 1995. Individual-based simulation models for forest succession and management. Forest Ecology and Management 73 (1-3): 157–175. Lockaby, B.G., Conner, W.H. & Mitchell, J. 2008. Floodplains. In: Encyclopedia of ecology: Ecosystems. Eds.: Jørgensen, S.E. & Faith, B.D. Vol. 2. Elsevier, Oxford. Magurran, A.E. 1988. Ecological diversity and its measurements. Princeton University Press. MRN (Mineradora Rio do Norte). 2009. Relatório de demonstrações contábeis. Disponível em: http://www.mrn.com.br/index_1024.htm. Acesso em 02/09/2010. Müller-Dombois, D.H. & Ellenber, 1974. Aims and Methods of Vegetation Ecology. John Wiley, New York. Orloci, L., Anand, M. & He, X. 1993. Markov chain: a realistic model for temporal cenosere? Manuscript form of Biometrie-Proximetrie 33: 7-26. Parolin, P. 2001. Seed germination and early establishment of 12 tree species from nutrient-rich and nutrient-poor Central Amazonian floodplains. Aquatic Botany 70: 89–103. Parolin, P. 2002. Radial gradients in wood specific gravity in trees of central Amazonian floodplains. IAWA Journal 23 (4): 449– 457. 176 Pillar, V.D. 1999. On the identification of optimal plant functional types. Journal of Vegetation Science 10: 631-640. Pillar, V.D. & Sosinski, E.E. 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 323-332. Pillar, V.D., Duarte, L.S., Sosinski, E.E. & Joner, F. 2009. Discriminating traitconvergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science 20: 334–348. Reis, L.L. 2006. Monitoramento da recuperação ambiental de áreas de mineração de bauxita na Floresta Nacional Saracá-Taquera, Porto Trombetas (Pará). Dissertação de Doutorado. Universidade Federal Rural do Rio de Janeiro, 159p. Ruiz-Jaen M.C. & Aide T.M. 2005. Restoration success: How is it being measured? Restoration Ecology 13: 569-577. Schongart, J., Piedade, M.T.F., Wittmann, F., Junk, W.J. & Worbes, M. 2005.Wood growth patterns of Macrolobium acaciifolium (Benth,) Benth, (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145: 454– 461. SER (Society for Ecological Restoration). 2004. The SER International Primer on Ecological Restoration, Available http://www.ser.org/content/ecological_restoration_primer.asp. in: Access in: 04/10/2010. Twilley, R.R., Rivera-Monroy, V.H., Chen, R., & Botero, L. 1998. Adapting an Ecological Mangrove Model to Simulate Trajectories in Restoration Ecology. Marine Pollution Bulletin 37 (8-12): 404-419. Zar, J.H. 1999. Biostatistical Analysis. Prentice Hall, 662 pp. 177 Zedler, J.B. & Callaway, J.C. 1999. Tracking wetland restoration: do mitigation sites follow desired trajectories? Restoration Ecology, 7 (1): 69–73. 178 FINAL REMARKS 179 FINAL REMARKS Practice and theory when considered interdependent are mutually benefited through a constant improvement that comes from a dynamic relationship (Serafim 2001). Within this perspective, this thesis aimed to integrate the knowledge derivated from a literature review embedded on the theoretical framework of “Ecology” and a restoration initiative conducted in an Amazonian lake. The literature review identified a bias in the studies of vegetation dynamics modelling towards native vegetation from temperate zones of the Northern Hemisphere over tropical artificial forests. Moreover, studies conducted in the perspective of “Restoration ecology” frequently used statistical analyses rather than ecological modelling, and few restoration efforts projected successional trajectories and future scenarios. This gap was filled through the analysis, from the perspective of ecological modelling, of the success of an artificial forest planted to rehabilitate an impacted Amazonian lake. This approach enabled (a) a better understanding about the artificial tropical forest assemblage rules, (b) the identification of multiple targets for restoration of lago Batata, (c) the possibility of development of a novel ecosystem in 75 years, (d) and that restoration has not yet reached the goal of establishing a self-sustainable artificial forest in lago Batata. Regarding the complex nature of ecological systems and spatial-temporal variability of ecological phenomena, many environmentalists say it would be impossible to construct ecological generalizations in the form of laws, as in physics and chemistry. On the other hand, there are those who believe in the existence of such generalizations, although there is no consensus about their identities (El-Hani 2006). According to Kingsland (1995) apud El-Hani (2006), this dichotomy highlights the tension between two tendencies of ecological literature: bottom-up approach that valorizes case studies 180 and top-down approach that relies on theories to explain the casualties of particular situations. The discussion about the adequacy of these trends permeates another point of controversy: can Ecology, due to epistemological limitations and its low degree of predictability, be applied to solve practical problems? Studies show that both approaches, bottom-up and top-down, when used to treat problems related to biological conservation, appear effective and complementary (Shrader-Frechette & McCoy 1993, Scarano 2006). However, the literature shows inclination to use the bottom-up approach to address issues related to environmental management and conservation, given the greater predictability and thus better basis for decision making (Shrader-Frechette & McCoy 1993, Giacomini 2007), fact also indicated by the results found in this thesis. 181 REFERENCES CDB/UNEP. 2010. Strategic Plan for Biodiversity 2011 – 2020 and the Aichi Targets: living in harmony with nature. Available in: http://www.cbd.int/sp. Access in: 30/05/2011. El-Hani, C.N. 2006. Ecological generalizations. Oecologia Australis, l0 (1). Giacomini, H.C. 2007. Sete motivações teóricas para o uso da modelagem baseada no indivíduo em ecologia. Acta Amazonica, 37 (3): 431-446. Scarano 2006. Plant community structure and function in a swamp forest within the Atlantic rain forest complex. Rodriguesia, 57 (3): 491-502. Serafim, M.C. 2001. A falácia da dicotomia Teoria-Prática. Revista Espaço Acadêmico, 7. Disponível http://www.espacoacademico.com.br/007/07mauricio.htm. Acesso em: em 04 de setembro de 2010. Shrader-Frechette, K., and E. D. Mccoy. 1993. Method in Ecology - Strategies for Conservation. Cambridge University Press, Cambridge. 182 ANEXO 1 TROPICAL ARTIFICIAL FORESTS D.J. Capossoli, J.B.B. Sansevero, M.L. Garbin, F.R. Scarano, (2009), TROPICAL ARTIFICIAL FORESTS, in International Commission on Tropical Biology and Natural Resources, [Eds. Kleber Del Claro,Paulo S. Oliveira,Victor Rico-Gray,Ana Angelica Almeida Barbosa,Arturo Bonet,Fabio Rubio Scarano,Francisco Jose Morales Garzon,Gloria Carrion Villarnovo,Lisias Coelho,Marcus Vinicius Sampaio,Mauricio Quesada,Molly R.Morris,Nelson Ramirez,Oswaldo Marcal Junior,Regina Helena Ferraz Macedo,Robert J.Marquis,Rogerio Parentoni Martins,Silvio Carlos Rodrigues,Ulrich Luttge],in Encyclopedia of Life Support Systems(EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] [Retrieved July 23, 2011] 183 TROPICAL ARTIFICIAL FORESTS D.J. Capossoli, J.B.B. Sansevero, M.L. Garbin, F.R. Scarano Universidade Federal do Rio de Janeiro, CCS, IB, Depto. Ecologia, Brasil Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, Brasil Keywords: Exotic Species, Forestry, Monoculture, Productive Forests, Restoration Ecology Contents 1. Introduction 2. Concepts, Definitions and Purposes 3. Historical Aspects 4. Quantitative Data 5. Criticisms and Ways to Increase Sustainability of Planted Forests 6. Case Studies in the Tropics 7. Conclusions Related Chapters Glossary Bibliography Biographical Sketches 184 Summary Artificial forests comprise non-native and/or native tree species and differ from natural forests in structure, composition, intensity of management, orderliness and uniformity. Natural habitat loss represents the main threat to the maintenance of biodiversity in the tropical region. Artificial forests may help alleviate the damaging consequences of the loss of natural forests on ecological, social and economic basis providing effective ways to reduce the pressure over remaining natural forests. Here, we provide a brief overview about artificial forests implementation efforts in the tropics. We address some important concepts on the topic as well as historical and quantitative aspects. Illustrative case studies are presented and commented. We conclude that, if properly projected and managed, artificial forests in the tropics can contribute to ecological restoration efforts. For this, special attention to key aspects is needed such as the spatial scales over which plantations are implemented and the integration of protective and production efforts. The higher productivity and biodiversity of tropical forests provide a challenging and mostly unexplored potential to tackle these objectives. 185 1. Introduction Natural habitat loss represents the main threat to the maintenance of biodiversity in the tropical region. It is caused by deforestation, land conversion and degradation which are motivated by the increasing demand for agricultural, urban and industrial areas. Every year ca. thirteen million hectare of native forests are lost in the world, which is a problem mostly concentrated in Latin America, Caribbean and Africa (FAO 2007). Only tropical humid forests decreased about 2.36 % in its area between 2000 and 2005 (Hansen et al. 2008). Those anthropogenic impacts create novel ecosystems which have different structural and functional characteristics and alter the ecosystem services provided by tropical forests, such as climate control, water cycling, erosion and sediment retention, nutrient cycling and soil formation. Current deforestation rates and the increasing accumulation of degraded areas in tropical regions reveal the urgency of human interventions to restore biodiversity, functions and provisions of ecological goods and services, mainly in poor agricultural zones. In addition, there is an increasing demand for wood and non-wood products that may not be fulfilled by the remaining natural forests. Within this context, distinct types of artificial forests may help filling the gap led by the loss of natural forests on ecological, social and economic basis (Lamb et al. 2005), and may provide effective ways to reduce the pressure over remaining natural forests. Artificial forests cover globally about 2 % of land area, which represents 7 % of global forest area (about 300 million hectares). In spite of its low quantitative representation in relation to global forested area, they provide more than half of the industrial wood produced in the world. Those forests are found from boreal to tropical zones, and can use native or introduced tree species, although exotic species are more common in tropical plantations designed for timber production or rural development. In the tropics, artificial forests cover about 88 million hectare (Evans & Turnbull 2004). Here, we aimed to give an overview about artificial forests implementation efforts in the tropics and their role to improve the production of goods and services, and to restore and recover degraded land. In order to tackle these objectives, we first briefly review the main concepts and terms related to planted forests theoretical framework. Brief historical and quantitative aspects are addressed along with the potential of artificial forests to contribute to restoration efforts and the criticism associated with their implementation in tropical areas. Finally, some case studies are presented. 