MAIS q‐EXPONENCIAIS E q‐GAUSSIANAS. E PARA NÃO DIZER
Transcription
MAIS q‐EXPONENCIAIS E q‐GAUSSIANAS. E PARA NÃO DIZER
MAIS q EXPONENCIAIS E q GAUSSIANAS. E PARA NÃO DIZER QUE NÃO FALEI DE FLORES, A TEORIA DE GRANDES DESVIOS. additive nonadditive (if q ≠ 1) TYPICAL SIMPLE SYSTEMS: Short-range space-time correlations e.g., W ( N ) ∝ µ ( µ > 1) N Markovian processes (short memory), Additive noise Strong chaos (positive maximal Lyapunov exponent), Ergodic, Riemannian geometry Short-range many-body interactions, weakly quantum-entangled subsystems Linear/homogeneous Fokker-Planck equations, Gausssians ! Boltzmann-Gibbs entropy (additive) ! Exponential dependences (Boltzmann-Gibbs weight, ...) TYPICAL COMPLEX SYSTEMS: Long-range space-time correlations ρ e.g., W ( N ) ∝ N ( ρ > 0) Non-Markovian processes (long memory), Additive and multiplicative noises Weak chaos (zero maximal Lyapunov exponent), Nonergodic, Multifractal geometry Long-range many-body interactions, strongly quantum-entangled sybsystems Nonlinear/inhomogeneous Fokker-Planck equations, q-Gaussians ! Entropy Sq (nonadditive) ! q-exponential dependences (asymptotic power-laws) An entropy is additive if, for any two probabilistically independent systems A and B, S ( A + B) = S ( A) + S ( B) Therefore, since Sq ( A + B) = Sq ( A) + Sq ( B) + (1 − q) Sq ( A) S q ( B) , S BG and SqRenyi (∀q) are additive, and Sq (∀q ≠ 1) is nonadditive . Consider a system Σ ≡ A1 + A2 + ... + AN made of N (not necessarily independent) identical elements or subsystems A1 and A2 , ..., A N . An entropy is extensive if S(N ) 0 < lim < ∞ , i.e., S ( N ) ∝ N ( N → ∞) N →∞ N EXTENSIVITY OF THE ENTROPY (N → ∞) If W (N ) µ N ( µ > 1) ⇒ S BG (N ) = k B lnW (N ) ∝ N OK! If W (N ) N ρ ( ρ > 0) ⇒ Sq (N ) = k B ln q W (N ) ∝ [W (N )]1−q ∝ N ρ (1−q) ⇒ Sq=1−1 ρ (N ) ∝ N If W (N ) ν Nγ OK! (ν > 1; 0 < γ < 1) δ ⇒ Sδ (N ) = k B ⎡⎣ lnW (N ) ⎤⎦ ∝ N γ ⇒ Sδ =1 γ (N ) ∝ N IMPORTANT: µ >> ν N δ OK! Nγ >> N ρ if N >> 1 Tackled by Jacob D. Bekenstein Stephen W. Hawking Gary W. Gibbons Gerard ‘t Hooft Leonard Susskind Michael J. Duff Juan M. Maldacena Thanu Padmanabhan Robert M. Wald and many others SINCE THE PIONEERING BEKENSTEIN-HAWKING RESULTS, PHYSICALLY MEANINGFUL EVIDENCE HAS ACCUMULATED (e.g., HOLOGRAPHIC PRINCIPLE) WHICH MANDATES THAT lnWblack hole ∝ AREA THIS IS PERFECTLY ADMISSIBLE AND MOST PROBABLY CORRECT. HOWEVER, IS THIS QUANTITY THE THERMODYNAMICAL ENTROPY??? ENTROPIES W S BG 1 = k B ∑ pi ln pi i=1 → additive W 1 Sq = k B ∑ pi ln q pi i=1 ⎛ 1⎞ Sδ = k B ∑ pi ⎜ ln ⎟ ⎝ pi ⎠ i=1 W Sq,δ C. T. (1988) (S1 = S BG ) → nonadditive if δ ≠ 1 C. T. (2009) δ ⎛ 1⎞ = k B ∑ pi ⎜ ln q ⎟ pi ⎠ ⎝ i=1 W (S1 = S BG ) → nonadditive if q ≠ 1 δ (Sq,1 = Sq ; S1,δ = Sδ ; S1,1 = S BG ) C. T. (2011) → nonadditive if (q,δ ) ≠ (1,1) C. T. and L.J.L. Cirto (2012), 1202.2154 [cond-mat.stat-mech] SYSTEMS ENTROPY SBG W (N ) (ADDITIVE) µN ( µ > 1) Nρ ( ρ > 0) ENTROPY Sq ENTROPY Sδ (δ ≠ 1) (q ≠ 