Constantino Tsallis
Transcription
Constantino Tsallis
COMPLEXITY AND NONEXTENSIVE STATISTICAL MECHANICS THEORY, EXPERIMENTS, OBSERVATIONS AND COMPUTER SIMULATIONS Constantino Tsallis Centro Brasileiro de Pesquisas Fisicas, BRAZIL C. T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sci (USA) 102, 15377 (2005) L.G. Moyano, C. T. and M. Gell-Mann, Europhys Lett 73, 813 (2006) S. Umarov, C. T., M. Gell-Mann and S. Steinberg, cond-mat/0603593, 0606038, 0606040 P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 (2006) L.F. Burlaga and A.F.-Vinas, Physica A 356, 375 (2005). A. Rapisarda and A. Pluchino, Europhysics News 36, 202 (EPS, Nov/Dec 2005) Erice, August/September 2006 ORDINARY DIFFERENTIAL EQUATIONS FURTHER APPLICATIONS (Physics, Astrophysics, Geophysics, Economics, Biology, Chemistry, Cognitive psychology, Engineering, Computer sciences, Quantum information, Medicine, Linguistics …) ENTROPY Sq (Nonextensive statistical mechanics) PARTIAL DIFFERENTIAL EQUATIONS (Fokker-Planck, fractional derivatives, nonlinear, anomalous diffusion, Arrhenius) IMAGE PROCESSING SIGNAL PROCESSING (ARCH, GARCH) GLOBAL OPTIMIZATION (Simulated annealing) CENTRAL LIMIT THEOREMS (Gauss, Levy-Gnedenko) UBIQUITOUS LAWS IN COMPLEX SYSTEMS STOCHASTIC DIFFERENTIAL EQUATIONS (Langevin, multiplicative noise) NONLINEAR DYNAMICS (Chaos, intermittency, entropy production, Pesin, quantum chaos, self-organized criticality) SUPERSTATISTICS (Other generalizations) THERMODYNAMICS q-TRIPLET AGING (metastability, glass, spin-glass) q-ALGEBRA LONG-RANGE INTERACTIONS (Hamiltonians, coupled maps) CORRELATIONS IN PHASE SPACE GEOMETRY (Scale-free networks) Enrico FERMI Thermodynamics (Dover, 1936) The entropy of a system composed of several parts is very often equal to the sum of the entropies of all the parts. This is true if the energy of the system is the sum of the energies of all the parts and if the work performed by the system during a transformation is equal to the sum of the amounts of work performed by all the parts. Notice that these conditions are not quite obvious and that in some cases they may not be fulfilled. Thus, for example, in the case of a system composed of two homogeneous substances, it will be possible to express the energy as the sum of the energies of the two substances only if we can neglect the surface energy of the two substances where they are in contact. The surface energy can generally be neglected only if the two substances are not very finely subdivided; otherwise, it can play a considerable role. Ettore MAJORANA The value of statistical laws in physics and social sciences. Original manuscript in Italian published by G. Gentile Jr. in Scientia 36, 58 (1942); translated into English by R. Mantegna (2005). This is mainly because entropy is an addditive quantity as the other ones. In other words, the entropy of a system composed of several independent parts is equal to the sum of entropy of each single part. [...] Therefore one considers all possible internal determinations as equally probable. This is indeed a new hypothesis because the universe, which is far from being in the same state indefinitively, is subjected to continuous transformations. We will therefore admit as an extremely plausible working hypothesis, whose far consequences could sometime not be verified, that all the internal states of a system are a priori equally probable in specific physical conditions. Under this hypothesis, the statistical ensemble associated to each macroscopic state A turns out to be completely defined. The values of pi are determined by the following dogma : if the energy of the system in the i - th state is Ei and if the temperature of the system is T then : e − Ei / kT pi = , where Z (T ) = ∑ e − Ei / kT Z (T ) i (this last constant is taken so that ∑p i = 1). i This choice of pi is called the Gibbs distribution. We shall give no justification for this dogma ; even a physicist like Ruelle disposes of this question as " deep and incompletely