2. Concepts, Definitions and Purposes Artificial forests differ from native forests in that they comprise both non-native and native tree species and differ in structure, composition and intensity of management and because of the orderliness and uniformity that they show. Agricultural areas, gardens, agroforestry systems, 186 enrichment planting and linear planting are not included in this definition. The terms ‘artificial’, ‘planted’ and ‘human-made forests’ are all synonyms of forest plantations and will be used interchangeably hereafter. Planted forests have multiple purposes, though their targets may be polarized in production or protection forests. The types of interfaces of these planted forests with natural forests perform a continuum and, in some cases, they may be very similar to natural adjacent forests. On one hand, there are productive plantations which are defined by the rotation period. Fast-wood plantations may be smaller in extent than longer-rotation plantations and demand huge financial and technological investments. They are usually composed by a single species and are intensively managed reaching maturity faster and producing 1 - 2 times more wood/hectare/year than longer-rotation plantations. Longer-rotation softwood plantations are less productive and take 20 to 35 years to reach maturity. They occupy 2 to 3 times more lands than the fast-wood plantations and require longer investment periods. Logs yielded have higher timber quality and income value, so those kinds of plantations have a much higher financial return. Furthermore, as their biodiversity values depend on local management practices and the landscape context, they may contribute effectively to improve local economies and also to provide biodiversity benefits. Production forests, both from long and fast-wood plantations, may use native and/or exotic tree species. On the other hand, there are protective forests established for provision of environmental services (soil and water protection) and sustain habitats for biodiversity maintenance. They may be composed by native or non native tree species. This category includes efforts for recovering degraded areas, aiming biodiversity restoration and/or conservation. Thus, in the tropics, they constitute a major challenge to the scientific community, environmental agencies and private initiative due to the high diversity of these forests. These approaches, protection and production, should ideally provide both, goods and ecosystem services, but in different proportions (Figure 1). However, the optimization of productive, environmental and social benefits is a challenging enterprise. There is a handful of reasons to implement artificial forests: (i) to compensate ecological and economic losses as well as social impoverishment caused by deforestation; (ii) to supply raw materials for industry such as pulp, paper and high-quality products for both, domestic uses and exportation; (iii) to restore, recover and rehabilitate degraded sites in order to increase biological diversity and/or ecosystem services as well as genetic diversity; (iv) the higher wood productivity of planted forest when compared to native forests; and (v) other purposes such as rural development, to provide firewood, windbreaks, protection of water sources for irrigation, and may also be used to carbon sequestration and storage. 187 Tree cover has significant positive impacts in environmental protection. It can reduce soil erosion, slow wind speed, trap airborne sand and dust particles, moderate the forces of rain and slows water runoff after heavy rain. Farther, in a context of degraded tropical areas, the establishment of tree cover means the first step in soil rehabilitation and land restoration. Tree cover, whether artificial or natural, protects soil and reduces erosion through (i) high filtration rates reducing surface runoff and soil transport, (ii) binding action of roots increasing soil stability in slopes and reducing erosion, (iii) forest canopy, understory and ground layers acting in rainfall interception dissipating rain force, (iv) reducing wind speed force and consequent wind erosion, (v) presence of litter and humus layer reducing erosion and increasing moisture retention. Vegetation cover has also effects on the hydrology of a watershed as it reduces soil erosion preventing loss of fertile topsoil and increase retention of sediments. Tree cover also act in shelter provision through shelterbelts, thus reducing wind velocity, filtering airborne particles of sand and dust, protecting animals, agricultural crops and habitations (Evans & Turnbull 2004). Figure 1. Planted forest for production or protection and their relationship with economical and biodiversity benefits. Traditional monoculture plantations mostly generate just financial benefits (production planted forests). Plantations aiming protection maximize diversity and/or ecosystem services having few direct financial benefits at least in the short term. Optimal benefits are attained by: (i) initially aiming financial benefits by using few plant species, generally monocultures, and, after some cutting cycles, diversity in the site is enhanced with native tree species increasing biodiversity and/or ecosystem services; and (ii) high diversity plantations may be managed by harvesting only tree species that maximize economic profit. Modified from Lamb et al. (2005). 3. Historical Aspects Trees always had important roles for human societies and for global ecosystem functioning. To many people they are sacred and have been used for ceremonial and religious purposes. For others the relation is material as consequence of their dependence on wood and non-wood products, such as raw material, food and drink, medicinal compounds, ornaments, source of perfume, and many other utilities. Thus, the act of planting trees is an old practice. In fact, the first evidence of a woody species planted may have been the olive tree (Olea europaea) early in 4000 BC in Greece (Evans & Turnbull 2004). 188 Until late 1800s industrial plantations were not needed due to the low population density and the great availability of natural forests which were sufficient for human demanding for forest products in tropical regions. The introduction and test of exotic species were the main activities associated to plantation forestry by that time. Extensive plantations became a more usual practice by 1900, mainly in countries with little availability of natural forests and where European settlers have been established (Cossalter & Pye-Smith 2003, Evans & Turnbull 2004). Wood production plantations were mainly composed by Pinus patula, P. elliottii, P. taeda and Eucalyptus spp. in South Africa, P. elliottii and Araucaria cunninghamii in Australia, and Eucalyptus spp. in India and Brazil (Table 1). Plantations designed for non-timber products were mainly composed by rubber tree (Hevea brasiliensis) in Malaysia, and Australian black wattle (Acacia mearnsii) in Australia. These plantations were also present in South Africa (115 000 ha) and Kenya (25 000 ha), and others countries, such as, Zimbabwe, Tanzania, India, and Brazil (Evans & Turnbull 2004). After 1945, artificial forests became an important subject, and planting programs started to be developed for industrial purposes, pulpwood, sawtimber, and also for supplying of human needs and also for environmental protection. This trend was observed in the eastern and western Europe, United States, New Zealand, South Africa, India, Chile, Indonesia and Brazil. Japan, Korea and China promoted massive restorations programs later, in the 1950s. In the tropical and subtropical regions, plantations were established based on large-plantations programs from the sixties. In fact, land covered by planted forests in the tropical region tripled between 1965 and 1980 (Cossalter & Pye-Smith 2003). Large wood and pulp production transnationals companies had important roles on the establishment of artificial forests worldwide aiming to produce homogeneous, abundant and cheaper raw materials. Many organizations, by that time, were responsible for the establishment of protective plantings. In the world, 30 % (ca. 1.4 million hectare) of the 4.5 million hectare of new artificial forests established annually have failed. The problem associated to these plantations has its roots in socio-economic and environmental factors, and in some cases contributed for the failure of industrial plantations. Socio-environmental conflicts appear as a result of inadequate practices. Responsible management of artificial forests is hindered by the lack of post-planting maintenance, fires and pests, low priority given technical knowledge and adequate public policies, including laws and regulations, appropriate link between plantations and industrial consumers, poor marketing, and the end of external financial support (Evans & Turnbull 2004, FAO 2006). Certification schemes and specific instruments that ensure the application of best practices for sustainable forest management can be viewed as important developments as they ensure high standards of silviculture and management (Evans & Turnbull 2004). 189 Protective plantations implemented specifically for reforestation of exposed lands date from one of the most ancient Chinese Empire, the Chou Empire (ca. 1100-256 BC). The following empires continued to encourage reforestation and stimulated the planting of trees for wood and timber production (Evans & Turnbull 2004). Well documented initiatives of protective forests implementation date from the first half of the 19th century. In South America, probably the first project of environmental restoration was made in the city of Rio de Janeiro (Brazil) in 1882. During the construction of the city of Rio de Janeiro, a great amount of wood originated from the Atlantic Forest was used. Additionally, sugarcane, coffee plantations, and pastureland gradually substituted the original vegetation. The deforestation caused problems in the city water supply, and reduced soil fertility. This situation urged human intervention, and from 1862 to 1874, Major Manuel Gomes Archer was nominated by Emperor D. Pedro II to start the reforestation project. With a few slaves he planted about 72.000 seedlings of native and exotic tree species. Initially targeted to restore ecosystem services, the project is now one of the most successful restoration enterprises in the world. 4. Quantitative Data In the last decades, rates of increase of planted forests reflected the growing demand for forest products. Annually, 4.5 million ha of artificial forests are planted in the world. From this total, 48% are designed and managed to produce material for the wood processing industries and 26% are established for non-industrial uses, such as fuelwood and environmental protection. The remaining has unspecified purposes. Five countries account for 65% of the world’s plantations: China, United States, the Russian Federation, India and Japan (Cossalter & Pye-Smith 2003). The total area occupied by production forests around the world is estimated in 10 million ha with an average rate of increasing about 0.8 to 1.2 ha (Cossalter & Pye-Smith 2003). The five countries with the largest area of planted forests in the world are: China, India, United States of America, Russian Federation and Japan (FAO 2007). In the last 35 years there was an increment of about 13 times in the planted area in tropical and subtropical regions in the world (Figure 2). This increase is mainly due to the increment in the Asiatic continent where the greater contribution is due to China and India achievements in the area. Both, these countries have the largest planted area in tropical and subtropical regions, followed by Indonesia, Brazil and Thailand (Evans & Turnbull 2004) (Figure 3). The great increment in area occupied by those forests indicates that a larger portion of wood removals may come from forest plantations in the future. In general, tropical and subtropical regions have higher productivity than temperate zones plantations and natural forests in same region. Although the planted total area in temperate zones are greater than tropical and subtropical regions (about 88 million ha for tropical and subtropical planted forests [Evans & Turnbull 2004] vs. ca 99 million ha for temperate planted forests [FAO 190 2001]), these account for the greatest productivity. For instance, the mean annual increment for the genera Pinus ranges from about 5 to 14 m3/ha/year in Europe (FAO 2006 [global planted forests]) whereas for tropical and subtropical regions this rate may range from 16 to 30 m3/ha/year (SBS 2007) (Table 1). However, this increment may significantly vary according to site quality, species behavior, genetic material, plantation age and forest management. For the fast growing species (e.g. Eucalyptus and Pinus), growth rates are highest in favorable temperatures, higher soil fertility and soil water-storage capacity. Table 1 shows the main tree species used in the four countries with the highest planted area in tropical and subtropical regions. The most used trees are from genera Eucalyptus, Pinus and Acacia, and the species Tectona grandis (FAO 2006). Together, Eucalyptus and Pinus comprise 43 % of all planted area in the tropics (FAO 2001). For Eucalyptus, this expansion is due to the great plasticity of the genus to acclimate to different environmental conditions, to the great variety of commercial products that they give origin as charcoal, pulpwood, plywood, wood panel, and secondary products such as essential oils and honey. Therefore, final products determine the forest management. Brazil has the greatest mean annual increment in volume (m3/ha/year) in Eucalyptus plantations when compared to India and Indonesia. Even using similar rotation lengths, Brazil reaches 525 m3 per ha. In Brazil, the main tree species planted are: Eucalyptus grandis, E. urophylla, E. robusta, E. saligna and their hybrids. The Pinus species planted in tropical and subtropical regions originate mainly from the American and Asian tropics and, in the same way as Eucalyptus, their productivity in different countries varies drastically (Table 1). The great popularity of Pinus is due to the great number of species used in the plantings which allow for a greater flexibility to choose the best species for a given environmental