1) (NONADDITIVE) (NONADDITIVE) EXTENSIVE NONEXTENSIVE NONEXTENSIVE NONEXTENSIVE EXTENSIVE NONEXTENSIVE Nγ ν (ν > 1; 0 < γ < 1) NONEXTENSIVE NONEXTENSIVE EXTENSIVE pq ( x) ∝ −( x /σ )2 eq 1 ≡ ⎡⎣1 + (q -1) 1 (x / σ )2 ⎤ q-1 ⎦ (q < 3) A. Plastino and M.C. Rocca, Physica A and Milan J Math (2012) M. Jauregui, C. T. and E.M.F. Curado, JSTAT P10016 (2011) M. Jauregui and C. T., Phys Lett A 375, 2085 (2011) H.J. Hilhorst, JSTAT P10023 (2010) See also: CENTRAL LIMIT THEOREM N 1/[α (2-q )] - scaled attractor F ( x) when summing N → ∞ q - independent identical random variables ⎛ 1+ q ⎞ with symmetric distribution f ( x) with σ Q ≡ ∫ dx x 2 [ f ( x)]Q / ∫ dx [ f ( x)]Q ⎜ Q ≡ 2q − 1, q1 = ⎟ 3− q ⎠ ⎝ q =1 [independent ] q ≠ 1 (i.e., Q ≡ 2q − 1 ≠ 1) [globally correlated ] F ( x) = Gq ( x) ≡ G(3 q 1−1) / (1+ q 1 ) ( x), with same σ Q of f ( x) σQ < ∞ (α = 2) F ( x) = Gaussian G ( x ), with same σ 1 of f ( x) Classic CLT F ( x ) = Levy distribution Lα ( x ), with same | x | → ∞ behavior σQ → ∞ (0 < α ⎧G ( x ) ⎪ < 2) Lα ( x ) ∼ ⎪⎨ if | x |<< xc (1, α ) 1+α ⎪ f ( x ) ∼ Cα / | x | ⎪ if | x |>> xc (1, α ) ⎩ with limα → 2 xc (1, α ) = ∞ Levy-Gnedenko CLT ⎧⎪G ( x) Gq ( x) ∼ ⎨ 2/( q −1) ⎪⎩ f ( x) ∼ Cq / | x | with lim q → 1 xc (q, 2) = ∞ if | x |<< xc (q, 2) ⎫⎪ ⎬ if | x |>> xc (q, 2) ⎭⎪ S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008) F ( x ) = Lq,α , with same | x |→ ∞ asymptotic behavior 2(1− q )−α (3− q ) ⎧ * ⎪G 2(1− q )−α (1+ q ) ( x ) ∼ C q ,α / | x | 2(1− q ) ⎪ 2(1− q )−α (3− q ) , α ⎪ (intermediate regime) ⎪ ⎪ Lq,α ~ ⎨ ⎪ (1+α )/(1+α q−α ) L G ( x ) ∼ C / | x | ⎪ 2α q −α +3 q ,α , 2 α +1 ⎪ ⎪ ( distant regime) ⎪ ⎩ S. Umarov, C. T., M. Gell-Mann and S. Steinberg J Math Phys 51, 033502 (2010) CONSERVATIVE MC MILLAN MAP: xn +1 = yn yn yn +1 = − xn + 2 µ + ε y n 2 1 + yn µ ≠ 0 ⇔ nonlinear dynamics G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012) G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012) G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012) A V (r) ∼ − α r (r → ∞) ( A > 0, α ≥ 0) α / d >1 non-integrable if 0 ≤ α / d ≤ 1 integrable if 5 (short-ranged ) (long-ranged ) EXTENSIVE SYSTEMS α 4 dipole-dipole 3 α -XY model NONEXTENSIVE SYSTEMS 2 Newtonian gravitation 1 0 0 1 2 3 4 d 5 α =2 q =1 α = 0.9 q = 1.58 L.J.L. Cirto, V.R.V. Assis and C. T. (2012),1206.6133 [cond-mat.stat-mech] α =2 q =1 α = 0.9 q = 1.53 L.J.L. Cirto, V.R.V. Assis and C. T. (2012),1206.6133 [cond-mat.stat-mech] CORRELATIONS IN COUPLED LOGISTIC MAPS AT THE! EDGE OF CHAOS IN THE PRESENCE OF GLOBAL NOISE" We consider a linear chain of N coupled maps with periodic boundary conditions in a noisy environment: ε x ti +1 = (1− ε ) f (x ti ) + [ f (x ti−1 ) + f (x ti+1 )] + σ t 2 with ε ∈[0,1] σ t ∈[0,σ max ] additive noise coupling strength i i 2 and f (xt ) = 1− µ (xt ) µ ∈[0,2] i-th logistic map (i = 1...N) [zero noise: N.B. Ouchi and K. Kaneko, Chaos 10, 359 (2000)] Intermittency in the normalized returns