clarified ". ENTROPIC FORMS Concave Extensive Lesche-stable Finite entropy production per unit time Pesin-like identity (with largest entropy production) Composable Topsoe-factorizable C.T., M. Gell-Mann and Y. Sato Europhysics News 36 (6), 186 (2005) [European Physical Society] S q ( N , t ) versus t LOGISTIC MAP: xt +1 = 1 − a xt 2 (0 ≤ a ≤ 2; −1 ≤ xt ≤ 1; t = 0,1,2,...) (strong chaos, i.e., positive Lyapunov exponent) V. Latora, M. Baranger, A. Rapisarda and C. T., Phys. Lett. A 273, 97 (2000) We verify K1 = λ1 ( Pesin − like identity ) where K1 ≡ limt →∞ S1 (t ) t and Δ x(t ) = eλ ξ (t ) ≡ lim Δ x (0)→0 Δ x(0) 1 t (weak chaos, i.e., zero Lyapunov exponent) 50 q = 0.1 x t +1= 1 - a x t2 Sq (t) a = 1.4011552 40 6 N = W = 2.5 10 # realizations q = 0.2445 = 15115 30 20 q = 0.5 10 0 0 20 40 60 t 80 C. T. , A.R. Plastino and W.-M. Zheng, Chaos, Solitons & Fractals 8, 885 (1997) M.L. Lyra and C. T. , Phys. Rev. Lett. 80, 53 (1998) V. Latora, M. Baranger, A. Rapisarda and C. T. , Phys. Lett. A 273, 97 (2000) E.P. Borges, C. T. , G.F.J. Ananos and P.M.C. Oliveira, Phys. Rev. Lett. 89, 254103 (2002) F. Baldovin and A. Robledo, Phys. Rev. E 66, R045104 (2002) and 69, R045202 (2004) G.F.J. Ananos and C. T. , Phys. Rev. Lett. 93, 020601 (2004) E. Mayoral and A. Robledo, Phys. Rev. E 72, 026209 (2005), and references therein CASATI-PROSEN TRIANGLE MAP [Casati and Prosen, Phys Rev Lett 83, 4729 (1999) and 85, 4261 (2000)] (two-dimensional, conservative, mixing, ergodic, vanishing maximal Lyapunov exponent) G. Casati, C. T. and F. Baldovin, Europhys. Lett. 72, 355 (2005) [G. Casati, C.T. and F. Baldovin, Europhys Lett 72, 355 (2005)] CASATI-PROSEN TRIANGLE MAP [Casati and Prosen, Phys Rev Lett 83, 4729 (1999) and 85, 4261 (2000)] (two-dimensional, conservative, mixing, ergodic, vanishing maximal Lyapunov exponent) (a) 200 W = 4000 × 4000 cells N = 1000 initial conditions randomly chosen in one cell Average done over 100 initial cells q=-0.2 Sq(n) 150 [q = 0 → linear correlation = 0.99993] q= 0 100 Also with 50 q=+0.2 0 0 20 40 60 80 n 100 ξ = e0 λ0 t λ0 = lim n→∞ S 0 ( n) =1 n q - generalization of Pesin (- like) theorem G. Casati, C. T. and F. Baldovin, Europhys. Lett. 72, 355 (2005) S q ( N , t ) versus N HYBRID PASCAL - LEIBNITZ TRIANGLE 1× (N = 0 ) 1× (N = 1 ) 1× (N = 2 ) 1× (N = 3 ) 1× (N = 4 ) (N = 5 ) 1× 1 6 1 5 5× 1 30 1× 2 × 3× 4 × 1 2 1 3 1 4 1 1 1 6 1 12 1 20 10 × 1 60 Blaise Pascal (1623-1662) Gottfried Wilhelm Leibnitz (1646-1716) Daniel Bernoulli (1700-1782) 1× 3× 6 × 1 2 1 3 1 12 1 30 1× 4× 10 × 1 60 1 4 1 20 1× 5× 1 30 Σ =1 1 5 1× 1 6 (∀ N ) (N=2) A B 1 2 1 2 p2 + κ p (1 − p ) − κ p (1 − p ) − κ (1 − p ) 2 + κ p p 1- p 1- p 1 EQUIVALENTLY: ( N = 0) ( N = 1) ( N = 2) 1× 1 1× p 1× [ p 2 + κ ] 1× (1- p) 2 × [ p(1 − p ) − κ ] 1× [(1 − p )2 + κ ] q = 1 SYSTEMS i.e., such that S1 ( N ) ∝ N ( N → ∞) 100 100 (a) 90 80 (b) 90 q=0.9 80 q=0.9 70 70 60 60 Sp 50 Sp 50 (c) 20 q=0.9 40 Sp 10 q=1.0 40 q=1.0 30 q=1.0 30 20 20 10 q=1.1 q=1.1 q=1.1 10 10 20 30 40 50 60 70 80 N Leibnitz triangle 1 ⎞ ⎛ p = ⎜ N ,0 ⎟ N +1 ⎠ ⎝ 90 100 0 1 10 20 30 40 50 60 70 80 90 N 1 100 0 1 10 20 N 0 N independent coins Stretched exponential ⎛ pN ,0 = p N ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ with p = 1/ 2 ⎟ ⎝ ⎠ α ⎛ pN .0 = p N ⎞ ⎜ ⎟ ⎜ ⎟ ⎜⎜ with p = α = 1/ 2 ⎟⎟ ⎝ ⎠ (All three examples strictly satisfy the Leibnitz rule) C.T., M. Gell-Mann and Y. Sato Proc Natl Acad Sc USA 102, 15377 (2005) Asymptotically scale-invariant (d=2) d+1 (It asymptotically satisfies the Leibnitz rule) C.T., M. Gell-Mann and Y. Sato Proc Natl Acad Sc USA 102, 15377 (2005) q ≠ 1 SYSTEMS i.e., such that S q ( N ) ∝ N ( N → ∞) (d =1) (d = 2) 10000 (d = 3) 10000 10000 (a) q=-0.1 8000 (c) (b) 8000 q=0.0 Sp 8000 q=1/2-0.1 Sp Sp 6000 q=2/3-0.1 6000 6000 q=1/2 4000 4000 q=+0.1 2000 4000 2000 q=2/3 2000 q=1/2+0.1 q=2/3+0.1 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 N 2000 0 2000 4000 6000 8000 10000 N 0 N 1 q = 1− d (All three examples asymptotically satisfy the Leibnitz