condition. Also, this allows maintenance or increase in volume production even under unfavorable site conditions, choice of species suited for reforestation and for simple silviculture, and to give uniform coniferous wood valued for production of lumber, pulpwood, paper and particleboard. The main planted species in South and Central America are Pinus caribaea, P. elliottii, P. taeda and P. oocarpa. In Asian the predominant species are Pinus roxburghii, P. massoniana, P. tabulaeformis, P. merkusii (Table 1). Tectona grandis is another tree species which has its planted area enormously increased in the last decades. Though the largest fraction of planting sites in the world is concentrated in the Asian continent (94%), growth rate results indicate that the tree species has great potential for countries like Brazil for example (Table 1). The species fast expansion in production initiatives may be explained by establishment limitations of other valuable tree species that have more specific ecological requirements and higher susceptibility to disease and insect attack. Thus, due to wood specific characteristics such as durability, stability, and fungal resistance, the species 191 has a high market value and is used for civil and naval construction and also for furniture. For these kinds of uses, large piece sizes are needed. Thus, the cutting cycle of the tree is longer than other planted tree species (Table 1). The hardwood tree species Dalbergia sissoo and Swietenia macrophylla are cultivated under these same conditions. Protective forests in the world are increasing in planted area. In 1990 they covered 296 million ha, in 2000 they increased to 335 million ha, reaching, in 2005, 541 million ha (FAO 2007). However, this increment is not homogeneously distributed. Whereas some regions increased in planted area: Asia and the Pacific regions (4.5 million ha), Europe (13 million ha) and Latin America and Caribbean (3 million ha); the same was not true for Africa which decreased from 21.4 million ha in 1990 to 20.6 million ha in 2005. Figure 2. Increase of the planted area in tropical and subtropical areas in the world and in the different continents. Adapted from Evans & Turnbull 2004. 192 Figure 3. Countries with the highest planted area (thousands hectares) in tropical and subtropical regions. Oceania (480 000 ha) and Central America (1 311 000 ha) had the lowest total planted area and were not shown in the figure. Adapted from Evans & Turnbull (2004). 193 Table 1. Countries with highest planted area in tropical and subtropical regions, planted tree species and growth parameters. Mean annual increment (MAI) - (m3/ha/years); Rotation length (Years); Harvested volume (m3/ha). (Source: FAO 2006, SBS 2007). Rotation Harvested MAI length vol. (m3/ha/year (Years) (m3/ha) ) Country /Species Family A min max min max min max INDIA Dalbergia sissoo Roxb. Eucalyptus spp. Gmelina arborea Roxb. Pinus roxburghii Sarg. Shorea robusta A.DC. Tectona grandis L.f. CHINA Cunninghamia lanceolata Lamb. Pinus massoniana Lamb. Castanea mollissima Blume Populus spp. Pinus tabulaeformis Hort. ex K.Koch Larix spp. INDONESIA Acacia mangium Willd. Eucalyptus spp. Paraserianthes falcataria (L.) I.C.Nielsen Pinus merkusii Jungh. & de Vriese Swietenia macrophylla King Tectona grandis L.f. BRAZIL Acacia mearnsii De Wild. Araucaria angustifolia (Bertol.) Kuntze Eucalyptus spp. Mimosa scabrella Benth. Pinus spp. Tectona grandis L.f. Fabaceae Myrtaceae Lamiaceae Pinaceae Dipterocarpac eae Lamiaceae 4 8 15 3 6 21 23 5 30 7 18 80 40 15 30 100 4 6 80 100 5 11 34 Taxodiaceae Pinaceae Fagaceae Salicaceae 3 3 1 9 14 16 6 18 Pinaceae 3 Pinaceae 100 119 295 201 58 127 268 18 15 30 20 30 30 40 35 44 42 30 67 405 489 240 199 7 35 45 107 325 4 9 43 49 143 335 Fabaceae Myrtaceae 20 8 32 21 6 7 12 15 110 100 200 295 Fabaceae 22 44 7 13 139 166 Pinaceae 2 14 10 50 100 197 Meliaceae Lamiaceae 5 5 10 11 29 34 50 58 111 127 154 268 Fabaceae 16 25 10 20 43 138 Araucariaceae 17 25 10 18 150 525 Myrtaceae Fabaceae Pinaceae Lamiaceae 40 25 30 15 7 8 15 20 21 14 25 25 127 80 130 250 268 350 304 350 30 10 16 10 A - The Angiosperm Phylogeny Group II was adopted for taxonomic classification (APG II 2003). 194 5. Criticisms and Ways to Increase Sustainability of Planted Forests Common arguments against planted forests include: (i) their implementation is made on sites formerly occupied by native forests; (ii) loss of biodiversity, proportional to the plantation size; (iii) the roads built to transport planted wood may serve to exploration of native adjacent forest areas; (iv) there may be alterations in water cycle; (v) monocultures may be more vulnerable to disturbances, diseases, and biological invasions; (vi) acidification of soil and water; (vii) harmful changes in the physical, chemical and biological conditions of the soil; and (viii) displacement of the local flora and fauna. These negative impacts depend on the planted species, history of the site and forest management practices, making generalization a risky task that may lead to inappropriate conclusions and recommendations. In face of these problems, can commercial plantations of exotic tree species offer an opportunity to increase biodiversity, improve ecosystem services and also provide social benefits? This may be seen as a controversial topic since plantations are typically viewed as sterile monocultures with little biodiversity and, therefore, harmful to the environment. Recently new approaches for traditional industrial plantations have been developed since they provide a way by which extensive degraded tropical areas can be reforested. Aware that production plantations support less biodiversity and comprise different communities than natural forest, they can still be projected and managed to compensate for forest loss in the tropics. Though the use of monocultures may seem controversial, they offer an effective tool to vegetation recover in tropical areas. Commercial plantations have also great potential for the recuperation of degraded native tropical forests where anthropogenic impacts are extensive through soil amelioration, creation of habitats for seed-dispersing wildlife, and microclimate alteration that favors establishment of wood vegetation. They may also help increasing its species diversity by providing nurse effect for the regenerating native forest (Lugo 1997). Since native forest rebuilding may be a slow process and there is a need for sustainable actions to improve the standard of living, large-scale reforestation programs may use fast-growing trees to accomplish two objectives: (i) restore the biological control of watershed hydrology, and (ii) to produce high value forest products. Clearly, the increase in biodiversity and the improvement on ecosystem services and social achievements of commercial plantations passes through a series of steps. In other words, plantations may produce a “catalytic effect”: they might facilitate natural regeneration representing an important management tool for restoration of degraded lands. Therefore, the role of artificial and native forests is complementary and compatible in different landscape and regional contexts. In the tropics, there is a sequence of events where the understory of monocultures allow for successful tree species reestablishment on degraded sites (Lugo 1997): (i) proper site preparation and species selection; (ii) changes in the abiotic environment provided by the trees such as 195 shade, humidity, temperature and soil chemistry; (iii) protection of the understory trees from fire, harvesting, weeding and grazing; (iv) wildlife attracted into the site in searching for food, and provided forest structure; (v) wind, water and wildlife disperse propagules from the surrounding areas; and (vi) planted species may fail to regenerate under their own canopy allowing other species to grow in. This events offer a basis for management of exotic tree species plantations. However, implementing such strategy has advantages and shortcomings and plantations must be managed adequately. Different approaches to improve the biodiversity of tree plantations may be hindered by slow growth of native species with an incomplete silvicultural knowledge, more complicated management of higher diversity systems and more complex marketing. Approaches that would keep the economic gain in timber and increase biodiversity of plantations include: using indigenous instead of exotic species, creation of species mosaics, embed the monoculture in a matrix of intact or restored vegetation, use mixed species plantations rather than monocultures or encouraging high diverse understory monocultures. Key points to consider when restoring tropical forests include the species to be chosen (Table 2), seedling establishment related issues such as getting appropriate seeds and allowing adequate conditions for plant growth, making the restoration effort economically attractive to land managers, and finally allowing recolonization of reforested areas by native flora and animals (Lamb 2005). The introduction of exotic tree species may be a necessary step in some degraded sites in order to help the restoration process. It is important to realize that there is a myth around the use of exotic tree species in restoration and conservation efforts. This is probably due to harmful forestry practices. For instance, the impact of eucalypt plantations on water resources is no different than that of other forest monocultures. In a wider perspective, FAO (2006) suggests some principles for good practices on planted forests, divided into four categories: institutional, economical, social and cultural and environmental. They will be summarized as follow: Institutional principles Good governance: governments should facilitate an environment of stable economic, legal and institutional conditions; Integrated decision-making and multi stakeholder approaches: policymakers should encourage integrated decision-making by stakeholders in planning, managing and utilizing planted forests; Effective organizational capacity: deliver knowledge, technology and other support services for sound management. Economical principles Recognition of the value of goods and services: planted forests, whether productive or protective, should be recognized for their provision of both 196 market and non-market benefits, including wood and non-wood forest products and social, cultural and environmental services; Enabling environment for investment: governments should create the enabling conditions to encourage investors to make long-term investments; Recognition of the role of the market: Investors should design their planning and management to respond to signals from international and national markets: establishment and management of planted forests should be market- rather than production-driven, unless established for environmental, protective or civic reasons. Social and cultural principles Recognition of social and cultural values: Social and cultural values should be taken into consideration in planning, managing and using planted forests; Maintenance of social and cultural services: adopting planning, management, utilization and monitoring mechanisms to avoid adverse impacts. Environmental principles Maintenance and conservation of environmental services: planted forest management will impact the provision of ecosystem services. Thus planning, management, utilization and monitoring mechanisms should be adopted in planted forests in order to minimize negative impacts and promote positive ones, as well as to maintain or enhance the conservation of environmental services; Conservation of biological diversity: incorporating the conservation of biological diversity at stand, forest and landscape levels; Maintenance of forest health and productivity: ensure that planted forests are managed so as to maintain and improve forest health and productivity and reduce the impact of abiotic and biotic damaging agents; Landscape approach: management of landscapes for social, economic and environmental benefits: as planted forests interact with and impact local land uses, livelihoods and the environment, integrated planning and management approaches should be adopted within a landscape or watershed to ensure that upstream and downstream impacts are planned, managed and monitored within acceptable social, economic and environmental standards. Production oriented plantations may be viewed as simplified ecosystems and often constitute monocultures where the successional process is intentionally interrupted. However, these planted 197 forests may be planned in order to maximize biodiversity in tropical regions and have the potential to complement the efforts made in the ambit of restoration ecology and conservation biology. In areas where disturbance limits or modifies natural regeneration mechanisms, ecological restoration techniques must be applied to restore community structure and ecological