Optimal polynomial approximation of PDEs with stochastic
Transcription
Optimal polynomial approximation of PDEs with stochastic
Optimal polynomial approximation of PDEs with stochastic coefficients by Galerkin and collocation methods Fabio Nobile MOX, Department of Mathematics, Politecnico di Milano Seminaire du Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie (Paris VI), May 27, 2011 Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 1 Acknowledgments Collaborators: I. Babuška, L. Tamellini, M. Mohammad, R. Tempone, J. Bäck Funds: Italian project FIRB-IDEAS (’09) Advanced Numerical Techniques for Uncertainty Quantification in Engineering and Life Science Problems Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 2 Outline 1 Problem setting: PDEs with random coefficients 2 Techniques for computing polynomial approximations Galerkin projection Collocation on sparse grids numerical comparison 3 Optimization of polynomial spaces 4 Numerical examples 5 Hyperbolic problems with random coefficients numerical results 6 Conclusions Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 3 Problem setting: PDEs with random coefficients Problem setting Consider a differential problem find u : L(y)(u) = F where the operator L(y) depends on a vector of N parameters: y = (y1 , . . . , yN ). The parameters are not perfectly known, or they have a lot of variability in repeated experiments Treat them as random variables with a given probability density fuction (estimated from experimentsRor from prior knowledge / expert opinion): ρ(y) : Γ → R+ , ρ(y)dy = 1 Γ We assume that for each y ∈ Γ the corresponding solution u = u(y) belongs to a given functional space V =⇒ Fabio Nobile (MOX, Politecnico di Milano) u = u(y) : Γ → V Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 5 Problem setting: PDEs with random coefficients Problem setting Goal: compute statistics of the solution u or some quantity of interest J(u). E.g. Z J̄ = E[J(u)] = J(u(y))ρ(y)dy, mean value Γ 2 Var [J] = E[J(u) ] − E[J(u)]2 Z P[J(u) > Jcr ] = 1{J(u(y))>Jcr } ρ(y)dy variance exceedance prob. Γ Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 6 Problem setting: PDEs with random coefficients Multivariate polynomial approximation Computations of statistical quantities typically imply lots of evaluations of u(y) ; lots of problems to solve Idea: build a reduced model uΛ (y) ≈ u(y) that is cheap to evaluate and use it to compute statistical moments. E.g. J̄ ≈ J̄Λ = E[J(uΛ )] In this talk we consider multivariate polynomial reduced models. Let Λ ⊂ NN be an index set of cardinality |Λ| = M, and consider the multivariate polynomial space nQ o N N pn PΛ (Γ ) = span with p = (p1 , . . . , pN ) ∈ Λ n=1 yn , find M particular solutions up ∈ V , ∀p ∈ Λ and build X uΛ (y) = up y1p1 y2p2 · · · yNpN p∈Λ Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 7 Problem setting: PDEs with random coefficients Examples of pol. spaces: N = 2, pn ≤ w Total Degree (TD) 16 16 14 14 12 12 10 10 p2 Tensor product: p2 Tensor Product (TP) 8 6 4 4 2 Total P n 8 6 0 Q (pn + 1) ≤w +1 n 2 4 6 8 p1 10 12 14 0 16 16 14 14 12 12 10 10 p2 p2 pn ≤ w 0 2 4 6 8 p1 10 12 14 16 Smolyak (SM) 16 8 6 4 4 2 Smolyak: P n 8 6 0 degree: 2 0 Hyperbolic Cross (HC) Hyperbolic cross: p = 16 f (p) = 2 0 2 4 6 Fabio Nobile (MOX, Politecnico di Milano) 8 p1 10 12 14 16 0 0 2 4 6 8 p1 10 Polynomial approx. of stochastic PDEs 12 14 f8(pn ) ≤ f (w ) > <0, 1, > :dlog (p)e, 2 p=0 p=1 p≥2 16 LJLL, Paris, May 27, 2011 9 Problem