time-series edge of chaos: N = 100 − ε = 0.8 − σ = 0.002 global parameter time returns Δdt stdev Δdt = dt +τ − dt time t A. Pluchino, A. Rapisarda and C. T., Phys Rev E 87, 022910 (2013) N = 100; ε = 0.8; σ max = 0.002; τ = 32 Chaotic Regime: Δdt stdev Edge of chaos: q=1 q=1.54 β=0.5 β=1.47 Δdt stdev A. Pluchino, A. Rapisarda and C. T., Phys Rev E 87, 022910 (2013) q=1.115 β=0.6 Edge of chaos U. Tirnakli and C. T. (2013) U. Tirnakli and C. T. (2013) Kwapien and Drozdz, Phys Rep 515, 115 (2012) 0.6 q-1 0.55 0.5 q − 1 ∝1 / τ 0.1 0.45 0.4 slope = 0.1 0.35 0.3 -3 10 10 -2 -1 10 -1 1/τ (minute ) 10 0 PHYSICS MATHEMATICS (Large deviation (Statistical theory) mechanics) q =1 pN ∝ e (quasi-independent) =e q ≠1 (strongly correlated) −β HN ⎡ HN − ⎢β ⎣ N ⎤ ⎥N ⎦ PN (x) e − N r(x) (N → ∞) − βq H N pN ∝ eq ⎡ H ⎤ − ⎢( β q N * ) N* ⎥ N NN ⎦ ⎣ q =e − N rq ( x ) PN (x) eq (N → ∞) G. Ruiz and C. T., Phys Lett A 377, 491 (2013) ln P( N ; n N < x) G. Ruiz and C. T., Phys Lett A 376, 2451 (2012) Q −1 q = 1+ γ (3 − Q) G. Ruiz and C. T., Phys Lett A 376, 2451 (2012) G. Ruiz and C. T., Phys Lett A 377, 491 (2013) G. Ruiz and C. T., Phys Lett A 377, 491 (2013) CONJECTURE: For all strongly correlated systems whose CLT attractors are Q-Gaussians (Q > 1), a set ⎡⎣ q > 1, B(x) > 0, rq(lower bound ) (x) > 0, rq(upper bound ) (x) > 0 ⎤⎦ exists such that generically B(x) ⎡⎣(q − 1) r (lower bound ) q (x) ⎤⎦ 1 q−1 − rq( lower q e bound ) (x) N ⎤ B(x) ⎡ 1 1 2 = 1 ⎢1− + o(1 / N ) ⎥ 2 (lower bound ) (q − 1) rq (x) N ⎥⎦ q−1 ⎢ ⎣ N ≤ P(N; n N < x) ≤ B(x) ⎡⎣(q − 1) r (upper bound ) q (x) ⎤⎦ 1 q−1 − rq( upper q e bound ) (x) N ⎤ B(x) ⎡ 1 1 2 = 1 ⎢1− + o(1 / N ) ⎥ 2 (upper bound ) (q − 1) rq (x) N ⎥⎦ q−1 ⎢ ⎣ N G. Ruiz and C. T., Phys Lett A 377, 491 (2013) q=1.15 T=0.145 Wong and Wilk, Acta Phys Polon B 43, 2047 (2012) 2 Newton p 2 e E = Em= mecc2 ++p2/2m e e 2m e Newton Ee = 7 TeV E =Einstein me2 c 4 + p 2(1905) c2 E = (m2e c4 + p2c4)1/2 9 ctro m < 3 eV/c2 e ele 8 7 6 5 4 511 KeV/c2 me n o Einstein (1905) trin | | E = 7 TeV neu 12 10 1011 1010 9 10 EE 1 108 2 2 − 1107 mmecec 6 10 105 104 103 102 101 100 10 1 10 2 10 3 10 4 3 2 1 0 p [GeV/c] 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 L.J.L. Cirto and C. T. (2012) See also: R.N. Costa Filho, M.P. Almeida, G.A. Farias and J.S. Andrade, Phys Rev A 84, 050102(R) (2011) F.D. Nobre, M.A. Rego-Monteiro and C. T., EPL 97, 41001 (2012) S.H. Mazharimousavi, Phys Rev A 85, 034102 (2012) A.R. Plastino and C. T., J Math Phys. 54, 041505 (2013) R.N. Costa Filho, G. Alencar, B.S. Skagerstam and J.S. Andrade, EPL 101, 10009 (2013) B.G. Costa and E.P. Borges, preprint (2013)
Similar documents
CONEXÕES ENTRE SISTEMAS DINÂMICOS NÃO LINEARES E
W ( N ) ∝ µ N ( N → ∞ ; µ > 1) ⇒ S BG ( N ) = k B ln W ( N ) ∝ N ( EXTENSIVE !)
More informationq - CBPF
STILL ANOTHER PATH TO INVERT THE q-FOURIER TRANSFORM A. Plastino and M.C. Rocca, 1112.1985 [math-ph] and 1112.1986 [math-ph]
More information