rule) C.T., M. Gell-Mann and Y. Sato Proc Natl Acad Sc USA 102, 15377 (2005) Continental Airlines 10000 100 (a) qsen =1 90 80 qsen <1 (b) 8000 q=0.9 70 q=1/2-0.1 60 Sp 6000 Sp 50 q=1/2 40 4000 q=1 30 20 2000 q=1/2+0.1 q=1.1 10 0 10 20 30 40 50 60 70 80 90 100 0 2000 4000 6000 10000 8000 N 1 N 600 (c) qsen =1 a=1.40115519 qsen <1 (d) 1.0 500 q=0.05 R 0.5 ENTROPY 400 (b) Sp Sp q=0.8 0.0 0.0 0.5 q 300 1.0 q=0.05 6 4 200 q=1 q=0.2445 q=0.2445 q=1 2 (a) q=1.2 0 100 0 0 0 10 20 30 40 10 t C.T., M. Gell-Mann and Y. Sato Europhysics News 36 (6), 186 (2005) [European Physical Society] q=0.5q=0.5 20 TIME t 30 40 If A and B are independent , i.e., if pij A+ B = pi p j , A B then S BG ( A + B) = S BG ( A) + S BG ( B ) whereas S q ( A + B) = S q ( A) + S q ( B) + ≠ S q ( A) + S q ( B) 1− q S q ( A) S q ( B) kB (if q ≠ 1) But if A and B are especially ( globally ) correlated , then S q ( A + B) = S q ( A) + S q ( B) whereas S BG ( A + B) ≠ S BG ( A) + S BG ( B) NONEXTENSIVE STATISTICAL MECHANICS AND THERMODYNAMICS (CANONICAL ENSEMBLE): W S q [ pi ] ≡ k Extremization of the functional 1 − ∑ piq i =1 q −1 W W with the constraints ∑p i =1 i =1 q p ∑ i Ei and i =1 W q p ∑ i = Uq i =1 eq− βq ( Ei −U q ) pi = Zq yields with βq ≡ β W W ∑p i =1 q i , β ≡ energy Lagrange parameter , and Z q ≡ ∑ eq i =1 − β q ( Ei −U q ) pi = We can rewrite with β ≡ ' q Z q' βq 1 + (1 − q ) β qU q And we can prove 1 ∂S q = with (i ) T ∂U q (ii ) − βq' Ei eq Fq ≡ U q − TS q = − W , and Z ≡ ∑ e ' q i =1 − β q' Ei q 1 T≡ kβ 1 β ln q Z q where ln q Z q = ln q Z q − βU q ∂ (iii ) U q = − ln q Z q ∂β (iv) Cq ≡ T ∂S q = ∂U q = −T ∂ 2 Fq ∂T ∂T ∂T 2 (i.e., the Legendre structure of Thermodynamics is q - invariant !) NONEXTENSIVE STATISTICAL MECHANICS AND THERMODYNAMICS Nonextensive Statistical Mechanics and Thermodynamics, SRA Salinas and C Tsallis, eds, Brazilian Journal of Physics 29, Number 1 (1999) Nonextensive Statistical Mechanics and Its Applications, S Abe and Y Okamoto, eds, Lectures Notes in Physics (Springer, Berlin, 2001) Non Extensive Thermodynamics and Physical Applications, G Kaniadakis, M Lissia and A Rapisarda, eds, Physica A 305, Issue 1/2 (2002) Classical and Quantum Complexity and Nonextensive Thermodynamics, P Grigolini, C Tsallis and BJ West, eds, Chaos, Solitons and Fractals 13, Issue 3 (2002) Nonextensive Entropy - Interdisciplinary Applications, M Gell-Mann and C Tsallis, eds, (Oxford University Press, New York, 2004) Anomalous Distributions, Nonlinear Dynamics, and Nonextensivity HL Swinney and C Tsallis, eds, Physica D 193, Issue 1-4 (2004) Nonextensive Statistical Mechanics: New Trends, New Perspectives, JP Boon and C Tsallis, eds, Europhysics News (European Physical Society, 2005) Fundamental Problems of Modern Complexity and Nonextensivity: New Statistical Mechanics, G Kaniadakis, Trends in Statistical Mechanics, S Abe, M Sakagami and N Suzuki, eds, Progr. A Carbone and M Lissia, eds, Theoretical Physics Suppl 162 (2006) Physica A 365, Issue 1 (2006) News and Expectations in Thermostatistics G Kaniadakis and M Lissia, eds Physica A 340, Issue 1/3 (2004) Nonadditive Entropy and Nonextensive Statistical Mechanics, M Sugiyama, ed, Continuum Mechanics and Thermodynamics 16 (Springer, Heidelberg, 2004) Trends and Perspectives in Extensive and Non-Extensive Statistical Mechanics H Herrmann, M Barbosa and E Curado, eds, Physica A 344, Issue 3/4 (2004) Complexity, Metastability and Nonextensivity, C Beck, G Benedek, A Rapisarda and C Tsallis, eds, (World Scientific, Singapore, 2005) Recent minireviews: (Europhysics News, Nov-Dec 2005, European Physical Society) http://www.europhysicsnews.com Full bibliography: (28 August 2006: 1953 manuscripts) http://tsallis.cat.cbpf.br/biblio.htm It can be proved that K q = λq (q − generalized Pesin − like identity ) where ⎧ Sq (t ) ⎫ K q ≡ limt →∞ sup ⎨ ⎬ ⎩ t ⎭ and λq t ⎧ Δ x(t ) ⎫ ξ (t ) ≡ sup ⎨lim Δ x (0)→0 ⎬ = eq Δ x(0) ⎭ ⎩ with 1 1 1 ln α F = − = 1 − q α min α max ln 2 and 1 λq = 1− q ⎡ 1 1 1 ln α F ( z ) ⎤ z = − = ( z − 1) ⎢ xt +1 = 1 − a | xt | ⇒ ⎥ 1 ( ) ( ) ( ) l n 2 − q z z z α α min max ⎣ ⎦ Generic pitchfork bifurcations: xt +1 = xt + b sign( xt ) | xt |z ( z > 1; b > 0) Generic tangent bifurcations: xt +1 = xt + b | xt |z ( z > 1; b > 0) The fixed point map is a q - exponential with q=z and the sensitivity to the initial conditions is a qsen - exponential with 1 q Example : The ς − logistic family of maps qsen = 2 − xt +1 = 1 − a | xt |ς (ς > 1; 0 ≤ a ≤ 2; ς > 1) has 5 ; 3 3 = . 