setting: PDEs with random coefficients Anisotropic spaces: N = 2, Aniso Total Degree (ATD) 16 16 14 14 12 12 10 10 p2 Tensor product: αn pn ≤ w p2 Aniso Tensor Product (ATP) 8 6 4 4 2 Total degree: P α p ≤ w n n n 8 6 0 2 0 2 4 6 8 p1 10 12 14 0 16 0 2 16 14 14 12 12 10 10 8 6 4 4 2 2 0 2 4 6 Fabio Nobile (MOX, Politecnico di Milano) 8 p1 10 12 14 6 8 p1 10 12 14 16 16 Smolyak: X αn f (pn ) ≤ f (w ) 8 6 0 4 Aniso Smolyak (ASM) 16 p2 p2 Aniso Hyperbolic Cross (AHC) Hyperbolic cross: Q αn n (pn + 1) ≤w +1 pmax = 16 0 n f (p) = 0 2 4 6 8 p1 10 Polynomial approx. of stochastic PDEs 12 14 16 8 > <0, 1, > :dlog (p)e, 2 LJLL, Paris, May 27, 2011 p=0 p=1 p≥2 10 Problem setting: PDEs with random coefficients Accuracy requirements We look at mean square error control (strong convergence) Z err2,ρ = ku(y) − uΛ (y)k2V ρ(y)dy small Γ An easy implication: [N.-Tempone, IJNME 09] Assume ku(y)kV and kuΛ (y)kV uniformly bounded in Γ Let J : V → R a locally Lipschitz functional, with J(0) = 0 Then 1 E[J(u)q − J(uΛ )q ] ≤ C (q)E[ku − uΛ k2V ] 2 1 i.e. convergence in E[ku − uΛ k2V ] 2 implies convergence of all moments of the funciontal J. Weak convergence could (should) be considered as well. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 11 Problem setting: PDEs with random coefficients Example I: Thermal conduction with inclusions of random conductivity (baked cookies problem) ( − div(a∇u) = f , u=0 in D on ∂D Each circular inclusion Ci , i = 1, . . . 8 has a random conductivity coefficient yi . a(y1 , . . . , yN , x) = a0 + N X (yn − a0 )1Cn (x), x ∈ D, y ∈ Γ n=1 8-dimensional parametric problem Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 12 Problem setting: PDEs with random coefficients Example II: Darcy flow in a medium with random permeability (groundwater flow problem) ( u = −a∇p div u = f a = a(ω, x): random permeability field (with a > 0 a.s.) Each realization of the stochastic process gives a spatially varying permeability field. The random field can be conditioned to available measurements (e.g. by Kriging techniques) Infinite-dimensional parametric problem! Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 13 Problem setting: PDEs with random coefficients Approximation of an ∞-dimensional random field Let {bn (x)} be a complete orthonormal basis in L2 (D) (trigon., wavelet, Karhunen-Loève, ...) and a(ω, x) a ∞-dimensional random field with finite second moments. Then, a can be expanded as a(ω, x) = E[a](x) + ∞ X yn (ω)bn (x) n=1 Z (a(ω, x) − E[a](x))bn (x) dx with yn (ω) = D If the basis {bn } has spectral approx. properties and the realizations of a n→∞ are smooth, then Var [yn ] → 0 suff. fast and we can truncate the series a(ω, x) ≈ aN (ω, x) = E[a](x) + N X yn (ω)bn (x) n=1 WARNING: the truncated expansion might not be positive almost surely! PN Possible remedy: a(ω, x) ≈ aN (ω, x) = amin + e b0 (x)+ n=1 yn (ω)bn (x) Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 14 Techniques for computing polynomial approximations Galerkin projection Galerkin projection [Ghanem-Spanos, Karniadakis et al, Matthies-Keese, Schwab-Todor et al., Knio-Le Maı̂tre et al,Babuska et al.,. . . ] Project the equation onto the subspace PΛ (Γ) Suitable for stochastic problems Let {ψj }M j=1 be an orthonormal basis w.r.t. the probability density P ρ(y). Expand uΛ (y) on the basis: uΛ (y) = M j=1 uj ψj (y) Galerkin formulation Find uj ∈ V , j = 1, . . . M s.t. M h i X E L(y)( uj ψj )ψi = E[Fψi ], i = 1, . . . , M j=1 This approach leads to solving M coupled deterministic problems; difficult to assemble and need good preconditioners. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 18 Techniques for computing polynomial approximations Collocation on sparse grids Collocation on sparse grids [Smolyak ’63, Griebel et al ’98-’03-’04, Barthelmann-Novak-Ritter ’00, Hesthaven-Xiu ’05, N.-Tempone-Webster ’08, Zabaras et al ’07] 1 2 3 e Choose a set of points y(j) ∈ Γ, j = 1, . . . , M Compute the solutions uj ∈ V : L(y(j) )(uj ) = F Pe Interpolate the obtained values: uΛ (y) = M j=1 uj φj (y). φj ∈ PΛ (Γ): suitable combinations of Lagrange polynomials e uncoupled deterministic problems Always leads to solving M e of points needed is larger than the dimension M The number M of the polynomial space (Except for tensor product spaces). Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 20 Techniques for computing polynomial approximations Collocation on sparse grids (Generalized) Sparse Grid approximation 1 Choose 1D abscissae. E.g. Clenshaw-Curtis (extrema on Chebyshev polynomials) Gauss points w.r.t. the weight Q ρn , assuming that the probability density factorizes as ρ(y) = N n=1 ρn (yn ) 2 3 Take a sequence of 1D polynomial interpolant operators m(i) Un : C 0 (Γn ) → Pm(i)−1 (Γn ) with increasing number of points i i , . . . , yn,m . The i-th interpolant uses m(i) abscissae ϑin = yn,1 i Take differences of consecutive operators: ∆m(i) = Unm(i) − Unm(i−1) , n 4 Unm(0) = 0. Multidimensional Smolyak approx.: let i = [i1 , . . . , iN ] ∈ NN+ , and Λ ⊂ NN an index set X m(i ) m(i ) uΛSC = ∆1 1 ⊗ · · · ⊗ ∆N N (u) i∈Λ Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 21 Techniques for computing polynomial approximations Collocation on sparse grids By choosing properly the function m and the set Λ one can obtain a polynomial approximation in any given multivariate polynomial space ([Back-N.-Tamellini-Tempone LNCSE vol. 76, 2010]) Examples of sparse grids: N = 2, max. polynomial degree p = 16 Total Degree (TD) 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 y2 y2 Tensor Product (TP) 1 0 −0.2 −0.4 −0.4 −0.6 −0.6 −0.8 −0.8 −1 −1 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 0.4 0.6 0.8 Hyperbolic Cross (HC) −1 −1 1 −0.8 −0.6 −0.4 −0.2 0 0.2 y1 1 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 y2 1 0 −0.2 −0.2 −0.4 −0.4 −0.4 −0.6 −0.6 −0.6 −0.8 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 0.4 0.6 Fabio Nobile (MOX, Politecnico di Milano) 0.8 1 −1 −1 0.8 1 0 −0.2 −0.8 0.6 Smolyak CC (SM) 1 −1 −1 0.4 Smolyak Gauss (SM) y2 y2 0 −0.2 −0.8 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 0.4 0.6 0.8 1 Polynomial approx. of stochastic PDEs −1 −1 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 0.4 0.6 0.8 1 LJLL, Paris, May 27, 2011 22 Techniques for computing polynomial approximations numerical comparison Thermal conduction with random inclusions Conductivity coefficient: matrix k=1 circular inclusions: k|Ωi ∼ U(0.01, 0.8) → 8 iid uniform random variables forcing term f = 1001F zero boundary conditions R quantity of interest ψ(u) = F u mean Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs std LJLL, Paris, May 27, 2011 29 Techniques for computing polynomial approximations numerical comparison Convergence plot for E[ψ(u)] −2 −2 10 10 −4 −4 10 −6 E(ψ1,p) − E(ψ1,ovk) E(ψ1,p) − E(ψ1,ovk) 10 10 −8 10 −10 10 MC SG−TP SG−TD SG−HC SG−SM −12 10 −14 10 0 10 1 10 −6 10 −8 10 SG−TD MC SC−TP SC−TD SC−HC SC−SM−G SC−SM−CC −10 10 −12 10 −14 2 10 3 10 4 10 5 10 SG: dim−stoc * iter−CG / MC: sample size Galerkin 6 10 10 0 10 1 2 10 10 3 10 4 10 5 10 6 10 SC: num−pts / SG: dim−stoc * iter−CG / MC: sample size Collocation error versus estimated cost (see [Back-N.