q - CBPF
Transcription
q - CBPF
RESULTADOS TEÓRICOS E EXPERIMENTAIS RECENTES NO QUADRO DA q-ESTATÍSTICA Constantino Tsallis Centro Brasileiro de Pesquisas Físicas e Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos Rio de Janeiro e Santa Fe Institute, New Mexico, USA Workshop INCT-SC, Maio 2012 ALGUNS RESULTADOS RECENTES TEORIA DOS GRANDES DESVIOS A ENTROPIA DO BURACO NEGRO ∞ 1 Sq ↔ ς ( s) ≡ ∑ s = n =1 n 1 ∏ −s p prime 1 − p 1 1 1 1 1 = · · · · L −s −s −s −s −s 1 − 2 1 − 3 1 − 5 1 − 7 1 − 11 A. Plastino and M.C. Rocca, 1112.1985 and 1112.1986 [math-ph] M. Jauregui, C. T. and E.M.F. Curado, JSTAT P10016 (2011) M. Jauregui and C. T., Phys Lett A 375, 2085 (2011) H.J. Hilhorst, JSTAT P10023 (2010) See also: CENTRAL LIMIT THEOREM N 1/[α (2-q )] - scaled attractor F ( x) when summing N → ∞ q - independent identical random variables ⎛ 1+ q ⎞ with symmetric distribution f ( x) with σ Q ≡ ∫ dx x 2 [ f ( x)]Q / ∫ dx [ f ( x)]Q ⎜ Q ≡ 2q − 1, q1 = ⎟ 3− q ⎠ ⎝ q =1 [independent ] q ≠ 1 (i.e., Q ≡ 2q − 1 ≠ 1) [globally correlated ] F ( x) = Gq ( x) ≡ G(3 q 1−1) / (1+ q 1 ) ( x), with same σ Q of f ( x) σQ < ∞ (α = 2) F ( x) = Gaussian G ( x ), with same σ 1 of f ( x) Classic CLT F ( x ) = Levy distribution Lα ( x ), with same | x | → ∞ behavior σQ → ∞ (0 < α ⎧G ( x ) ⎪ < 2) Lα ( x ) ∼ ⎪⎨ if | x |<< xc (1, α ) 1+α ⎪ f ( x ) ∼ Cα / | x | ⎪ if | x |>> xc (1, α ) ⎩ with limα → 2 xc (1, α ) = ∞ Levy-Gnedenko CLT ⎧⎪G ( x) Gq ( x) ∼ ⎨ 2/( q −1) ⎪⎩ f ( x) ∼ Cq / | x | with lim q → 1 xc (q, 2) = ∞ if | x |<< xc (q, 2) ⎫⎪ ⎬ if | x |>> xc (q, 2) ⎭⎪ S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008) F ( x ) = Lq,α , with same | x |→ ∞ asymptotic behavior 2(1− q )−α (3− q ) ⎧ * ⎪G 2(1− q )−α (1+ q ) ( x ) ∼ C q ,α / | x | 2(1− q ) ⎪ 2(1− q )−α (3− q ) , α ⎪ (intermediate regime) ⎪ ⎪ Lq,α ~ ⎨ ⎪ (1+α )/(1+α q−α ) L G ( x ) ∼ C / | x | ⎪ 2α q −α +3 q ,α , 2 α +1 ⎪ ⎪ ( distant regime) ⎪ ⎩ S. Umarov, C. T., M. Gell-Mann and S. Steinberg J Math Phys 51, 033502 (2010) q - GENERALIZED CENTRAL LIMIT THEOREM: S. Umarov, C.T. and S. Steinberg, Milan J Math 76, 307 (2008) q-Fourier transform: Fq [ f ](ξ ) ≡ ∞ ∫ −∞ eqixξ ⊗q ∞ f ( x ) dx = ∫ ixξ [ f ( x )]q−1 eq f ( x ) dx −∞ ( q ≥ 1) (nonlinear!) For q<1 see K.P. Nelson and S. Umarov, Physica A 389, 2157 (2010) ON THE INVERSE q-FOURIER TRANSFORM: 1/(2 − q ) ⎡2 − q ⎤ f ( y) = ⎢ Fq [ f ( x + y )](ξ , y ) d ξ ⎥ ∫ ⎣ 2π −∞ ⎦ +∞ (1 ≤ q < 2) Particular case q = 1: 1 f ( y) = 2π +∞ 1 ∫−∞ F [ f ( x + y )](ξ , y ) dξ = 2π +∞ ∫ F [ f ( x)](ξ ) e −iξ y −∞ M. Jauregui and C. T. (2011) dξ M. Jauregui and C. T. (2011) M. Jauregui and C. T. (2011) STILL ANOTHER PATH TO INVERT THE q-FOURIER TRANSFORM A. Plastino and M.C. Rocca, 1112.1985 [math-ph] and 1112.1986 [math-ph] F(k,q) ≡ ⎡⎣ H (q − 1) − H (q − 2) ⎤⎦ = ⎡⎣ H (q − 1) − H (q − 2) ⎤⎦ ∫ ∞ −∞ ∫ ∞ −∞ ikx[ f ( x )] q dx e { q−1 f (x) 1 q−1 1−q dx 1+ i(1− q)kx[ f (x)] } where H (t) ≡ Heaviside step function It can be proved that the inverse is uniquely given by 1 f (x) = 2π ∞ 2 ⎡ lim ⎤ e− ikx dk F(k,q) δ (q − 1− ε ) dq ∫−∞ ⎢⎣ ε→+0 ∫1 ⎥⎦ f (x) CONSERVATIVE MC MILLAN MAP: xn +1 = yn yn yn +1 = − xn + 2 µ + ε y n 2 1 + yn µ ≠ 0 ⇔ nonlinear dynamics Ruiz, Bountisand and C. C. T. G. G. Ruiz, T.T.Bountis T. Int J Bifurcat Chaos (2012), in press Int J Bifurcat Chaos (2011), in press G. Ruiz, T. Bountis and C. T. Int J Bifurcat Chaos (2012), in press G. Ruiz, T. Bountis and C. T. Int J Bifurcat Chaos (2012), in press M. Leo, R.A. Leo, P. Tempesta and C. T. Phys Rev E 85, 031149 (2012) M. Leo, R.A. Leo, P. Tempesta and C. T. Phys Rev E 85, 031149 (2012) D + 2d + 2 q' ≡ 2 − q = D + 2d + 1 with 1 ν = +d 2 EXTREME EVENTS IN FINANCIAL RECORDS: 27 Aug 2002 23 Oct 2002 Risk function t +Δt ∫ W (t; Δt ) ≡ ∫ t PQ ( r )dr ⎡ β ( q − 1) Δt ⎤ = 1 − ⎢1 + ∞ ⎥ 1 + β ( q − 1) t ⎣ ⎦ PQ ( r )dr t q −2 q −1 = 1− − ⎡⎣ β (2− q )⎤⎦( t +Δt ) e1 (2−q ) − ⎡⎣ β (2− q )⎤⎦ t ) e1 (2−q ) U. Tirnakli, H.J. Jensen and C. T., EPL 96, 40008 (2012) U. Tirnakli, H.J. Jensen and C. T., EPL 96, 40008 (2012) CORRELATIONS IN COUPLED LOGISTIC MAPS AT THE EDGE OF CHAOS IN THE PRESENCE OF GLOBAL NOISE We consider a linear chain of N coupled maps with periodic boundary conditions in a noisy environment: ε x ti +1 = (1− ε ) f (x ti ) + [ f (x ti−1 ) + f (x ti+1 )] + σ t 2 with ε ∈[0,1] σ t ∈[0,σ max ] additive noise coupling strength i i 2 and f (xt ) = 1− µ (xt ) µ ∈[0,2] i-th logistic map (i = 1...N) [zero noise: N.B. Ouchi and K. Kaneko, Chaos 10, 359 (2000)] Intermittency in the normalized returns time-series edge of chaos: N = 100 − ε = 0.8 − σ = 0.002 global parameter time returns Δdt stdev Δdt = dt +τ − dt A. Pluchino, A. Rapisarda and C. T. (2012) time t N = 100; ε = 0.8; σ max = 0.002; τ = 32 Edge of chaos: Chaotic Regime: q=1.54 β=1.47 Δdt stdev Δdt stdev q=1.54 β=1.47 A. Pluchino, A. Rapisarda and C. T. (2012) ε = 0.8; σ max = 0.002; τ = 32 N = 100; ε = 0.8; τ = 32 σ max N = 100; σ max = 0.002; τ = 32 1/ N σN = 100; ε = 