2 z = 3 for pitchfork bifurcations (∀ς ), hence q = 3 and qsen = z = 2 for tangent bifurcations (∀ς ), hence q = 2 and qsen A. Robledo, Physica D 193, 153 (2004) DEFINITIONS : q − logarithm : 1− q x −1 ln q x ≡ (ln1 x = ln x) 1− q q - exponential : 1 1− q e ≡ [1 + (1 − q ) x] x q (e = e ) x 1 x (if 1 + (1 − q ) x > 0; vanishes otherwise) q-GAUSSIANS: pq ( x) ∝ − ( x / σ )2 eq 1 ≡ ⎡⎣1 + (q -1) 1 2 q -1 (x / σ ) ⎤ (q < 3) ⎦ D. Prato and C. T, Phys Rev E 60, 2398 (1999) q - CENTRAL LIMIT THEOREM THEOREM: (conjecture) ∂ p ( x, t ) ∂ γ [ p ( x, t )]2− q =D (0 < γ ≤ 2; q < 3) γ ∂t ∂| x| globally correlated variables; finite q-variance; q-Gaussian attractor independent variables; finite variance; Gaussian attractor independent variables; divergent variance; Levy attractor C.T., Milan J. Math. 73, 145 (2005) q - CENTRAL LIMIT THEOREM (q-product and de Moivre-Laplace theorem): The q- product is defined as follows: x ⊗q y ≡ ⎡⎣ x 1− q +y 1− q − 1⎤⎦ 1 1− q Properties : i ) x ⊗1 y = x y ii ) ln q ( x ⊗q y ) = ln q x + ln q y [ whereas ln q ( x y ) = ln q x + ln q y + (1 − q )(ln q x)(ln q y )] [L. Nivanen, A. Le Mehaute and Q.A. Wang, Rep. Math. Phys. 52, 437 (2003); E.P. Borges, Physica A 340, 95 (2004)] The de Moivre-Laplace theorem can be constructed with pN ,0 = p N with and Leibnitz rule p = 1/ 2 q - CENTRAL LIMIT THEOREM: (numerical indications) We q − generalize the de Moivre − Laplace theorem with ⎛1⎞ ⎛1⎞ ⎛1⎞ 1 = ⎜ ⎟ ⊗q ⎜ ⎟ ⊗q ... ⎜ ⎟ ( N terms ) pN ,0 ⎝ p ⎠ ⎝ p ⎠ ⎝ p⎠ i.e., pN ,0 = ⎡⎣ N p q −1 − ( N − 1) ⎤⎦ 1 q −1 ( with p = 1/ 2) de Moivre - Laplace 1 0.44 (q = 3/10) -0.1 0 0.43 -1 β(N) 0.42 -2 qe=2-1/q 1 0.8 -3 -0.2 -0.3 -0.4 0 0.2 0 0.02 0.04 0.06 0.08 1/N -4 0.6 qe 0.41 N=50 N=80 N=100 N=150 N=200 N=300 N=400 N=500 N=1000 qe ln-4/3[p(x)/p(0)] 0 -5 0.4 -6 -7 0.2 -8 0 -9 0.4 0.6 2 x 0.8 1 -10 0 0.2 0.4 0.5 q 0.6 0.6 0.7 q 0.8 0.8 0.9 1 1 [Hence q Æ 2 – q (additive duality) and q Æ1/q (multiplicative duality) are involved] L.G. Moyano, C. T. and M. Gell-Mann, Europhys. Lett. 73, 813 (2006) q - GENERALIZED CENTRAL LIMIT THEOREM: (mathematical proof) S. Umarov, C.T. and S. Steinberg [cond-mat/0603593] q-Fourier transform: Fq [ f ](ξ ) ≡ ∞ ixξ e ∫ q ⊗q f ( x) dx = −∞ ∞ ∫ ixξ [ f ( x )]1−q eq f ( x) dx (nonlinear!) −∞ q-correlation: Two random variables X [ with density f X ( x)] and Y [ with density fY ( y )] are said q - correlated if Fq [X+Y](ξ ) =Fq [X](ξ ) ⊗q Fq [Y](ξ ) , i.e., if izξ ⎡ ∞ dx eixξ ⊗ f ( x) ⎤ ⊗ ⎡ ∞ dy eiyξ ⊗ f ( y ) ⎤ , = e ⊗ dz f ( z ) q q q X q Y ∫−∞ q q X +Y ⎢⎣ ∫−∞ ⎥⎦ q ⎢⎣ ∫−∞ ⎥⎦ ∞ ∞ ∞ ∞ ∞ −∞ −∞ −∞ −∞ with f X +Y ( z ) = ∫ dx ∫ dy h( x, y ) δ ( x + y − z ) = ∫ dx h( x, z − x) = ∫ dy h( z − y, y ) where h( x, y ) is the joint density. ⎛ q - correlation means ⎜ ⎝ independence global correlation if q = 1 , i.e., h ( x, y ) = f X ( x ) fY ( y ) ⎞ ⎟ if q ≠ 1 , hence h( x, y ) ≠ f X ( x) fY ( y ) ⎠ ⎡ β −β t2 ⎤ − β1 ω 2 q − FourierTransform ⎢ eq ⎥ = eq1 ⎢⎣ Cq ⎥⎦ 1+ q where q1 = 3− q 3− q β = 2− q 2(1− q ) and 1 8 β Cq with ⎧ ⎛ 1 ⎞ 2 πΓ ⎜ ⎪ ⎟ − 1 q ⎝ ⎠ ⎪ ⎪ ⎛ 3− q ⎞ ⎪ (3 − q ) (1 − q )Γ ⎜ ⎟ − 2(1 ) q ⎝ ⎠ ⎪ ⎪ Cq = ⎨ π ⎪ ⎪ π Γ ⎛⎜ 3 − q ⎞⎟ ⎪ ⎝ 2(q − 1) ⎠ ⎪ ⎪ q − 1Γ ⎛⎜ 1 ⎞⎟ ⎪ ⎝ q −1 ⎠ ⎩ ⎫ ⎪ if q < 1 ⎪ ⎪ ⎪ ⎪ ⎪ if q = 1 ⎬ ⎪ ⎪ ⎪ if 1 < q < 3⎪ ⎪ ⎪ ⎭ Closure: The q - Fourier transform of a q - Gaussian is a z ( q) - Gaussian with 1+ q z (q) = ∈ (-∞,3) 3- q Iteration: 2q + n(1 − q ) (n = 0, ± 1, ± 2,...; q0 = q ) 2 + n(1 − q ) (the same as in R.S. Mendes and C.T. [Phys Lett A 285, 273 (2001)] when calculating marginal probabilities!) qn ≡ zn (q ) ≡ z ( zn −1 (q )) = hence (i) qn (1) = 1 (∀n), (ii) qn −1 = 2 − q±∞ (q ) = 1 (∀q ), 1 , qn +1 (the same as in L.G. Moyano, C.T. and M. Gell-Mann (2005)!) (the same as in A. Robledo [Physica D 193, 153 (2004)] for pitchfork and tangent bifurcations!) q + m(1 − q ) (iii) n = 2m =0, ± 2, ± 4,... yields q( m ) ≡ q2 m = 1 + m(1 − q ) (the same obtained in C.T., M. Gell-Mann and Y. Sato [Proc Natl Acad Sci (USA) 102, 15377 (2005)], by combining only additive and multiplicative dualities, and which was conjectured to be a possible explanation for the NASA-detected q-triangle for m = 0, ± 1!) ALGEBRA ASSOCIATED WITH q-GENERALIZED CENTRAL LIMIT THEOREMS: α 1 − qα ,n = α 1− q +n (n = 0, ± 1, ± 2,...) S. Umarov, C.T., M. Gell-Mann and S. Steinberg (2006), cond-mat/0606040 A random variable X is said to have a ( q, α ) - stable distribution Lq,α ( x) −b |ξ |α if its q - Fourier transform has the form a e ( a > 0, b > 0, 0 < α ≤ 2) q i.e., if Fq [ Lq ,α ](ξ ) ≡ L1,2 ( x) ≡ G ( x) ∞ ∞ −∞ −∞ ixξ e ∫ q ⊗q Lq,α ( x) dx = ixξ [ Lq ,α ( x )]1−q ∫ eq −b |ξ |α Lq ,α ( x) dx =a eq (Gaussian) L1,α ( x) ≡ Lα ( x) (α − stable Levy distribution) Lq,2 ( x) ≡ Gq ( x) (q − Gaussian) S. Umarov, C. T., M. Gell-Mann and S. Steinberg (2006) cond-mat/0606038 cond-mat/0606040 CENTRAL LIMIT THEOREMS: N 1/[α (2-q )] - SCALED ATTRACTOR F( x) WHEN SUMMING N → ∞ q - CORRELATED IDENTICAL RANDOM VARIABLES WITH SYMMETRIC DISTRIBUTION f ( x) q =1 [independent ] q ≠ 1 (i.e., Q ≡ 2q − 1 ≠ 1) [globally correlated ] F( x) = G3q −1 ( x) ≡ 3q − 1 q +1 F( x) = Gaussian G ( x), σQ < ∞ with same σ 1 of f ( x) (α = 2) Classic CLT F( x) = Levy distribution Lα ( x), σQ → ∞ (0 < α < 2) with same | x | → ∞ asymptotic behavior ⎧ G ( x) ⎫ ⎪ if | x |<< xc (1, α ) ⎪⎪ ⎪ Lα ( x) ⎨ 1+α ⎬ ∼ ∼ f x C x ( ) / | | ⎪ ⎪ α ⎪ if | x |>> xc (1, α ) ⎪⎭ ⎩ with limα → 2 xc (1, α ) = ∞ Levy-Gnedenko CLT q +1 - Gaussian, with same σ Q ⎡ ≡ ∫ dx x 2 [ f ( x)]Q / ∫ dx [ f ( x)]Q ⎤ of f ( x) ⎣ ⎦ if | x |<< xc (q, 2) ⎫⎪ ⎧⎪ G ( x) G3q −1 ( x) ⎨ ⎬ ( q +1)/( q −1) ( ) / | | | | ( >> ∼ ∼ , 2) f x C x if x x q q +1 ⎪⎩ q c ⎭⎪ with lim q → 1 xc (q, 2) = ∞ S. Umarov, C. T. and S. Steinberg (2006) [cond-mat/0603593] F ( x ) = L 2α w ith L 2α q −α + 3 ,α α +1 q −α + 3 ,α α +1 or F ( x ) = L α q + q −1 ,α s ta b le d is tr ib u tio n , ~ f (x) ∼ C (L) q ,α / | x | (1 + α ) / (1 + α q − α ) s ta b le d is tr ib u tio n , α + q −1 w ith L α q + q −1 ~ f ( x ) ∼ C ,α α + q −1 (* ) q ,α / | x |2 (α + q −1 ) / α ( q − 1 ) S . U m a r o v , C . T . , M . G e ll- M a n n a n d S . S te in b e rg (2 0 0 6 ) [c o n d -m a t/0 6 0 6 0 3 8 ] a n d [c o n d -m a t/0 6 0 6 0 4 0 ] WHAT IS IT q − CORRELATION ? : It appears to be (no proof available yet ) N − body joint probability ∫ dx N h( x1 , x2 ,..., xN ) =h( x1 , x2 ,..., xN −1 ) i.e., scale invariance ! BOLTZMANN-GIBBS STATISTICAL MECHANICS (Maxwell 1860, Boltzmann 1872, Gibbs ≤ 1902) Entropy Internal energy Equilibrium distribution Paradigmatic differential equation Equilibrium distribution Sensitivity to initial conditions Typical relaxation of observable Ο W S B G = − k ∑ p i ln p i U = BG W ∑ i =1 pi = e − β Ei i =1 pi Ei / Z BG W ⎛ −β Ej ⎞ Z e ≡ ⎜ BG ∑ ⎟ j =1 ⎝ ⎠ dy ⎫ = ay ⎪ dx ⎬ ⇒ y ( 0 ) = 1 ⎪⎭ y = e ax x a y(x) Ei -β Z p(Ei) t λ t -1/τ ξ ≡ lim Δx (0 )→ 0 Ω≡ Δ x (t ) = e λt Δ x (0 ) O (t ) − O ( ∞ ) = e − t /τ O (0) − O ( ∞ ) SBG → extensive, concave, Lesche-stable, finite entropy production NONEXTENSIVE STATISTICAL MECHANICS (C. T. 1988, E.M.F. Curado and C. T. 1991, C. T., R.S. Mendes and A.R. Plastino 1998) W ⎛ ⎞ S q = k ⎜1 − ∑ piq ⎟ /(q − 1) ⎝ i =1 ⎠ Entropy Internal energy W U q = ∑ p Ei / ∑ p qj i =1 Stationary state distribution −βq ( Ei −Uq ) q pi = e dy ⎫ = a y q⎪ dx ⎬⇒ y (0) = 1 ⎪⎭ Paradigmatic differential equation Stationary state distribution x Ei Sensitivity to initial conditions t Typical relaxation of observable Ο W q i t W − β q ( E j −U q ) ⎞ ⎛ ⎜ Z q ≡ ∑ eq ⎟ = 1 j ⎝ ⎠ j =1 / Zq ax y = eq ≡ [1 + a Z qstat p ( Ei ) λqsen t ξ = eq sen − 1 / τ (1 − q ) a x ] y(x) − β qstat λq 1 1− q q r e l Ω =e sen − t / τ qrel qrel (typically q stat ≥ 1) (typically qsen ≤ 1) (typically qrel ≥ 1) Sq → extensive, concave, Lesche-stable, finite entropy production C. T., Physica A 340,1 (2004) Prediction of the q - triplet: C. T., Physica A 340,1 (2004) SOLAR WIND: Magnetic Field Strength L.F. Burlaga and A. F.