processes. Planting trees is one of the most widespread ecological restoration strategies in the world. The plantations may act breaking barriers that hinder natural regeneration and producing a catalytic effect on secondary succession facilitating natural regeneration of native vegetation, improving soil quality and reestablishing ecological interactions. Factors, such as the particular tree species planted, soil conditions and the location of the plantation in the landscape may affect the effectiveness of plantation efforts to restore diversity and functions. The understanding of the interaction of those factors with natural regeneration is fundamental for the development of more effective restoration strategies. However, a common problem is how we can evaluate success in a restoration project. The success of a restoration program must take into account structural components of the plant community, species diversity and ecological processes. Preferentially, at least two variables of each component should be evaluated (Ruiz-Jaen & Aide 2005). This success may also be interpreted as a continuum from the beginning of the project implantation until the establishment of the attributes that will ensure the sustainability and ecosystem functioning. Another fundamental aspect is that these results must be compared in some way to a reference system. The area, or areas, to be compared to the restored site should be preferentially located near to this site and subjected to the same large scale environmental conditions, such as climate and soil. Table 2. Priority species for use in planting programs for forest restoration. Species that Important in Improve soil fertility (nitrogen-fixing Reducing the need for fertilization species for example) Creating appropriate microclimate conditions Grow rapidly Are attractive to frugivores by and excluding weeds mutualistic interactions, sustain Improving seed dispersal, maintaining wildlife in unfavorable periods are wildlife populations, and colonizing sites that would not be occupied otherwise poor dispersers Are rare or threatened Modified from Lamb et al. (1997) Increasing local population sizes 198 6. Case Studies in the Tropics 6.1. Productive Plantations Brazil is broadly recognized for its production forests, even though the experience is relatively recent. Brazilian level of productivity in wood production is related to its climate and soil conditions, research and technological development and specialized workmanship. One of the most successful Brazilian initiatives comes from Aracruz SA (Figure 4). The company is the world leader in production of bleached eucalyptus pulp, and has 24% of the global supply of the product (Aracruz Celulose 2007). Bleached eucalyptus pulp is currently used to manufacture printing and writing, tissue, and high value added specialty papers. Aracruz established its first industrial plantation in 1978 at southeast Brazil, and nowadays its forestry operations occur 286.099 hectares of plantation distributed in four Brazilian states (Espírito Santo, Bahia, Minas Gerais and Rio Grande do Sul). Annually, ca. 3.000.000 tons of cellulose are produced, and mainly exported to North America (34%), Europe (41%) and Asia (23%). The averaged age of wood varies from site to site, and ranges from 6.4 to 9.7 years. Harvest cycle varies from 6 to 8 years. Forestry practices are certified by the Cerflor (Brazilian System of Forest Certification) recognized internationally by the Programme for Endorsement of Forest Certification Schemes (PEFC). Besides plantations, the company possesses 170.191 hectares of native reserves intended to protect plantations, combat pests, and maintain environmental balance and biodiversity. It also foments eucalyptus plantation for more than 3.000 agricultural producers that are benefit as they complement the income gotten through the farming activity. Aracruz also invests on production of more than 1.000.000 native seedlings that are donated to those agricultural partners and used in the recovery of degraded areas. 199 Figure 4. Eucalyptus sp. plantantions established by Aracruz S.A. at Minas Gerais State, Brazil. Source: Fabio Mareto 6.2. The Use of Multiple Native Tree Plantations for Restoring a Conservation Unit in Brazil In 1993, the Botanical Garden of Rio de Janeiro started a project to facilitate and increase the forest cover in the Poço das Antas Biological Reserve (PABR), a federal conservation unit. The aim was to develop and test different approaches of restoration ecology by planting native tree species (Figure 5). With a total area of 5,160 ha, PABR forests are the last refuge of an endangered and endemic monkey species, Leontopithecus rosalia L., known as golden lion tamarins. The tree species chosen for the restoration effort have three characteristics: rapid growth, being attractive to frugivores thereby improving seed dispersal, and have great seed availability for seedling production. Twelve planting sites with a varying size from 0.8 to 1.5 ha were established and a total of 40 native tree species were tested. After 4 years, the mortality was about only 10 % and a total of 28 not planted native tree species were recorded into the sites. The biomass fixed in these planting sites, proxy measured by basal area (25 m2/ha), were similar to that of old-growth forests (24 m2/ha). The rapid biomass increase inhibited the growth of the exotic grasses Panicum maximum and Brachiaria mutica, which otherwise would outcompete regenerating tree seedling from the sites and hence facilitate the establishment of other tree species in the planted forest understory (Moraes et al. 2002). 200 Figure 5. Multiple native tree plantations established at Poco das Antas Biological Reserve, Rio de Janeiro State, Brazil. Source: Tania S. Pereira 6.3. Pure and Mixed Plantation at La Selva Biological Station, Costa Rica Plantations were established between 1987 and 1990 to test the development of native and exotic tree species and also the performance of different planting treatments for both production and protection. They were established in areas of abandoned pastures, a common scenario in the region. A total of 80 tree species were tested, 51 of native, 15 from other regions of Costa Rica and 14 of exotic trees. The treatments were assigned to mixed plantings (8-12 species) and monocultures and the results showed that mixed planted forests have productivity equal or higher than monocultures. Mixed plantations showed beneficial effects on soil by increasing organic matter and cation retention (Montagnini & Porras 1998). The presence of late successional tree species was greater in the mixed plantations. Also, natural regeneration, as measured by density and richness, was greater in all mixed plantations when compared to an abandoned pasture and to monocultures (Carnevale & Montagnini 2002). These results highlights the facilitative role of plantations in accelerate secondary succession. 6.4. Forest Restoration of Bauxite-Mined Sites in Central Amazon, Brazil In 1979, the Brazilian mining company Mineração Rio do Norte S.A. established a restoration program in areas formerly utilized for bauxite mining at Porto Trombetas, western Pará State, 201 Brazil (Parrotta & Knowles 1999). Mining activities causes an annual loss estimated in 20003000 ha of tropical forests and although the area directly affected may be smaller than that used for agriculture for example, their impacts can be magnified due to erosion and runoff resulting in siltation and deterioration of water quality in nearby water bodies. This large scale initiative, aiming the rehabilitation of 100 ha of mined land per year, had critical steps for its implementation including: seed viability, phenological and germination studies in order to determine the more effective propagation method, and careful site preparation before planting. Plantations were assigned to a 2 x 2 m spacing (2,500 plants per ha) using seedlings, cuttings or seeding. Reforestation treatments were mixed planting with native tree species (about 70 species from different successional groups), mixed planting using commercial tree species (both native an exotic), direct seeding (48 early successional tree species) and natural regeneration (secondary succession after topsoil replacement). Vegetation structure and floristic composition in each treatment were analyzed between 1995 and 1997. Both, planted component development and natural regeneration were observed. There was an increase in the number of species in all treatments when compared to the number of planted species. Between 70-83 % of the species richness and about 88-98 % of seedling densities and larger individuals (more than 2 m high) in the sites were individuals originated from the seed bank and from outside sources (Parrotta et al. 1997). However, landscape structure had a substantial effect on the regeneration in the sense that richness and density were positively correlated in the natural regeneration treatment as the distance to natural forests diminished. Total species richness had strong variation among reforestation treatments. Mixed plantation with native species presented the higher number of species (141) and the mixed plantation with commercial tree species the lowest number of species (40) (Parrotta et al. 1997). Overall, the results showed that mixed plantations using native species and the use of alternative techniques, such as seeding, facilitate the establishment and natural regeneration of local diversity. 6.5. The Application of Different Plantation Styles to Deforested Areas in Queensland, Australia Between 1900 and 1950 mainly vast areas of tropical forests were deforested in eastern Australia. In the last decades there was an increase of reforestation efforts integrating ecological, social and economical aspects. In one of these efforts, different reforestation methods were implemented and were compared, based on various community attributes (such as canopy cover, basal area and abundance of wood stems, life forms, understory and ground cover), to naturally regenerated sites (old-field regrowth) and to reference sites (old-growth forests) in order to measure the degree of development of these plantations (Kanowski et al. 2003). Plantations varied with objective, production or restoration, species richness and plantation age. The 202 treatments comprised (i) young and old monoculture timber plantations, (ii) Mixed-species cabinet timber plantations and (iii) restoration plantings. Monoculture timber plantations used different tree species, namely Araucaria cunninghamii, Agathis robusta, Flindersia brayleyana and Toona ciliata. The mixed-species cabinet timber plantations were established by the Community Rainforest Reforestation Program (CRRP). Plantations comprised indigenous rainforest tree species, Eucalyptus trees and some exotic cabinet timber trees. The planting sites have between 6-22 years old and comprised a mixture of trees and shrubs (20 to 100 native species) in high density plantations (6.000 stems/ha) (Lamb et al. 1997). Old monoculture timber plantations were strongly similar in structural characteristics such as canopy cover, basal area and density of woody stems, to reference sites. Understory occupancy by herbaceous plants and grasses was inversely correlated to canopy cover. Epiphytes, hemi- epiphytes and lianas had low density in all plantations, except in old monoculture timber plantations. These old monocultures and restoration plantations were more similar to reference sites than the others treatments. These results have some implications to the management and design of artificial forests. Perhaps, the most important, is that long rotation period monocultures may have a structural complexity very similar to preserved forests. 6.6. Regeneration of Native Tree Species under Eucalyptus Plantations in Southeastern Brazil The study of Silva Junior et al. (1995) well exemplifies how productivity and biodiversity conservation might be reconciled. They have found underneath an Eucalyptus grandis stand the regeneration of 123 tree Atlantic rainforest species in 1.37 hectare, which was comparable to the 124 species found in 1 hectare of a neighboring natural forest. Such regeneration was possible from the moment human activities inside the plantation were halted (6 years prior to the survey) and also to the proximity of a large natural forest nearby where seeds possibly came from. The dominant species of the study site, Apuleia leiocarpa, was not frequently seen among adults and regenerants of the control site, suggesting that species composition and vegetation structure in the study site was more typical of an intermediate stage of succession, contrasting with adults and regenerants of the control site which are typical of climax or near-climax vegetation. However, this is indicative of a very high success of initial recuperation of biodiversity and demonstrates how productive monocultures may also serve the purpose to promote species enrichment in such areas. 