0.8; σ max = 0.002 A.Pluchino, A. Rapisarda and C. Tsallis in preparation τ A. Pluchino, A. Rapisarda and C. T. (2012) LHC (Large Hadron Collider) CMS (Compact Muon Solenoid) detector ~ 2500 scientists/engineers from 183 institutions of 38 countries PHENIX @ RHIC q ; 1.10 q ; 1.10 ALGUNS RESULTADOS RECENTES TEORIA DOS GRANDES DESVIOS A ENTROPIA DO BURACO NEGRO PHYSICS MATHEMATICS (Theory of large (Statistical deviations) mechanics) q =1 (quasi-independent) q ≠1 (strongly correlated) pN ∝ e −β HN PN ( x ) : e − N r( x) ( N → ∞) − βq H N q pN ∝ e − N rq ( x ) q PN ( x ) : e ( N → ∞) ??? STANDARD THEORY - AN EXAMPLE N independent coins → n heads (n = 0,1, 2,..., N ) [hence N → ∞ ⇒ Gaussian ] P ( N = 10; n < 2) >> P ( N = 100; n < 20) >> P( N = 1000; n < 200) more precisely,lim N →∞ P( N ; n N < x ) = 0 P( N ; n N < x ) = ∑ n n N <x ( 0 ≤ x < 1 2) 1 N! − N r1 ( x ) ≈ e (N → ∞ ) N 2 n !( N − n )! where the rate function is given by r1 ( x ) = ln 2 + x ln x + (1 − x ) ln(1 − x ) pi(0) REMARK: Relative entropy I1 = − ∑ pi ln pi i =1 W W 1 pi(0) = yields I1 = ln W + ∑ pi ln pi W i =1 r1 ( x ) = I1[W = 2; p1 → x; p2 → (1 − x )] ln P( N ; n N < x) G. Ruiz and C. T., 1110.6303 [cond-mat.stat-mech] r1 ( x ) ln 2 + x ln x + (1 − x) ln(1 − x) G. Ruiz and C. T., 1110.6303 [cond-mat.stat-mech] GENERALIZING THE STANDARD THEORY- AN EXAMPLE N strongly correlated coins → n heads (n = 0,1, 2,..., N ) [such that N → ∞ ⇒ Q - Gaussian ] P( N ; n N < x ) = ∑ n n N <x p N ,n ≡ pQ ( y N ,n ) N ∑p n =0 Q ( y N ,n ) p N ,n 1 2 − Q −1 with pQ ( z ) ∝ ⎡⎣1 + (Q − 1) z ⎤⎦ and y N ,n ⎛ n 1⎞ ≡ ΔN ⎜ − ⎟ ⎝ N 2⎠ ⎡⎣ Δ N ≡ δ ( N + 1)γ ; δ > 0; 0 < γ < 1⎤⎦ Probabilistic model { pN ,n } is determined by (1 ≤ Q < 3, 0<γ ≤ 1, δ > 0) : lim N →∞ { pN ,n } = Q -Gaussian (∀γ , ∀δ ) We numerically verify that, for N >> 1, P(N | n N < x) ≈ e − N rq ( x ; Q , γ , δ ) q with and (for Q ≥ 1) ⎡⎣∝ 1 N 1 ( q −1) if Q > 1⎤⎦ Q −1 1 2 q= + 1 ≥ 1 hence = −1 γ (3 − Q ) γ ( q − 1) Q − 1 1 q( x = 0) = 2 − q(0 < x < 1 2) (0 < x < 1 2) ( ∀γ ; ∀δ ) pi(0) REMARK: Relative entropy I q = − ∑ pi ln q pi i =1 W 1 p = yields I q = W q −1 ⎡⎣ ln q W − S q ⎤⎦ W q q ⎡ x + (1 − x ) − 1⎤ q −1 I q [W = 2; p1 → x; p2 → (1 − x )] = 2 ⎢ln q 2 − ⎥ q − 1 ⎣ ⎦ (0) i G. Ruiz and C. T., 1110.6303 [cond-mat.stat-mech] G. Ruiz and C. T., 1110.6303 [cond-mat.stat-mech] G. Ruiz and C. T., 1110.6303 [cond-mat.stat-mech] ALGUNS RESULTADOS RECENTES TEORIA DOS GRANDES DESVIOS A ENTROPIA DO BURACO NEGRO Jacob