-Vinas (2005) / NASA Goddard Space Flight Center; Physica A 356, 375 (2005) [Data: Voyager 1 spacecraft (1989 and 2002); 40 and 85 AU; daily averages] q sen = − 0.6 ± 0.2 qrel = 3.8 ± 0.3 qstat = 1.75 ± 0.06 Playing with additive duality (q → 2 − q) and with multiplicative duality (q → 1/ q ) (and using numerical results related to the q − generalized central limit theorem) we conjecture qrel + 1 =2 qsen hence and 1 − qsen qstat + 1 =2 qrel 1 − q stat = 3 − 2 qstat hence only one independent ! Burlaga and Vinas ( NASA) most precise value of the q − triplet is qstat = 1.75 = 7 / 4 hence qsen = − 0.5 = − 1/ 2 (consistent with qsen = − 0.6 ± 0.2 !) and qrel = 4 (consistent with qrel = 3.8 ± 0.3 !) C.T., M. Gell-Mann and Y. Sato Proc Natl Acad Sc USA 102, 15377 (2005) PREDICTION: The solution of ∂ p ( x, t ) ∂ 2 [ p ( x, t )]2− q =D ∂t ∂x 2 is given by p ( x, t ) ∝ ⎡⎣1 + (1 − q ) x / (Γ t ) 2 [p ( x, 0) = δ (0)] 2 /(3− q ) 1/(1− q ) ⎤⎦ (q < 3) − x 2 / ( Γ t )2 /( 3−q ) q ≡e (Γ ∝ D ) hence x 2 scales like t γ (e.g., x2 ∝ t γ ) with 2 γ= 3− q (e.g ., q = 1 ⇒ γ = 1 , i.e., normal diffusion) C.T. and D.J. Bukman, Phys Rev E 54, R2197 (1996) Hydra viridissima: A. Upadhyaya, J.-P. Rieu, J.A. Glazier and Y. Sawada Physica A 293, 549 (2001) q=1.5 slope γ = 1.24 ± 0.1 2 hence γ = is satisfied 3− q Defect turbulence: K.E. Daniels, C. Beck and E. Bodenschatz, Physica D 193, 208 (2004) 2 q ≈ 1.5 and γ ≈ 4 / 3 are consistent with γ = 3− q K.E. Daniels, C. Beck and E. Bodenschatz, Physica D 193, 208 (2004) XY FERROMAGNET WITH LONG-RANGE INTERACTIONS: A. Rapisarda and A. Pluchino, Europhys News 36, 202 (European Physical Society, Nov/Dec 2005) XY FERROMAGNET WITH LONG-RANGE INTERACTIONS: A. Rapisarda and A. Pluchino, Europhys News 36, 202 (2005) (European Physical Society) Silo drainage: R. Arevalo, A. Garcimartin and D. Maza, cond-mat/0607365 (2006) (intermediate regime) q=3/2 q=1 (fully developed regime) R. Arevalo, A. Garcimartin and D. Maza, cond-mat/0607365 (2006) (outlet size 3.8 d) slope γ = 4 / 3 2 hence γ = is satisfied 3− q COLD ATOMS IN DISSIPATIVE OPTICAL LATTICES: Theoretical predictions by E. Lutz, Phys Rev A 67, 051402(R) (2003): (i) The distribution of atomic velocities is a q-Gaussian; (ii) q = 1 + 44 ER U0 where ER ≡ recoil energy U 0 ≡ potential depth Experimental and computational verifications by P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 (2006) q = 1+ 44 ER U0 (Computational verification: quantum Monte Carlo simulations) (Experimental verification) HADRONIC JETS FROM ELECTRON-POSITRON ANNIHILATION: I. Bediaga, E.M.F. Curado and J.M. de Miranda, Physica A 286 (2000) 156 Beck (2000): q=11/9 Hagedorn (Phenomenological model for collisions in a diluted gas with probability r of forming clusters of q correlated particles) Monte Carlo Single-parameter fitting Connections with asymptotically scale − free networks GEOGRAPHIC PREFERENTIAL ATTACHMENT GROWING NETWORK: THE NATAL MODEL D.J.B. Soares, C. T. , A.M. Mariz and L.R. Silva, Europhys Lett 70, 70 (2005) (1) Locate site i=1 at the origin of say a plane (2) Then locate the next site with PG ∝ 1/ r 2+αG (αG ≥ 0) ( r ≡ distance to the baricenter of the pre − existing cluster ) (3) Then link it to only one of the previous sites using p A ∝ k i / ri αA (α A ≥ 0) ( k i ≡ links already attached to site i ) ( ri ≡ distance to site i ) 4) Repeat (α G = 1; α A = 1; N = 250) D.J.B. Soares, C. T. , A.M. Mariz and L.R. Silva Europhys Lett 70, 70 (2005) P (k )/P (0 )= eq − k /κ ≡ 1 / [1 + ( q − 1) k / κ ]1 / ( q − 1 ) D.J.B. Soares, C. T. , A.M. Mariz and L.R. Silva Europhys Lett 70, 70 (2005) κ = 0 .0 8 3 + 0 .0 9 2 α A Barabasi-Albert universality class (∀ α G ) q=1+(1/3) e −0.526 α A (∀ α G ) D.J.B. Soares, C. T. , A.M. Mariz and L.R. Silva Europhys Lett 70, 70 (2005) ASTROPHYSICS (Band Q: 22.8 GHz) (Data after using Kp0 mask) (Band V: 60.8 GHz) q = 1.045 ± 0.005 (Band W: 93.5 GHz) (99 % confidence level) A. Bernui, C. T. and T. Villela, Phys Lett 356, 426 (2006) q = 1.045 ± 0.005 (99 % confidence level) A. Bernui, C. T. and T. Villela, Phys Lett 356, 426 (2006) Connections with conservative and Hamiltonian systems A (r → ∞ ) V (r ) ∼ − α r ( A > 0, α ≥ 0) integrable if α /d >1 non -integrable if 0 ≤ α / d ≤ 1 α 5 ( short - ranged ) ( long -r ange d ) ) s e on EXTENSIVE d (ti tati e vi l o ra p o lg n o na dipole-dipole m io le n s o e p i d im d NONEXTENSIVE d- 4 3 2 1 Newtonian gravitation 0 0 1 2 3 4 d 5 MANY COUPLED STANDARD MAPS: L.G. Moyano, A.P. Majtey and C.T., Eur Phys J B 52, 493 (2006) a pi (t + 1) = pi (t ) + sin [ 2πθi (t )] + 2π b 2π N N ∑ j =1 { θi (t + 1) = θi (t ) + pi (t + 1) with 1−α / d } sin 2π ⎡⎣θi (t ) − θ j (t )⎤⎦ α rij (mod1) (mod1) N −1 N≡ ; a ≥ 0 ; b ≥ 0 ; α ≥ 0 ; d =1 1−α / d L.G. Moyano, A.P. Majtey and C.T., Eur Phys J B 52, 493 (2006) L.G. Moyano, A.P. Majtey and C.T., Eur Phys J B 52, 493 (2006) d-DIMENSIONAL CLASSICAL INERTIAL XY FERROMAGNET: C. Anteneodo and C. T., Phys Rev Lett 80, 5313 (1998) (We illustrate with the XY (i.e., n=2) model; the argument holds however true for any n>1 and any d-dimensional Bravais lattice) 1 H = K +V = 2I N with A ≡ ∑ rij−α j =1 1 − cos(ϑi − ϑ j ) J L + ∑ ∑ α r A i =1 i, j ij N 2 i ⎧ N 1−α / d ⎪ ∝ ⎨ln N ⎪constant ⎩ if if if ( I > 0, J > 0) 0 ≤α / d <1 ⎫ ⎪ α / d =1 ⎬ α / d > 1 ⎪⎭ and periodic boundary conditions. [The HMF model corresponds to α = 0, ∀d ] M. Antoni and S. Ruffo, Phys Rev E 52, 2361 (1995) C. Anteneodo and C. T. Phys Rev Lett 80, 5313 (1998) A. Campa. A. Giansanti, D. Moroni and C. T. Phys Lett A 286, 251 (2001) V. Latora, A. Rapisarda and C. T., Phys Rev E 64, 056134 (2001) C. T., A. Rapisarda, V. Latora and F. Baldovin, Lecture Notes in Physics 602 (Springer, Berlin, 2002) V. Latora, A. Rapisarda and C. T., Phys Rev E 64, 056134 (2001) In contact with a thermostat (canonical ensemble): F. Baldovin and E. Orlandini Phys Rev Lett 96, 240602 (2006) F. Baldovin and E. Orlandini, cond-mat/0603659 (q=2.35) tW = 8 t α = 0 model : qrel 2.35 ? qstat 1.5 ? F.A. Tamarit and C. Anteneodo Europhysics News 36 (6), 194 (2005) [European Physical Society] HMF MODEL: L.G. Moyano, F. Baldovin and C. T., cond-mat/0305091 ECONOMICS STOCK VOLUMES: J de Souza, SD Queiros and LG Moyano, physics/0510112 (2005) q-GENERALIZED BLACK-SCHOLES EQUATION: L Borland, Phys Rev Lett 89, 098701 (2002), and Quantitative Finance 2, 415 (2002) L Borland and J-P Bouchaud, cond-mat/0403022 (2004) L Borland, Europhys News 36, 228 (2005) See also H Sakaguchi, J Phys Soc Jpn 70, 3247 (2001) C Anteneodo and CT, J Math Phys 44, 5194 (2003) [ REMARK : Student t − distributions are the particular case of q − Gaussians when q= n+3 n +1 with n integer ] EARTHQUAKES MODEL FOR EARTHQUAKES (OMORI REGIME): D(n+nw , nw) 1.0 nw=250 nw=500 nw=1000 nw=2000 nw=5000 0 ln [D(n+n , n )] q w w -2 -4 -6 (q=2.98) -8 -10 -12 0 2 4 6 8 n/n 0.1 10-4 10-3 10-2 10 1.05 12 14 16 w 10-1 100 101 102 n / nw1.05 S. Abe, U. Tirnakli and P.A. Varotsos Europhysics News 36 (6), 206 (2005) [European Physical Society] U. Tirnakli, in Complexity, Metastability and Nonextensivity, eds. C. Beck, G. Benedek, A. Rapisarda and C. T. (World Scientific, Singapore, 2005), page 350 GENERALIZED SIMULATED ANNEALING AND RELATED ALGORITHMS q-GENERALIZED SIMULATED ANNEALING (GSA): C.T. and D.A. Stariolo, Notas de Fisica / CBPF (1994); Physica A 233, 395 (1996) Visiting algorithm : Boltzmann machine → Gaussian Generalized machine → qV − Gaussian Acceptance algorithm : Boltzmann machine → Boltzmann weight Generalized machine → q A − exponential weight Cooling algorithm : Boltzmann machine → T(t) ln 2 = T(1) ln(1 + t ) q −1 T(t) 2 V −1 = Generalized machine → T(1) (1 + t ) qV −1 − 1 [Typical values : 1 < qV < 3 and q A < 1] C. T. and