7. Conclusions Most of the attempts to restore forests with protective plantations are made over small spatial scales. This is in contrast with the scale where production forests are implemented. There is a 203 need for integrative approaches linking productive and protective plantations. Planting trees should move beyond the mere action implicit on it. Both, productive and protective efforts will gain more if each moves towards one another. This means bringing more economic return to protective forests and also forcing production forests to provide significant ecosystem services and increased biodiversity. Tropical ecosystems provide a great, and mostly unexplored potential, to increase both, economic and ecological returns using artificial forests due to their higher productivity and biodiversity. 204 Glossary : Is the storage of carbon dioxide (usually captured from the atmosphere) in a Carbon sequestration solid material through biological or physical processes and storage Cutting cycle : The period of time between major harvests in a stand. Ecosystem services : Refer to habitat biological or system properties or processes of ecosystems. Example: climate and water regulation, erosion control, soil formation, nutrient cycling, biological control, etc. Exotic species : A common definition of the term is when a species is outside its native distributional range and arrived by human agency. Synonyms as nonindigenous, introduced, invasive or alien species are also common. Fast-wood plantation Forest management : Intensively managed commercial plantations producing wood at high growth rates (no less than 15 m3/ha of MAI) being harvested in less than 20 years. Hardwood Lumber : Trees with broad, flat leaves as opposed to coniferous or needled trees. : Wood or wood products used for construction. Old-growth forests : In tropical region an old-growth forest often has large individual trees, a multilayered crown canopy, a significant accumulation of coarse woody debris and high species richness. : A system of practices for stewardship and use of forest land aimed at fulfilling relevant ecological (including biological diversity), economic and social functions of the forest in a sustainable manner. Particleboard : Panels manufactured by bonding wood particles with synthetic resins under heat and pressure. : A building panel made by gluing together thin layers of wood. Alternating Plywood grain directions from one layer to the next adds strength. : Wood suitable for use in paper manufacturing. Pulpwood Rehabilitation : To re-establish the productivity and some, but not necessarily all of the original species diversity of the forest previously present before the site was degraded. Rehabilitation will mean that many, though not necessarily all, of the original functions and processes will have been re-established. : To re-establish the structure, productivity and species diversity of the forest Restoration previously present before the site was degraded. Ecological restoration means the original functions and processes will also have been re-established. This is difficult to achieve and to verify. Rotation length : The number of years required to grow a stand to a desired size for login. Sawtimber : Wood of large enough size to be used to produce lumber for construction and furniture. Seedling : A young plant growing from its seed. Silviculture : The art, science and practice of establishing, tending and reproducing forest stands of desired characteristics. It is based on knowledge of species characteristics and environmental requirements. Softwood plantations : Plantations using any tree of the gymnosperm group, including pines, hemlocks, larches, spruces, firs, and junipers. Softwoods often are called conifers although some, such as junipers and yews do not produce cones. 205 Bibliography Aracruz Celulose. (2007). Annual and sustainability report. FULLTEXT ONLINE: http://www.aracruz.com/minisites/ra2007/section/en/matriz_materialidade/index.html [Annual report on forestry activities by a paper producing company in Brazil] Carnevale N.J. & Montagnini F. (2002). Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. Forest Ecology and Management 163: 217-227 [This paper provides insights on the use of plantations to accelerate natural forest succession] Cossalter C. & Pye-Smith C. (2003). Fast-Wood Forestry: Myths and Realities. 59 pp. Center for International Forestry Research (CIFOR): Jakarta, Indonesia. FULLTEXT ONLINE: http://www.cifor.cgiar.org [This work address historical, environmental, social and economic issues related to fast-wood plantations] Evans, J. & Turnbull, J.W. (2004). Plantation forestry in the tropics. 467 pp. Oxford University Press: Oxford, UK [A 24-chapter book dedicated to tropical plantation forestry. It is divided in four parts that covering different aspects of artificial forests, from environmental, social and economic aspects to silvicultural practices, rural development and sustainability] Food and agriculture organization of the United Nations (FAO). (2001). Future production from forest plantations. Report based on the work of C. Brown. 16 pp. Rome. FULLTEXT ONLINE: http://www.fao.org/forestry [A modeling work providing future scenarios estimates for industrial roundwood production] Food and agriculture organization of the United Nations (FAO). (2006). Responsible management of planted forests: voluntary guidelines. 73 pp. Rome. FULLTEXT ONLINE: http://www.fao.org/forestry [This working paper report provides guidelines suggesting 12 guiding principles aiming the sustainable management of planted forests] Food and agriculture organization of the United Nations (FAO). (2007). State of the world’s forests. 144 pp. Rome. FULLTEXT ONLINE: http://www.fao.org/forestry [A report that describes the dimensions of the forest sector in the world, including a perspective on planted forests] Hansen, M.C., Stehman, S.V., Potapov, P.V., Loveland, T.R., Townshend, J.R.G., Defries, R.S., Pittman, K.W., Arunarwati, B., Stolle, F., Steininger, M.K., Carroll, M. & Dimceli, C. (2008). Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proceedings of the National Academy of Sciences 105 (27): 9439-9444 [The article provides global estimates of tropical forest clearing] Kanowski, J., Catterall, C. P., Wardell-Johnson, G. W., Proctor, H. & Reis, T. (2003). Development of forest structure on cleared rainforest land in eastern Australia under 206 different styles of reforestation. Forest Ecology and Management 183: 265-280. [Case study on the application of combined restoration strategies in Australia] Lamb, D., Parrotta, J., Keenam, R. & Tucker, N. (1997). Rejoining habitats remnants: restoring degraded rainforest lands. In: Tropical Forest Remnants: ecology management, and conservation of fragmented communities (Eds Laurance, W. & Bierregaard Jr., R. O.) pp 366-385. The University of Chicago Press: Chicago, United States [The text deals with the application of distinct restoration techniques and presents a variety of case studies in the tropical region] Lamb, D. (2005). Restoring Tropical Moist Broad-Leaf Forests. In: Forest Restoration in Landscapes. (Eds Mansourian, S., Vallauri, D. & Dudley, N. In cooperation with WWF International. pp. 291-297. Springer: New York, United States [The text provide key elements to keep in mind when attempting to restore tropical forests] Lamb D., Erskine P.D. & Parrotta J.A. (2005). Restoration of degraded tropical forest landscapes. Science 310: 1628-1632 [Probably, the most influential review on the restoration of tropical forests] Lugo A.E. (1997). The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. Forest Ecology and Management 99: 9-19 [Important article on the role of monocultures to restore tree species richness] Montagnini F. & Porras C. (1998). Evaluating the role of plantations as carbon sinks: An example of an integrative approach from the humid tropics. Environmental Management 22: 459-470 [Important study on the use and impacts of mixed forest plantations to increase biomass accumulation] Moraes, L. F. D., Luchiari, C., Assumpçao, J. M., Puglia-Neto, R. & Pereira, T. S. (2002). Atlantic Rainforest Restoration by the Rio de Janeiro Botanic Garden Research Institute. In ”Plant Conservation in the Tropics” (Eds Maunder, M., Clubbe, C., Hankamer, C. & Grove, M.) p. 151-170. Kew Publishing, London. [Case study on a forest restoration effort to produce new habitats for a threatened species of monkey] Parrotta J.A., Knowles O.H. & Wunderle J.M. (1997). Development of floristic diversity in 10year-old restoration forests on a bauxite mined site in Amazonia. Forest Ecology and Management 99: 21-42 [This work provides an analysis of understory and overstorey floristic composition, light conditions, soil properties, and also dispersal syndromes in Amazon reforestation sites] Parrotta J.A. & Knowles O.H. (1999). Restoration of tropical moist forests on bauxite-mined lands in the Brazilian Amazon. Restoration Ecology 7: 103-116. 207 Ruiz-Jaen M.C. & Aide T.M. (2005). Restoration success: How is it being measured? Restoration Ecology 13: 569-577 [The work provides important recommendations for effective evaluation of restoration efforts] Silva Junior M.C., Scarano F.R. & Cardel F.D.S. (1995). Regeneration of an Atlantic Forest formation in the understorey of a Eucalyptus-grandis plantation in South-eastern Brazil. Journal of Tropical Ecology 11: 147-152. [Case study on natural regeneration of rainforest underneath Eucalyptus plantation] Sociedade Brasileira de Silvicultura (SBS). (2007). Fatos e números do Brasil florestal. 109 pp. Brasil. pp 107. SBS: Sao Paulo, Brazil. [The text presents facts and numbers about planted and native forests in Brazil as well as important informations about the forest sector activity in the country] 208 Biographical Sketches Danielle Justino Capossoli is a doctoral student at the Graduate Programme in Botany at the Botanical Gardens of Rio de Janeiro, Brazil. She is currently interested in ecological models to describe and predict restoration and successional processes. Jerônimo Boelsums Barreto Sansevero is a doctoral student at the Graduate Programme in Botany at the Botanical Gardens of Rio de Janeiro, Brazil. He is currently interested in ecological models to describe and predict restoration and successional processes. Mário Luís Garbin is a doctoral student at the Graduate Programme in Ecology at the Universidade Federal do Rio de Janeiro, Brazil. He is currently interested in plant-soil interaction, spatial ecology and ecological modeling. Fabio Rubio Scarano is a forester and Professor of Plant Ecology at the Ecology Department of the Universidade Federal do Rio de Janeiro, Brazil. He is currently the Research Director of the Botanical Gardens of Rio de Janeiro. His present research interests are Community Ecology (in which of the lines focus on restoration ecology) and Plant Ecophysiology, with particular focus on the vegetation types that are marginal to the Atlantic rain forest and on the floodplain forests of the Amazon. To cite this chapter D.J. Capossoli, J.B.B. Sansevero, M.L. Garbin, F.R. Scarano , (2009), TROPICAL ARTIFICIAL FORESTS, in International Commission on Tropical Biology and Natural Resources, [Eds. Kleber Del Claro,Paulo S. Oliveira,Victor Rico-Gray,Ana Angelica Almeida Barbosa,Arturo Bonet,Fabio Rubio Scarano,Francisco Jose Morales Garzon,Gloria Carrion Villarnovo,Lisias Coelho,Marcus Vinicius Sampaio,Mauricio Quesada,Molly R.Morris,Nelson Ramirez,Oswaldo Marcal Junior,Regina Helena Ferraz Macedo,Robert J.Marquis,Rogerio Parentoni Martins,Silvio Carlos Rodrigues,Ulrich Luttge],in Encyclopedia of Life Support Systems(EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] [Retrieved July 23, 2011] ©UNESCO-EOLSS Encyclopedia of Life Support Systems 209 ANEXO 2 MODELING THE SUCCESS OF RESTORATION IN TROPICAL ECOSYSTEMS Artigo em preparação para subimissão ao periódico New Forests: Garbin, M.L, Sansevero, J.B.B, Capossoli, D.J, Durigan, G, Engel,V.L, Faria, S.M, Ganade, G, Madureira, C, Marques, M.C.M, Melo, A.C.G, Pereira, T.S, Rodrigues, P.F.J.P, Scarano, F.R, Sosinski, E.E, Zamith, L.R and Pillar, V.P. Modeling the success of restoration in tropical ecosystems. 