D. Bekenstein Stephen W. Hawking Gerard ‘t Hooft Leonard Susskind Stephen Lloyd Juan M. Maldacena … When entropy does not seem extensive John Maddox, Nature 365, 103 (1993) Everybody who knows about entropy knows that it is an extensive property, like mass or enthalpy. [...] Of course, there is more than that to entropy, which is also a measure of disorder. Everybody also agrees on that. But how is disorder measured? [...] So why is the entropy of a black hole proportional to the square of its radius, and not to the cube of it? To its surface area rather than to its volume? ENTROPIES W S BG 1 = k B ∑ pi ln pi i=1 → additive W 1 Sq = k B ∑ pi ln q pi i=1 ⎛ 1⎞ Sδ = k B ∑ pi ⎜ ln ⎟ ⎝ pi ⎠ i=1 W Sq,δ C. T. (1988) (S1 = S BG ) → nonadditive if δ ≠ 1 C. T. (2009) δ ⎛ 1⎞ = k B ∑ pi ⎜ ln q ⎟ pi ⎠ ⎝ i=1 W (S1 = S BG ) → nonadditive if q ≠ 1 δ (Sq,1 = Sq ; S1,δ = Sδ ; S1,1 = S BG ) → nonadditive if (q,δ ) ≠ (1,1) C. T. and L.J.L. Cirto (2011) 1202.2154 [cond-mat.stat-mech] EXTENSIVITY OF THE ENTROPY (N → ∞) If W (N ) µ N ( µ > 1) ⇒ S BG (N ) = k B lnW (N ) ∝ N If W (N ) N ρ ( ρ > 0) ⇒ Sq (N ) = k B ln q W (N ) ∝ [W (N )]1−q ∝ N ρ (1−q) ⇒ Sq=1−1 ρ (N ) ∝ N If W (N ) ν Nγ (ν > 1; 0 < γ < 1) δ ⇒ Sδ (N ) = k B ⎡⎣ lnW (N ) ⎤⎦ ∝ N γ ⇒ Sδ =1 γ (N ) ∝ N δ Hawking, string theory, etc, yield black hole SBG (N ) ≡ k B lnW (N ) ∝ L2 ∝ N 2 3 More generally, we have SBG (N ) = k B lnW (N ) ∝ Ld−1 ∝ N d−1 d (N ∝ L3 ) (d > 1) hence W (N ) ∝ Φ(N ) ν d−1 N d ⎛ ⎞ ln Φ(N) = 0⎟ ⎜ with lim N→∞ d−1 ⎜⎝ ⎟⎠ d N d hence the entropy which is extensive is Sδ with δ = d −1 i.e., Sδ (N ) = k B W (N ) ∑ i=1 black hole δ =3 2 Consequently S ⎛ 1⎞ pi ⎜ ln ⎟ ⎝ pi ⎠ (N ) = k B W (N ) ∑ i=1 d d−1 (d > 1) 3 2 ⎛ 1⎞ pi ⎜ ln ⎟ ∝ N ∝ L3 !!! ⎝ pi ⎠ SYSTEMS ENTROPY SBG W (N ) (ADDITIVE) µN ( µ > 1) Nρ ( ρ > 0) ENTROPY Sq ENTROPY Sδ (δ ≠ 1) (q ≠ 1) (NONADDITIVE) (NONADDITIVE) EXTENSIVE NONEXTENSIVE NONEXTENSIVE NONEXTENSIVE EXTENSIVE NONEXTENSIVE Nγ ν (ν > 1; 0 < γ < 1) NONEXTENSIVE NONEXTENSIVE EXTENSIVE
Similar documents
MAIS q‐EXPONENCIAIS E q‐GAUSSIANAS. E PARA NÃO DIZER
F.D. Nobre, M.A. Rego-Monteiro and C. T., EPL 97, 41001 (2012) S.H. Mazharimousavi, Phys Rev A 85, 034102 (2012) A.R. Plastino and C. T., J Math Phys. 54, 041505 (2013) R.N. Costa Filho, G. Alencar...
More informationConstantino Tsallis
with f X +Y ( z ) = ∫ dx ∫ dy h( x, y ) δ ( x + y − z ) = ∫ dx h( x, z − x) = ∫ dy h( z − y, y ) where h( x, y ) is the joint density. ⎛ q - correlation means
More information