D.A. Stariolo, Physica A 233, 395 (1996) q-GENERALIZED SIMULATED ANNEALING (GSA): Illustration : 4 4 E ( x1 , x2 , x3 , x4 ) = ∑ ( xi − 8) + 5∑ xi 2 2 i =1 i =1 (15 local minima and one global minimum) (qV = 1 ⇒ mean convergence time ≈ 50000) q-GENERALIZED PIVOT METHOD: P. Serra, A.F. Stanton and S. Kais, Phys Rev E 55, 1162 (1997) (Lennard-Jones clusters) e4 .7 Genetic algorithm slo p Number of function calls (Branin function) sl e p o 9 2. Present with q=2.7 Recently: M.A. Moret, P.G. Pascutti, P.M. Bisch, M.S.P. Mundim and K.C. Mundim Classical and quantum conformational analysis using Generalized Genetic Algorithm Physica A 363, 260 (2006) (presumably better than both!) IMAGE EDGE DETECTION Original image Canny edge detector [A. Ben Hanza, J. Electronic Imaging 15, 013011 (2006)] q = 1.5 q=1 (JensenShannon) IMAGE EDGE DETECTION Original image Canny edge detector [A. Ben Hanza, J. Electronic Imaging 15, 013011 (2006)] q = 1.5 q=1 (JensenShannon) M.P. de Albuquerque, I.A. Esquef, A.R.G. Mello and M.P. de Albuquerque Pattern Recognition Letters 25, 1059 (2004) IMAGE THRESHOLDING: M.P. de Albuquerque, I.A. Esquef, A.R.G. Mello and M.P. de Albuquerque Pattern Recognition Letters 25, 1059 (2004) thanq HOW MANY PHYSICAL UNIVERSAL CONSTANTS ? ν ≡ number of independent physical universal constants in contemporary physics 1 ν = 1 ⎡1 1 1 ⎤ 7 + + ⎥= ⎢ 3 ⎣ 3 4 ∞ ⎦ 36 Nino Constantino Gerardus hence Euclid ν= Gerardus 36 1⎞ ⎛ = 2 + ⎜ 3 + ⎟ = 2 + π = 2 + 1800 = 2 + 1 = 3 7 7⎠ ⎝ ν = 3 !!! NINO WAS RIGHT!!! GAS-LIKE (NODE COLLAPSING) NETWORK: S. Thurner and C. T., Europhys Lett 72, 197 (2005) Number N of nodes fixed (chemostat); i=1, 2, …, N Merging probability pij ∝ 1 dijα (α ≥ 0) dij ≡ shortest path (chemical distance) connecting nodes i and j on the network α = 0 and α → ∞ recover the random and the neighbor schemes respectively (Kim, Trusina, Minnhagen and Sneppen, Eur. Phys. J . B 43 (2005) 369) ( N = 27 ; α = 0; r = 2) Degree of the most connected node Degree of a randomly chosen node 80 ki kmax 70 kmax ; ki 60 50 40 30 20 10 0 2000 4000 6000 8000 10000 12000 14000 time S. Thurner, Europhys News 36, 218 (2005) (α → ∞ ; < r >= 8) (α → ∞; Z q (k ) ≡ ln q [ P(> k )] P(> k )] [ ≡ 1− q −1 1− q (optimal qc = 1.84) S. Thurner and C. T., Europhys Lett 72, 197 (2005) ( N = 29 ; r = 2) P (≥ k ) = eqc - ( k -2)/ κ (k = 2, 3, 4,...) linear correlation ∈ [0.999901, 0.999976] S. Thurner and C. T., Europhys Lett 72, 197 (2005) (r = 2) qc (α ) = qc (∞) + [ qc (0) − qc (∞) ] e−α ( N = 29 ) S. Thurner and C. T., Europhys Lett 72, 197 (2005) SANTOS THEOREM: RJV Santos, J Math Phys 38, 4104 (1997) (q - generalization of Shannon 1948 theorem) IF S ({ pi }) continuous function of { pi } AND S ( pi = 1/ W , ∀i ) monotonically increases with W S ( A + B) S ( A) S ( B) S ( A) S ( B) A+ B A B ( with p ij = p i p j ) = + + (1 − q ) k k k k k q q AND S ({ pi }) = S ( pL , pM ) + pL S ({ pl / pL }) + pM S ({ pm / pM }) ( with pL + pM = 1) AND THEN AND ONLY THEN W S ({ pi }) = k 1 − ∑ pi i =1 q −1 q W ⎛ ⎞ p q S p k p = 1 ⇒ ({ }) = − ln ∑ i i i⎟ ⎜ i =1 ⎝ ⎠ CE SHANNON (The Mathematical Theory of Communication) : are in no way necessary for the present theory. It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these definitions, however, will reside in their implications. "This theorem, and the assumptions required for its proof , ABE THEOREM: S Abe, Phys Lett A 271, 74 (2000) (q - generalization of Khinchin 1953 theorem) IF S ({ pi }) continuous function of { pi } AND S ( pi = 1/ W , ∀i ) monotonically increases with W AND S ( p1, p2 ,..., pW , 0) = S ( p1, p2 ,..., pW ) AND S ( A + B) S ( A) S ( B | A) S ( A) S ( B | A) = + + (1 − q ) k k k k k THEN AND ONLY THEN W S ({ pi }) = k 1 − ∑ pi i =1 q −1 q W ⎛ ⎞ ⎜ q = 1 ⇒ S ({ pi }) = − k ∑ p i ln pi ⎟ i =1 ⎝ ⎠ The possibility of such theorem was conjectured by AR Plastino and A Plastino (1996, 1999).
Similar documents
CONEXÕES ENTRE SISTEMAS DINÂMICOS NÃO LINEARES E
EDGE OF CHAOS OF THE LOGISTIC MAP:
More information