210 Abstract Optimization of ecological restoration in the Brazilian Atlantic forest demands a model allowing predicting how initial conditions might determine the final stages of restoration projects. In highly diverse ecosystems such attempts should be especially difficult due to the greater complexity of such systems. Here, we propose a general model to predict sucessional trajectories based on the variation of plant functional traits to be applicable to tropical forests. The model is composed of six steps, all of which are fully independent and consolidated in the ecological literature. Plant functional types are defined and changes in functional composition are tracked by Markov chain modeling. Future states of environmental conditions and the effects of changes in functional diversity in altering such conditions can be analyzed. A matrix of attractors is used in combination to linear models to provide an assessment for comparison with a reference system. The model aims to provide a way to predict the effects of different restoration strategies in altering ecosystem properties and the way that different environmental conditions (community attributes or ecosystem effects) alter the functional composition of successional ending points. It is expected that the application of the model under different environmental conditions within a wide variety of restoration approaches will provide ways to anticipate the effectiveness of restoration success efforts in the Brazilian Atlantic Forests. Key words: restoration ecology, tropical forests, plant functional types, successional trajectory. 211 A general empirical model to restore the Atlantic Forest Current estimates of remaining Brazilian Atlantic Forest cover ranges from 11.4% to 16% mostly distributed in small and spaced fragments. Nature reserves are responsible for only 9% of the remaining forest and 1% of the original forest (Ribeiro et al. 2009). These forests comprise a priority area for conservation (Myers 2000), as their high diversity systems with high levels of endemism and remnants under severe anthropogenic pressure (Morellato & Haddad 2000). The loss of great extensions of forests is problematic not only because many species may become extinct (Silva & Tabarelli 2000) but also because of the loss of ecosystem services (e.g. climate control, carbon sequestration and storage, control of soil erosion), which negatively affect many aspects of human well being (Diaz et al. 2007). To increase current forest cover, there are strictly two options: stimulate spontaneous recovery or forest restoration (Brown & Lugo 1994). Since spontaneous recovery is a very slow process that may span more than a century (Liebsch et al. 2008), forest restoration is a necessity rather than an option. Rodrigues et al. (2009) reviewed experiences on the restoration of Brazilian Atlantic Forests and concluded that neither all past efforts did not attained self-perpetuating forests. The authors pointed out that forest reconstruction is feasible and it is dependent on the strategies applied and on the surrounding landscape conditions. Some of the greatest challenges include the reduction of costs and the selection of species for planting. The latter should be based not only on their light requirements, but also on community-level traits such as phenology, dispersal syndromes, ability of vegetative reproduction and to fix nitrogen, deciduousness and litter production. Thus, the identification of complementary functional roles of the species and their effects on ecosystem and community characteristics are fundamental aspects to be incorporated into restoration projects in the Atlantic Forest. Up to now these aspects are waiting effective application. We argue that restoration efforts of tropical forest ecosystems are hindered by the lack of predictive power of the different restoration initiatives. Most of the restoration efforts in the Brazilian Atlantic rainforest consists on isolated attempts focused on the fast recover of the ecosystem structure and function (Ferretti & Debritez 2006), comparisons of methodologies (Souza & Batista 2004) and the trade-offs between efficiency and costs (Engel & Parrota 2001; Bruel et al. 2010). The evaluation of the success of those restoration models are based on a posteriori analysis of ecosystem structure and processes (such as biomass accumulation, diversity, etc.) which are obviously slow and weakly predictable. Predictive models that work on a wide range of environmental conditions are a fundamental tool to increase our efficiency in restoring tropical forest ecosystems. Restoration is an interventionist activity in essence (Hobbs & Cramer 2008). The objective is to create conditions prompting the ecosystem to follow what is believed to be its natural pathway (SER 2004). Moreover, the final condition of the restored system should be similar to the 212 believed ecosystem state before disturbance (SER 2004). The successional trajectory in a restoration effort may take several different pathways having a complex nature, i.e., nonlinear, unpredictable, and leading to multiple attractors, turning modeling into an inevitable demand (Anand & Desroches 2004; Suding & Hobbs 2008). Also, most studies are based on a small set of variables not covering diversity, vegetation structure, and ecological processes all together (Ruiz-Jaen & Aide 2005). The use of community level approaches to understand restoration processes would render better results as they provide a more holistic view of the successional trajectories (Anand & Desroches 2004). In this context, success has been rarely assessed in restoration projects (Ruiz-Jaen & Aide 2005). The problem is how to determine the ending point of a restoration and how it may be affected by initial conditions (Moore et al. 1999). This knowledge would enable us to change management practices in order to redirect the trajectory to what is believed to be its natural pathway, or redirect it to any other target. We propose here an empirical model that allows description and prediction of successional trajectories in restoration projects of vegetational communities based on plant functional types (PFTs). Initially, our focus is in the Atlantic forests. The model is composed of six steps aiming to describe and predict the response of PFTs to a wide range of environmental conditions. Our interest on PFTs in restoration modeling is pragmatic. They are used as a simplification tool allowing the study of different ecosystems dynamics. The optimization of restoration efforts depends on knowing how predictable the successional trajectory is once the initial environmental conditions are well known or established. An effective model should allow the treatment of temporal changes in PFTs and the adjustment to different environmental conditions. Plant functional types and their relevance in restoration efforts Restoration projects in the Brazilian Atlantic Forest it seems to be much more concerned with species diversity than functional diversity (Rodrigues et al. 2009; Aronson et al. 2011). However, planting systems with high species richness but with a low functional diversity (high functional redundancy), in this case, a higher proportion of early successional tree species had their development negatively affected due to premature death of the early tree species (Souza & Batista 2004; Parrota & Knowles 1999). But there are other reasons to use functional aspects when evaluating the success of a restoration project. First, the recovery processes in tropical ecosystems may take very different pathways and a common trend is that diversity and ecosystem properties, such as biomass and nutrient retention, may be restored despite attaining earlier species composition (Finegan 1996; Guariguata & Ostertag 2001; Denslow & Guzman 2000). Overall, ecosystem properties tend to be less responsive to environmental changes than species composition (Ernest & Brown 2001). 213 In this way, the same recovery process in terms of ecosystem properties may be attained by different species compositions. Thus, the importance of restoring original species composition to determine forest function is still an insufficiently tested subject in the tropics (Guariguata & Ostertag 2001). Secondly, tropical forests may show a high functional redundancy so that up to 75% of the species may be lost before losing the first functional group (Fonseca & Ganade 2001). Therefore, when comparing restored stands to a reference system, we may have different species composition but similar functional diversity. This would be possible wherever component species display high levels of functional redundancy. The use of functional traits in restoration practices is just beginning (Funk et al. 2008; Aubin et al. 2009). Most studies are based on a priori definition of functional groups such as early/late successional differentiation or by different dispersal syndromes (Rodrigues et al. 2009). In regard to the tropics, high species diversity imposes a severe limitation to modeling such an enormous complexity. However, the use of plant functional types provides a simplification tool and enhances our understanding about structure and function of restoration and natural regeneration processes (Gitay et al. 1999; Chazdon et al. 2009). When included in predictive models they also provide a way to produce robust generalizations and effective ways to simulate the vegetation dynamics (Noble & Gitay 1996; Pausas 2003). However, a central problem is to determine functional groups in the context of forest restoration. The concept of PFT is that species may be grouped according to similar responses to environmental conditions and/or similar effects on ecosystem processes (Lavorel & Garnier 2002; Diaz & Cabido 1997; Cornelissen et al. 2003). Specifically, a PFT may be defined as “a group of plants that, irrespective of phylogeny, are similar to a given set of traits and similar in their association to certain environmental variables” (Pillar & Sosinsky 2003). These variables are factors to which plants are responding, e.g. soil conditions, or their effects in ecosystem processes such as biomass production and litter accumulation. Identification of PFTs is primarily made in three different ways (Gitay & Noble 1997): a) subjective, defined in an inductive way; b) deductive, when a functional classification is derived from a priori model about the importance of specific processes or properties of ecosystem functioning; and c) by using multivariate data analysis. In the latter, the search for PFTs generally involves a sequence of steps from deciding which type of functional group is needed, selecting the criteria for inclusion of species and which functions should be considered, choosing the traits to be measured, and applying multivariate methods to the species–trait matrix (Fonseca & Ganade 2001). Within this perspective, there are three fundamental approaches (Pillar & Sosinski 2003): those using only one matrix, e.g. species by traits, matrix (Grime et al. 1997); those using a two matrix approach, species by traits and a species by communities matrix (Diaz & Cabido 1997); and a three matrix approach, species by traits, species by communities, and environmental variables by 214 communities (Pillar 1999; Pillar & Sosinski 2003). The main limitation of using one or two matrices approaches is that plant types are not defined at all and there is no guarantee that the PFTs so defined may reflect a direct relationship with ecosystem processes (functional effect groups) or environmental factors (functional response groups). In the three matrix approach, optimization algorithms are used to refine subsets of traits and based on these subsets, find types with maximum association with environmental factors or effects. The model we present here formalizes a general way to define PFTs and modeling successional trajectories in restoration practices and secondary forests in Brazilian Atlantic Forest. The model Optimization of restoration efforts will be possible after we know the initial conditions of the system, define the functional redundancy of the system’s components and how changes in composition affect ecosystem properties and, finally, how changes in environmental conditions affect the community properties. In this way, the model is composed by six steps (Fig. 1); all of them are independent and fully consolidated in the ecological literature (see Orloci et al. 1993; Legendre & Legendre 1998; Pillar 1999; Pillar & Sosinski 2003). In the first step, numerical analyses are used to search relevant traits and define PFTs. In the second step, a transition matrix based on markovian models is applied to a matrix of PFTs by sites and an attractor matrix is generated. The third step aims to give linear equations and/or ordinations scores describing the relationship between the attractors and environmental factors or experimental treatments. The fourth step establish the relationship among PFTs and community-level attributes, and in the fifth step, linear equations produced in step 4 are applied to the attractors matrix to give a matrix of futures stables states (EF). This matrix is compared to a reference system’s matrix in the last step. 215 W X P A Product: matrix X * PFTs variables PFTs E1 sites sites variables B Step 3: predicting the response of PFTs to environmental conditions Each vector of X is used to build P PFTs sites traits OTUs Step 2: setting the successional endpoint PFTs Step 1: identifying PFTs E2 P Products: Linear equations Product: matrix A Ordination scores X sites variables sites variables PFTs sites PFTs sites A EF E1 Applied to Product: Linear equations Step 4: setting the relationship among ecosystem effects and the PFTs Product: matrix EF Step 5: predicting ecosystem effects using the attractors Compared to a Reference system Step 6: comparing to a reference system Figure 1. General overview of the model to guide restoration efforts for Brazilian Atlantic Forests. OTUs are operational taxonomic unities (individuals, local populations, species, or any other taxonomic unities); B, describes populations by traits; W, describes the sites by the densities of OTUs; E1, describes sites by community attributes and/or ecosystem effects; X is the optimized composition of PFTs; P, a transition matrix for a given restoration effort; A, the attractor’s matrix; E2, a matrix containing environmental factors or experimental treatments; EF, a matrix of future states to be compared to a reference system. 216 Step 1: Indentifying PFTs The first step is the search and definition of PFTs. It is based on the method described in Pillar (1999), Pillar & Sosinski (2003) and Pillar & Orloci (2004). The data are organized in three matrices (Figs. 1 and 2): matrix B describes operational taxonomic unities (OTUs) by traits; matrix W describes the sites by the quantities (densities) of these OTUs; matrix (E1) describes the sites by variables (qualitative or quantitative) such as environmental and disturbance factors or ecosystem effects. OTUs are individuals, local populations, species, or any other taxonomic unities to which the trait description refers (Pillar et al. 2009). The matrix B is based on the selection of a larger trait set based on past experience and known practicality, which is used for community description (Pillar et al. 2003). A problem, however, is which traits to choose in order to build this larger trait set. Despite specific goals of the study, plants face common challenges in order to successfully occupy a given site. These may be grouped into three main categories: dispersal, establishment and persistence (Weiher et al. 1999). We suggest a list of relevant traits to define PFTs specific for restoration of Brazilian Atlantic Forests and grouped them according to these three categories (Table 1). Matrix W describes the sites or, in an operational perspective, communities {see Palmer & White 1994) by the presence/absence or quantities of these populations, such as the density of species in the sites. We suggest a useful criterion of inclusion is of woody species equal to or higher than 50 cm tall. The third matrix (E1) describes the sites by community attributes (Table 2). The definition of PFTs process is recursive and the objective is to search traits and find optimal PFTs (Fig. 2). The analytical procedure is to find a subset of traits and based on it to define plant functional types so that a maximum association is revealed with environmental factors or effects (Pillar & Sosinski 2003). Through this recursive algorithm, at any given iteration a subset of traits is extracted from the initial set in matrix B and, based on this matrix, population types more similar are identified by cluster analysis or by degrees of belonging of an OTU to a type (Pillar & Sosinski 2003). Based on the functional types, the quantities of corresponding populations on matrix W are pooled and a reduced matrix of types by sites is obtained (Matrix X). The dissimilarities among sites, or communities, are calculated (matrix D). The congruence is obtained by matrix correlation between D and the dissimilarity matrix of community variables (see Table 2) using E1 matrix (matrix Δ). At each recursive step, a new subset of traits is selected in matrix B and a new cluster analysis is used to indentify functional types of populations. The partition level that maximize the objective function, that is, for each partition level defining PFTs, a new matrix X is generated by 217 pooling, within communities, the performance values of populations belonging to the same PFTs (Pillar & Sosinski 2003). 218 Table 1. Plant traits relevant to be used in matrix B in the restoration model. Categories* Functional traits Dispersal Dispersal syndrome (biotic or abiotic) 1, diaspore size seed longevity3. Establishment Growth rate (slow, medium, rapid)1,3; nitrogen fixation ability1,2, leaf length 2,3 , leaf area 2,3, specific leaf area3, leaf dry matter content3, tolerance to stress (flooding, drought)1,3, shade tolerance 1,2. 1,2,3 , seed mass 2,3 , and Potential height1,3, maximum longevity1, maximum DBH1,2,3, wood density1,3, phenology (evergreen, deciduous, semideciduous)1,2,3, leaf length2,3, leaf area2,3, specific leaf area3, leaf dry matter content 3, pollination syndrome (wind, birds, mammals, large and small invertebrates) 1,3, resprouting ability (present, absent)3, life form (tree, shrub, liana) 1,2,3, shade tolerance1,2, sexual system (hermaphrodite dioecious, monoecious) 1,2,3. 1 Data from literature; 2 Data from herbarium; 3 Field and experimental measures; * see Weiher et al. (1999) Persistence In addition, trait convergence and trait divergence assembly patterns may be decoupled in the analytical process allowing revealing traits and types maximally associated to environmental filters and biotic interactions (e.g. competition). In this case, fuzzy types are used and X indicates the performances of the types fuzzy weighted by traits (Pillar et al. 2009). The product of interest in this step is matrix X (Pillar 1999; Pillar & Sosinski 2003). This matrix contains n sites by PFTs and represents the optimal composition of PFTs at a given site. PFTs so defined are expected to be more functional than PFTs defined using non-optimal traits (Pillar 1999). The matrix X is the basis for the next step. 219 populations Traits Sites B W W Pooling population quantities according to types populations Traits C Cluster analysis Sites F X variables PFTs Different partition levels Subset of traits Traits E1 D Δ ρ(D; Δ) Figure 2. General overview of step 1. An algorithm to find optimal trait subset in PFT based data of matrices (B, W and E1). ῤ(D,∆) – Mantel correlation. For details see Pillar & Sosinski (2003). Table 2. Community variables to be used in matrix E1 in the restoration model Categories Variables Structure Total basal area, total density, DBH size variation (Gini coefficient), plant area index (PAI), invasive grasses cover, total sapling density (50 - 100 cm tall) Diversity Life form richness (pteridophytes, mosses, lichens, epiphytes, hemi-epiphytes, herbs, shrubs, trees, lianas and parasites), richness, equitability 220 Ecological processes Proportion of newly recruited plants (two categories: less than 50 cm tall and higher than 50 cm), presence of nodulation by nitrogen fixers, litter deposition (biomass/ha/year), litter moisture, soil organic matter and pH 221 Step 2: Predicting the successional trajectory Ecology has seen in the last two decades a shift in emphasis from an equilibrium perspective centered in deterministic processes, closed and internally homogeneous systems with directional changes to a nonequilibrium perspective, where indeterminism, frequent disturbances, heterogeneity, scale, multiple steady states and system openness are the main attributes of ecological systems (Allen & Hoekstra 1992; Shrader-Frechette & Mccoy 1993; Wallington et al. 2005; Holling et al. 1998; Pickett 2007). The nature of forest succession has both historical and endogenous factors. Modeling is complicated by the high diversity of these systems, such as tropical forests. A powerful model for restoration need to capture at least three elements: functional redundancy (step 1), predictive power and the contingent nature of ecological systems. The second step of the present model is based on the application of complex systems theory to restoration ecology (see Anand & Desrochers 2004), and aims to give predictability to the model. Models based on matrices offer a way to envisage forest succession. Succession, in this way, is viewed as a plant-by-plant replacement process (Horn 1974). The basic idea is that successional trajectories may be modeled by the probability of a community component be replaced by another component or by itself in a given site. Markovian models of transition of species bring up the notion that the recovering process of an ecosystem develops progressively until a steady state clementsian climax condiditions (Anand & Desrochers 2004). The nature and direction of a trajectory is governed by the system’s attractor which can be very diverse (Anand & Desrochers 2004). There is a handful of simplifying assumptions in the simplest markovian models. Two deserves special attention: the transition probabilities are (i) density independent and (ii) remain constant over time (Morin 1999). The first is a controversial topic as there is no clear definition for what constitute the factors determining this independence even though density is related to population growth (Murray 1994). The second is more complicated since communities change continuously over time accordingly to variations in the abiotic and biotic environment and the behavior of the organisms reflects those changes (Lippe et al. 1985). Furthermore, the last state record of the system corresponds to a stable state found in the Markov process (Lanzer & Pillar 2002). Thus, is desirable that simpler markovian models as here proposed could be modified in order to increase its predictive power, even though these limitations do not make Markov models unimportant or not useful. Markovian models assume that the successional trajectory is clementsian. This is an equilibrium perspective in that does not consider the possibility of multiples stable states each dependent on specific site characteristics and different situations. However, the presented model can handle 222 multiple stable states in that the attractor matrix is composed by multiple localities and the researcher may set these different initial conditions into the experimental design or natural local conditions. In doing so we do not say that succession is always a strictly directional and predictable process. Instead, we consider the transition matrix as a useful starting point to help us define possible stable endpoints of the restoration initiative. In this step, Markov chain modeling is used to produce a matrix describing future stable states, a matrix of attractors (Fig. 3). The objective is to create a matrix containing the future composition of the PFTs. Transition matrices are applied to each site or community vectors of the X matrix (PFTs matrix). The transition matrix describes the probability of a given PFT be replaced by another type or by itself in a given site. These probabilities are obtained by identifying which PFTs had their abundances or cover changed at each measured interval or temporal series (Orloci et al. 1993). A markovian series describes the system’s trajectory in that the transition from a state to a future state is a probabilistic process. When a trajectory is pure Markov, the description of its Ut + 1 state can be derived from the site composition of its Ut state and a known transition matrix P, Xt + 1 = Xt P A typical element of P expresses the rate at which population X loses ground to population Y when the series moves from one of its states to a future state (adapted from Orlóci et al. 1993). It is worth to note that each site in matrix W describes different planting strategies at different time periods after the restoration is implemented. If there is only one restoration project with two or more temporal sites, then A will be a vector describing the final stable state modeled. However, and desirably, multiple restoration projects may be included in this matrix. If it is the case, then A will be a matrix describing the final stable states of each restoration project. Moreover, it must be emphasized that the present step provides also a way to infer the time span demanded to reach the final stable state. 223 Vegetation surveys PFTs t1 ... tn S1 ... Sn Abundance Cover X matrix Sites x (t+1) PFTs t1 ... tn xi * PFTs t1 ... tn PFTs t1 ... tn x1... xn Probability of a type (ti) loose cover to another type or to itself = Composition of types after one round of types replacement Figure 3. A Markovian model of PFTs transitons. The product of the first round (x (t+1)) is multiplied again by the P matrix and the process is repeated successively times so that x * P N express the composition of types after N replacement rounds. Step 3: Predicting the response of PFTs to changes in environmental conditions We aim here to establish the relationship among environmental factors and the attractors earlier defined and predict, or forecast, the PFTs response to the factors. This is done by multiple regression and/or canonical analysis (Legendre & Legendre 1998) using the matrix of attractors and a matrix of environmental factors, here called E2 (Fig. 1). The results are equations describing the relationship among attractors and the factors and/or ordinations scores describing this relationship. Predictors, in the restoration context, may be: species introduction, management strategies, soil types, rainfall, fertilization strategies, distance from propagules sources, presence of exotic species, and intensity and frequency of disturbances. Both, regression and canonical analyses are widely used methods in ecology and will not be detailed here. Briefly, in regression analyses, each vector in the attractor’s matrix is compared to each vector on the explanatory matrix of environmental variables. The aim is to describe the relationship among dependent random variables (Y) and a set of explanatory, independent, variables (X) in order to predict the behavior of Y as a function of X (Legendre & Legendre 1998). Extend the model to two or more X variables implies that correlations among predictors, multicollinearity, 224 are checked in order to clearly separate the contributions of each factor to the response variable (Gotelli & Ellison 2004). Canonical analysis, by its turn, is the simultaneous analysis of two or more matrices to evaluate the relationship among attractors and environmental factors. It allows the direct comparison between two data matrices and the matrix of descriptors interfere in the ordination calculus forcing the ordination vectors to be maximally related to the combination of variables of the explanatory matrix (Legendre & Legendre 1998). Steps 4 and 5: Setting the relationship among ecosystem effects and the PFTs and predicting ecosystem effects from the attractor’s matrix A key aspect making the use of PFTs a powerful tool to predict ecosystem changes as a function of environmental changes is that ecosystem functioning may be predictable from the composition of functional types (Gitay & Noble 1997; Diaz & Cabido 1997; Diaz et al. 2004). Besides deciding the best method to define PFTs, we need to adequately understand the way the groups in fact reflect the environmental changes faced by plants. This knowledge allows us to know how organisms would respond to future changes in the environmental conditions. Here, the statistical procedure is similar from that of step 3. The objective is to first establish the relationship among explanatory variables, in this case, the ecosystem effects (E1) and the PFTs composition (X) (Fig. 1). The objective is to predict ecosystem effects based on the functional composition. The resulting linear equations are then applied to the attractor’s matrix (step 5). The result is a matrix of future states (EF), the attractors predicted by equations describing types and ecosystem effects. E1 and EF are the same matrices in essence but correspond to different periods of time in modeling process. Step 6: Comparison with a reference system The idea is to compare the modeled restoration strategy to a well know data set (reference system) in order to validate the whole restoration strategy. This data is not used in the transition matrix of the step 2 to avoid redundancy in the analytical process. The comparison is among the projected ecosystem effects based on PFTs using the same variables of EF. Departures of the modeled EF from the reference system mean, at least, three things: 1) the planting management needs adjustments; 2) the modeling process is inadequate and need to be improved; or that 3) the reference system is insufficient to validate the model. 225 References Allen, T.F.H., and F.A. Hoekstra. 1992. Toward a unified ecology. Columbia University Press, New York. Anand, M., and R.E. Desrochers 2004. Quantification of restoration success using complex systems concepts and models. Restoration Ecology, 12:117-123. Aronson, J., P.H.S., Brancalion, G., Durigan, R.R., Rodrigues, V.L., Engel, M., Tabarelli, J.M.D., Torezan, S., Gandolfi, A.C.G., Melo, P.Y., Kageyama, M.C.M., Marques, A.G., Nave, S.V., Martins, F.B., Gandara, A., Reis, L.M., Barbosa and F.R., Scarano. 2011. What role should government regulation play in ecological restoration? Ongoing debate in São Paulo State, Brazil. Restoration Ecology, 19: 690–695. Aubin, I., M.-H., Ouellette, P., Legendre, C., Messier and A., Bouchard. 2009. Comparison of two plant functional approaches to evaluate natural restoration along an old-field - deciduous forest chronosequence. Journal of Vegetation Science, 20: 185–198. Brown, S., and A.E. Lugo 1994. Rehabilitation of Tropical Lands: A Key to Sustaining Development. Restoration Ecology, 2:97-111. Chazdon, R.L., B., Finegan, R.S., Capers, B., Salgado-Negret, F., Casanoves, V., Boukili, and N., Norden 2010. Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica, 42, 31–40. Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D.E. Gurvich, P.B. Reich, H. Ter Steege, H.D. Morgan, M.G.A. Van Der Heijden, J.G. Pausas, and H. Poorter 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51:335-380. Denslow, J.S., and S. Guzman 2000. Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama. Journal of Vegetation Science, 11:201-212. Diaz, S., and M. Cabido 1997. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8:463-474. Diaz, S., J. G. Hodgson, K. Thompson, M. Cabido, J. H. C. Cornelissen, A. Jalili, G. MontserratMarti, J. P. Grime, F. Zarrinkamar, Y. Asri, S. R. Band, S. Basconcelo, P. Castro-Diez, G. Funes, B. Hamzehee, M. Khoshnevi, N. Perez-Harguindeguy, M. C. Perez-Rontome, F. A. Shirvany, F. Vendramini, S. Yazdani, R. Abbas-Azimi, A. Bogaard, S. Boustani, M. Charles, M. Dehghan, L. De Torres-Espuny, V. Falczuk, J. Guerrero-Campo, A. Hynd, G. Jones, E. Kowsary, F. Kazemi-Saeed, M. Maestro-Martinez, A. Romo-Diez, S. Shaw, B. Siavash, P. 226 Villar-Salvador, and M. R. Zak 2004. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15:295-304. Díaz, S., S., Lavorel, F., de Bello, F., Quétier, K., Grigulis and T.M., Robson 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684–9. Engel, V. L., and J. A. Parrotta 2001. An evaluation of direct seeding for reforestation of degraded lands in central Sao Paulo state, Brazil. Forest Ecology and Management, 152:169-181. Ernest, S. K. M., and J. H. Brown 2001. Homeostasis and compensation: The role of species and resources in ecosystem stability. Ecology, 82:2118-2132. Ferretti, A. R., and R. M. De Britez 2006. Ecological restoration, carbon sequestration and biodiversity conservation: The experience of the Society for Wildlife Research and Environmental Education (SPVS) in the Atlantic Rain Forest of Southern Brazil. Journal for Nature Conservation, 14:249-259. Finegan, B. 1996. Pattern and process in neotropical secondary rain forests: The first 100 years of succession. Trends in Ecology & Evolution, 11:119-124. Fonseca, C. R., and G. Ganade 2001. Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology, 89:118-125. Funk, J.L., E.E., Cleland, K.N., Suding and E.S., Zavaleta 2008. Restoration through reassembly: plant traits and invasion resistance. Trends in ecology & evolution, 23, 695–703. Gitay, H., and I. R. Noble 1997. What are functional types and how should we seek them? In T. M. Smith, H. H. Shugart and F. I. Woodward, editors. Plant functional types - their relevance to ecosystem properies and global change. Cambridge University Press. 3-19 pp Gitay, H. 1999. Deriving functional types for rain forest trees. Journal of Vegetation Science, 641–650. Gotelli, N.J., and A.M. Ellison. 2004. A Primer of Ecological Statistics. Sinauer, Sunderland. Grime, J. P., K. Thompson, R. Hunt, J. G. Hodgson, J. H. C. Cornelissen, I. H. Rorison, G. A. F. Hendry, T. W. Ashenden, A. P. Askew, S. R. Band, R. E. Booth, C. C. Bossard, B. D. Campbell, J. E. L. Cooper, A. W. Davison, P. L. Gupta, W. Hall, D. W. Hand, M. A. Hannah, S. H. Hillier, D. J. Hodkinson, A. Jalili, Z. Liu, J. M. L. Mackey, N. Matthews, M. A. Mowforth, A. M. Neal, R. J. Reader, K. Reiling, W. Rossfraser, R. E. Spencer, F. Sutton, D. E. Tasker, P. C. Thorpe, and J. Whitehouse 1997. Integrated screening validates primary axes of specialisation in plants. Oikos, 79:259-281. 227 Guariguata, M. R., and R. Ostertag 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148:185-206. Hobbs, R. J., and V. A. Cramer 2008. Restoration Ecology: Interventionist Approaches for Restoring and Maintaining Ecosystem Function in the Face of Rapid Environmental Change. Annual Review of Environment and Resources, 33:8.1-8.23. Holling, C.S. 1998. Two cultures of ecology. Conservation Ecology Conservation Ecology, 2:4. (available from the Internet: http://www.consecol.org/vol2/iss2/art4/). Horn, H. S. 1974. The Ecology of Secondary Succession. Annual Review of Ecology and Systematics, 5:25-37. Lanzer, A. T. S., and V. D. Pillar 2002. Probabilistic cellular automaton: model and application to vegetation dynamics. Community Ecology, 3:159-167. Lavorel, S., and E. Garnier 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16:545-556. Legendre, P., and L. Legendre. 1998. Numerical Ecology. Elsevier, Amsterdam. Liebsch, D., M. C. M. Marques, and R. Goldenbeg 2008. How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biological Conservation, 141:1717-1725. Lippe, E., J. T. D. Smidt, and D. C. Glenn-Lewin 1985. Markov Models and Succession: A Test from a Heathland in the Netherlands. The Journal of Ecology, 73:775-791. Moore, M. M., W. W. Covington, and P. Z. Fule 1999. Reference Conditions and Ecological Restoration: A Southwestern Ponderosa Pine Perspective. Ecological Applications, 9:12661277. Morellato, L. P. C., and C. F. B. Haddad 2000. Introduction: The Brazilian Atlantic Forest. Biotropica, 32:786-792. Morin, P. J. 1999. Community Ecology. Blackwell Science, Malden, USA. Murray, B. G., Jr. 1994. On Density Dependence. Oikos, 69:520-523. Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. Fonseca, and J. Kent 2000. Biodiversity hotspots for conservation priorities. Nature, 403:853-858. Noble, I. R., and H. Gitay 1996. A Functional Classification for Predicting the Dynamics of Landscapes. Journal of Vegetation Science, 7:329-336. Orloci, L., M. Anand, and X. He 1993. Markov chain: a realistic model for temporal coenosere? Biom. Praxim, 33:7-26. 228 Palmer, M. W., and P. S. White 1994. On the Existence of Ecological Communities. Journal of Vegetation Science, 5:279-282. Parrotta, J. A., and O. H. Knowles 1999. Restoration of tropical moist forests on bauxite-mined lands in the Brazilian Amazon. Restoration Ecology, 7:103-116. Pausas, J. G. 2003. The effect of landscape pattern on Mediterranean vegetation dynamics: A modelling approach using functional types. Journal of Vegetation Science, 14:365-374. Pickett, S. T. A., J. Kolasa, and C. G. Jones. 2007. Ecological understanding - The nature of theory and the theory of nature. Academic Press, San Diego. Pillar, V. D. 1999. On the identification of optimal plant functional types. Journal of Vegetation Science, 10:631-640. Pillar, V. D., L. D. Duarte, E. E. Sosinski, and F. Joner 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, 20:334-348. Pillar, V. D., and L. Orloci. 2004. Character-Based Community Analysis: The Theory and an Application Program. Electronic Edition available at http://ecoqua.ecologia.ufrgs.br, Porto Alegre. Pillar, V. D., and E. E. Sosinski 2003. An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science, 14:323-332. Ribeiro, M. C., J. P. Metzger, A. C. Martensen, F. J. Ponzoni, and M. M. Hirota 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142:1141-1153. Rodrigues, R. R., R. A. F. Lima, S. Gandolfi, and A. G. Nave 2009. On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation, 142:1242–1251. Ruiz-Jaen, M. C., and T. M. Aide 2005. Restoration success: How is it being measured? Restoration Ecology, 13:569-577. SER 2004. The SER primer on ecological restoration (available from: http://www.ser.org/). SER (Society for Ecological Restoration Science & Policy Working Group). Shrader-Frechette, K., and E. D. Mccoy. 1993. Method in Ecology - Strategies for Conservation. Cambridge University Press, Cambridge. Silva, J. M. C. D., and M. Tabarelli 2000. Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature, 404:72-74. 229 Souza, F. M. D., and J. L. F. Batista 2004. Restoration of seasonal semideciduous forests in Brazil: influence of age and restoration design on forest structure. Forest Ecology and Management, 191:185-200. Suding, K.N. and R.J. Hobbs 2008. Models of ecosystem dynamics as frameworks for restoration ecology. In: R.J. Hobbs and K.N. Suding. New models for ecosystem dynamics and restoration. Island Press, Washington, DC. 3-21pp. Wallington, T. J., R. J. Hobbs, and S. A. Moore 2005. Implications of current ecological thinking for biodiversity conservation: A review of the salient issues. Ecology and Society, 10:15. Weiher, E., A. Van Der Werf, K. Thompson, M. Roderick, E. Garnier, and O. Eriksson 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 10:609-620. 230