-Tamellini-Tempone, LNCSE ’10]) Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 30 Techniques for computing polynomial approximations numerical comparison Thermal conduction with random inclusions – anisotropic version Conductivity coefficient: matrix k=1 circular inclusions: k|Ωi ∼ γi U(0.01, 0.8) → 4 indep. uniform random variables forcing term f = 100 zero boundary conditions R quantity of interest ψ(u) = F u mean Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs std LJLL, Paris, May 27, 2011 31 Techniques for computing polynomial approximations numerical comparison Convergence plot for E[ψ(u)] Anisotropic Total degree spaces with different anisotropy weights αn 0 0 10 10 −1 −1 10 10 −2 −2 10 E(ψ1) E(ψ1) 10 −3 10 −4 −4 10 10 MC SG−isospaces SG−1−7−11−15 SG−1−2−3−4 SG−1−2.5−4−5.5(exp) SG−1−3.5−5.5−7.5(th) −5 10 −6 10 −3 10 0 10 2 MC SC−isospaces SC−1−7−11−15 SC−1−2−3−4 SC−1−2.5−4−5.5(exp) SC−1−3.5−5.5−7.5(th) −5 10 −6 4 10 10 SG: dim−stoc * iter−CG / MC: sample size Galerkin 6 10 10 0 10 2 4 6 10 10 10 SC: num−pts / SG: dim−stoc * iter−CG / MC: sample size Collocation Error versus estimated cost (see [Back-N.-Tamellini-Tempone, LNCSE ’10]) Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 32 Optimization of polynomial spaces Optimization of polynomial spaces Consider the diffusion problem ( − div(a(x, y1 , . . . , yN )∇u) = f , in D u = 0, on ∂D assume a(y) ≥ α > 0, ∀y ∈ Γ (uniform coerciveness) Analyticity result [Back-N.-Tamellini-Tempone ’11, Babuska-N.-Tempone ’05, Cohen-DeVore-Schwab ’09/’10] let i = (i1 , . . . , iN ) ∈ NN and r = (r1 , . . . , rN ) > 0. Set ri = Q in n rn . i assume k 1a ∂∂yai kL∞ (D) ≤ ri uniformly in y Then i k ∂∂yui kV ≤ C |i|!( log 2 r)i uniformly in y u : Γn→ V is analytic and can be extended analyticially to o PN N Σ= z∈C : Fabio Nobile (MOX, Politecnico di Milano) n=1 rn |zn − ỹn | < log 2 for some ỹ ∈ Γ Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 34 Optimization of polynomial spaces Remark: The assumption is satisfied both for linear and exponential expansions of a random field: P linear expansion: a(y, x) = a0 + Nn=1 bn (x)yn , P with amin = a0 − Nn=1 kbn kL∞ (D) > 0. In this case rn = kbn kL∞ (D) /amin P N exponential expansion: a(y, x) = a0 + exp b (x)y n n n=1 with a0 > 0. In this case: rn = kbn kL∞ (D) . Better estimates on analyticity region can be obtained by complex analysis. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 35 Optimization of polynomial spaces Optimization of polynomial spaces Collocation Galerkin uΛSG = X up (x)ψp (y) p∈Λ find uΛSG by Galerkin projection of the equation on PΛ = span{ψp , p ∈ Λ}. uΛSC = X O n) [u]. ∆m(i n i∈Λ n=1,...,N Compute uΛSC by collocation on the corresponding sparse grid Question: What is the best index set Λ in both cases? Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 36 Optimization of polynomial spaces Galerkin projection – best M term approximation Galerkin optimality: ku − uΛSG kV ⊗L2ρ (Γ) ≤ C inf vΛ ∈V ⊗PΛ ku − vΛ kV ⊗L2ρ (Γ) Let {ψp , p ∈ NN } be the orthonormal basis of Legendre multivariate polynomials and vΛ the truncated Legendre expansion of u X vΛ = E[uψp ]ψp p∈Λ Parseval’s identity: P P 2 ku − vΛ k2V ⊗L2ρ (Γ) = ku − p∈Λ E[uψp ]ψp k2V ⊗L2ρ (Γ) = p∈Λ / kE[uψp ]kV Best M terms approximation The optimal index set Λ of cardinality M is the one that contains the M largest Legendre coefficients kE[uψp ]kV Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 37 Optimization of polynomial spaces Abstract construction of quasi optimal spaces Suppose we have an a priori estimate of the form kE[uψp ]kV ≤ G (p) (1) Fix a threshold ∈ R+ , and define the index set Λ as Λ() = p ∈ NN : G (p) ≥ or equivalently Λ(w ) = p ∈ NN : − log G (p) ≤ w , w = d− log e The sharper the estimate (1), the better Λ approximates the “best M terms” index set. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 38 Optimization of polynomial spaces Estimate of Legendre coefficients For the diffusion problem with random coefficients, the solution u(y) is analytic in Γ and the following estimate of the Legendre coefficients holds [Cohen-DeVore-Schwab ’10, Back-N.-Tamellini-Tempone ’11] P |p|! kE[uψp ]kV ≤ C0 e − n gn pn p! P Q for some gn > 0, with |p| = n pn , p! = n pn !. Then the induced optimal index set is (TD-FC) n o X |p|! Λ(w ) = p ∈ NN : gn pn − log ≤w p! n (2) The factorial term |p|! accounts for the interaction between the p! random variables and is purely isotropic P Estimate (2) is meaningful only if n e −gn < 1! Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 40 Optimization of polynomial spaces Numerical tests We consider the 1D problem ( −(a(x, y)u(x, y)0 )0 = 1 x ∈ D = (0, 1), y ∈ Γ u(0, y) = u(1, y) = 0, y ∈ Γ with several choices of a(x, y) and compute Θ(u) = u( 12 ). We compare: (Aniso) TD space: ( Λ(w ) = ) p ∈ NN : X gn pn ≤ w . n (Aniso) TD-FC space: ( Λ(w ) = Fabio Nobile (MOX, Politecnico di Milano) N X |p|! p ∈ NN : gn pn − log ≤w p! n=1 Polynomial approx. of stochastic PDEs ) . LJLL, Paris, May 27, 2011 41 Optimization of polynomial spaces Test 1: a(x, y) = 1 + 0.1y1 + 0.5y2 0 10 Legendre coeff TD appr TD−FC appr −5 10 best M term TD iso−TD TD−FC −3 10 −6 10 −10 10 −9 10 −15 10 −12 10 −20 10 −15 10 0 50 100 150 200 Figure: Legendre coeffs of Θ(u) in lexicographic order, with TD and TD-FC estimates 0 10 20 30 40 50 Figure: Convergence plot for kΘ(u) − Θ(uM )k2L2ρ (Γ) w.r.t. M = |Λ| The Legendre coefficients have been computed with a sufficiently high level sparse grids. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 42 Optimization of polynomial spaces 12 12 10 10 8 8 6 6 4 4 2 2 0 0 2 4 6 8 10 12 0 “true” Legendre coeffs. 12 10 10 8 8 6 6 4 4 2 2 0 2 4 6 8 10 12 aniso TD estimate Fabio Nobile (MOX, Politecnico di Milano) 2 4 6 8 10 12 iso-TD estimate. 12 0 0 0 0 2 4 6 8 10 12 TD-FC estimate. Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 43 Optimization of polynomial spaces Test 2 log a(x, y) = y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4 best M term TD iso−TD TD−FC −3 10 −6 10 −9 10 −12 10 0 10 20 Convergence plot for kΘ(u) − Fabio Nobile (MOX, Politecnico di Milano) 30 40 Θ(uM )k2L2ρ (Γ) Polynomial approx. of stochastic PDEs w.r.t. M LJLL, Paris, May 27, 2011 44 Optimization of polynomial spaces Optimization of sparse grids uM = SΛm [u] = N XO n) ∆m(i [u]. n i∈Λ n=1 We use a knapsack problem-approach [Griebel-Knapek ’09, Gerstner-Griebel ’03, Bungartz-Griebel ’04]: for each multiindex i estimate ∆E (i): how much error decreases if i is added to Λ (error contribution) ∆W (i): how much work, i.e. number of evaluations, increases if i is added to Λ (work contribution) Then estimate the profit of each i as ∆E (i) P(i) = ∆W (i) and build the sparse grid using the set Λ of the M indices with the largest profit. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 45 Optimization of polynomial spaces Estimate for ∆W Suppose we use nested abscissae, e.g. Clenshaw Curtis. The number of points added to the grid by i is then ∆W (i) = nb. new pts. in N O n=1 n) = ∆m(i n N Y ( m(in ) − m(in − 1) ) n=1 Recall that for Clenshaw-Curtis 0 if i = 0 m(i) = 1 if i = 1 i−1 2 + 1, if i > 1, and the Lebesgue constant is L(m(i)) = Fabio Nobile (MOX, Politecnico di Milano) 2 log(m(in ) + 1) + 1 π Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 46 Optimization of polynomial spaces Estimate for ∆E 1 rewrite ∆E (i) as ∆E (i) = (u − SΛ [u]) − u − S{Λ∪i} [u] V ⊗L2 (Γ) = ρ X X m(j) m(j) k ∆ [u] − ∆ [u] kV ⊗L2ρ (Γ) = ∆m(i) [u]V ⊗L2 (Γ) . ρ j∈{Λ∪i} 2 j∈{Λ} use the following estimate (numerically validated) N Y ∆E (i)[u] ≈ um(i−1) V 1 + Lm(in −1) n=1 3 where um(i−1) is the corresponding Legendre coefficient. estimate um(i−1) as in the Galerkin case P um(i−1) ≤ C0 e − n gn m(in −1) |m(i − 1)|! V m(i − 1)! Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 47 Optimization of polynomial spaces Example: Comparison ∆E vs. estimate: Let y1 , y2 ∼ U(−1, 1). ( −∇ · [(1 + c1 y1 + c2 y2 )∇u(x, y1 , y2 ) ] = f (x) x ∈ D u(x) = 0 x ∈ ∂D u(x, y1 , y2 ) = ∆−1 f (x) 1+c1 y1 +c2 y2 admits a Legendre expansion. Nested knots: Clenshaw-Curtis: m(i) = 2i+1 − 1, y k = cos ∆m(i) 0 10 −2 10 −4 m(i−1) Leg fm(i−1) ⋅ Leb(m(i)) −2 10 −4 10 10 −6 −6 10 10 −8 −8 10 10 −10 10 kπ m(i) ∆m(i) 0 10 m(i−1) Leg fm(i−1) ⋅ Leb(m(i)) 0 −10 5 10 15 20 25 c1 = 0.3, c2 = 0.3 Fabio Nobile (MOX, Politecnico di Milano) 30 10 0 5 10 15 20 25 30 c1 = 0.1, c2 = 0.5 Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 48 Optimization of polynomial spaces All the pieces together The set {i ∈ NN : P(i) ≥ } is then equivalent to ( i∈ NN +: N X m(in − 1)gn − log i=n |m(i − 1)|! − m(i − 1)! N X n=1 log 2 π log(m(in − 1) + 1) + 2 ≤w m(in ) − m(in − 1) ) (EW - Error Work grids) where Legendre coeff + Lebesgue constant = error estimate work estimate Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 49 Numerical examples Numerical test 1 - Uniform case ( −(a(x, y)u(x, y)0 )0 = 1 x ∈ D = (0, 1), u(0, y) = u(1, y) = 0 • y ∈ Γ = [−1, 1]N , N = 2, 4 • different choices of diffusion coefficient a(x, y). • We focus on a linear functional ψ : V → R, ψ(v ) = v ( 12 ); • Convergence: kψ(uSG ) − ψ(u)kL2ρ (Γ) vs. nb of points in sparse grid • We compare standard isotropic Smolyak Sp. Grid, I = {i ∈ NN : PN n=1 (in − 1) ≤ w } the Knapsack grid derived “best M terms”: knapsack grid, with computed profits P(i) dimension adaptive algorithm [Gerstner-Griebel ’03, Klimke, PhD ’06], ”www.ians.uni-stuttgart.de/spinterp” Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 52 Numerical examples −1 −1 10 iso SM EW adaptive best M terms −2 10 −3 10 10 iso SM adaptive best M terms EW −2 10 −3 10 −4 10 −4 10 −5 10 −5 10 −6 10 −6 −7 10 10 −8 −7 10 0 20 40 60 80 100 120 a = 1 + 0.3y1 + 0.3y2 Fabio Nobile (MOX, Politecnico di Milano) 140 10 0 20 40 60 80 100 120 140 a = 1 + 0.1y1 + 0.5y2 Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 53 Numerical examples −1 −2 10 10 iso SM EW adaptive best M terms −3 10 −4 10 10 −6 −5 10 10 −7 −6 10 10 −8 −7 10 10 −9 0 −3 10 −4 −5 10 10 iso SM EW adaptive best M terms −2 10 −8 20 40 60 80 100 120 140 a(x, y) = 4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4 Fabio Nobile (MOX, Politecnico di Milano) 10 0 20 40 60 80 100 120 140 log a(x, y) = y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4 Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 54 Numerical examples Numerical test 2 - 1D lognormal field L = 1, D = [0, L]2 . −∇ · a(y, x)∇u(y, x) = 0 u = 1 on x = 0, h = 0 on x = 1 no flux otherwise a(x, y) = e γ(x,y) µγ (x) = 0 Cov γ (x, x0 ) = σ 2 e − |x1 −x01 |2 LC 2 We approximate γ as γ(y, x) ≈ µ(x) + σa0 Y0 + σ K X k=1 h π π i ak Y2k−1 cos kx1 + Y2k sin kx1 L L with Yi ∼ N (0, 1), i.i.d. |z|2 Given the Fourier series σ 2 e − LC 2 = Fabio Nobile (MOX, Politecnico di Milano) P∞ k=0 ck cos π L kz Polynomial approx. of stochastic PDEs , ak = √ ck . LJLL, Paris, May 27, 2011 55 Numerical examples Numerical test 2 - 1D lognormal field Quantity of interest: "Z E[Φ(u)], with Φ = 0 L ∂u(·, x) k(·, x) dx ∂x # Convergence: |E[Φ(uSG )] − E[Φ(u)]| We compare Monte Carlo estimate with Knapsack grids Gauss-Hermite-Patterson points (nested Gauss-Hermite) Estimate of Hermite coefficients decay (heuristic) kui kV ≤ N Y e −gn in √ in ! n=1 m(in ) Estimate of Lebesgue constant (heuristic) Ln Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs '1 LJLL, Paris, May 27, 2011 56 Numerical examples Numerical test 2 - 1D lognormal field Here LC = 0.2, σ = 0.3. K = 6 → N = 13 r.v., and 99% of total variability of e γ . K = 10 → N = 21 r.v., and 99.99% of total variability of e γ . mean 0 10 −2 10 −4 10 −6 10 MC MC MC MC MC MC−slope sparse grid 21 var sparse grid 13 var −8 10 −10 10 0 10 Fabio Nobile (MOX, Politecnico di Milano) 1 10 2 10 3 10 Polynomial approx. of stochastic PDEs 4 10 5 10 LJLL, Paris, May 27, 2011 57 Numerical examples Numerical test 3 - 2D lognormal field L = 1, D = [0, L]2 . ( −∇ · a(x, y)∇h(y, x) = 0 B.C. : see figure a(x, y) = e γ(y,x) µγ (x) = 0 Cov γ (x, x0 ) = σ 2 e − |x−x0 |2 LC 2 We approximate γ as γ(x, y) ≈ µ(x) + σ X ak [Yk,1 cos (πk1 x1 ) cos (πk2 x2 ) + Yk,2 cos (πk1 x1 ) sin (πk2 x2 ) + k∈K Yk,3 sin (πk1 x1 ) cos (πk2 x2 ) + Yk,4 sin (πk1 x1 ) sin (πk2 x2 )] with Yi ∼ N (0, 1), i.i.d. |z|2 Given the Fourier series σ 2 e − LC 2 = Fabio Nobile (MOX, Politecnico di Milano) P∞ k=0 ck cos π L kz Polynomial approx. of stochastic PDEs , ak = √ ck1 ck2 . LJLL, Paris, May 27, 2011 58 Numerical examples Numerical test 3 - 2D lognormal field Here LC = 0.4, σ = 0.3. N = 21 r.v., 92% of total variability of e γ . mean 0 10 −1 10 −2 10 −3 10 −4 10 −5 MC MC MC MC MC MC−slope sparse grid 10 −6 10 −7 10 0 10 Fabio Nobile (MOX, Politecnico di Milano) 1 10 2 10 3 10 Polynomial approx. of stochastic PDEs 4 10 LJLL, Paris, May 27, 2011 59 Hyperbolic problems with random coefficients Hyperbolic problems 2 ∂ u 2 ∂t 2 − div(a (x, y1 (ω), . . . , yN (ω))∇u) = f , in D, t > 0 u = 0, on ∂D, t > 0 ∂u u|t=0 = u0 , | = v0 , in D ∂t t=0 assume a(x, y(ω)) ≤ amax < ∞, ∀y ∈ Γ, ∀x ∈ D boundedness) (uniform The solution is in general not smooth Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 61 Hyperbolic problems with random coefficients Example: 1D problem ( 2 2 ∂ u − y 2 ∂∂xu2 = 0, ∂t 2 u(x, 0) = u0 (x), ∂u (x, 0) ∂t in R, t > 0 = 0, in R D’Alambert formula: u(x, t) = 21 u0 (x − y t) + 12 u0 (x + y t) =⇒ t ∂u0 ∂u t ∂u0 + (x, t) = − ∂y 2 ∂ξ ξ=x−yt 2 ∂ξ ξ=x+yt Remarks: u0 (·) ∈ C k (R) −→ u(y )|(x,t) ∈ C k (Γ) In particular, a discontinuous initial datum implies discontinuous dependendence on the parameter (waveR speed) However, consider a functional J(y ) = R u(y ; x, T )g (x)dx with g ∈ C m (R) with compact support. Then, J(y )|(x,t) ∈ C k+m (Γ). Linear functionals of the solution can be much smoother than the solution itself. It might still be good to approximate J(y ) by polynomials (not u itself). Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 62 Hyperbolic problems with random coefficients Layered random medium Assume that the wave speed has the form a(x, y(ω)) = N X yn (ω)ρn (x)1Dn (x) n=1 where 1Dn are characteristic functions corresponding to a non-overlapping partition of the domain: D = ∪Nn=1 Dn with smooth interfaces, ρn are smooth funtions and yn ∈ Γn are random variables. Result 1 [Motamed-N.-Tempone ’11] Given f ∈ L2 (0, T ; H01 (D)), u0 ∈ H01 (D), v0 ∈ L2 (D), the solution has in general only one bounded derivative ∂yn u ∈ L2 (0, T ; L2 (D)). The solution might be smoother for smoother data not intersecting any interface between the layers. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 63 Hyperbolic problems with random coefficients Layered random medium Result 2 [Motamed-N.-Tempone ’11] Consider a finite dimensional approximation of the equation in space with discretization parameter h. The discrete solution uh (y) is always analytic with respect to y for all y ∈ RN . However, if we replace y with z ∈ Σ ≡ {z ∈ CN : dist(Γ, z) ≤ τ }, and study the problem in the complex domain maxz∈CN kuh (z)kL2 (0,T ;H01 ) ≤ C τh exp{γT τh } Consider a tensor product polynomial approximation if y of degree p. We have two regimes for hp CT ; exponential convergence in p for hp CT ; algebraic slow convergence in p due to small regularity of u w.r.t. y. Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 64 Hyperbolic problems with random coefficients numerical results Wave equation in two layered random medium layer 1 y1~ U(0.2 , 1) layer 2 y2~ U(0.3 , 1.5) initial solution Fabio Nobile (MOX, Politecnico di Milano) wave equation in two-layered medium random wave speed in each layer smooth initial deformation across the interface E[u](x, t = 1) Polynomial approx. of stochastic PDEs std[u](x, t = 1) LJLL, Paris, May 27, 2011 65 Hyperbolic problems with random coefficients numerical results Isotropic Smolyak grid approximation on Gauss-Legendre abscissae Finite difference approximation in space + leapfrog in time Maximum error in the expected value at t=1 versus # of e collocation points M. 0 10 −5 e2 10 εh, ∆ x = 0.1 εh, ∆ x = 0.05 −10 10 εh, ∆ x = 0.025 εh, ∆ x = 0.0125 η−1/2 −15 10 0 10 1 10 2 10 3 10 e1 4 10 5 10 6 10 The solution has low regularity ; slow convergence (the convergence e denpends on the mesh size ∆x) rate in M Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 66 Hyperbolic problems with random coefficients numerical results Smooth case: The initial displacement is smooth and confined in the second layer Maximum error in the expected value at e t=1 versus # of collocation points M. y1~ U(0.2 , 1) layer 1 layer 2 y2~ U(0.3 , 1.5) 0 10 −5 e2 10 εh, ∆ x = 0.1 −10 10 ε , ∆ x = 0.05 h ε , ∆ x = 0.025 h ε , ∆ x = 0.0125 h −15 10 0 10 1 10 2 3 10 10 4 10 5 10 e1 Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 67 Hyperbolic problems with random coefficients numerical results Conclusions 1 Solution may depend on a high number of parameters / random variables. An accurate choice of the approximation space is needed, to avoid unaffordable computational costs 2 Under regularity assumptions it makes sense to look for global polynomial approximations, either modal (galerkin procedure) or nodal (collocation procedure) 3 We propose a general procedure based on estimates of Legendre coefficients / profits of grids to build optimal polynomial approximations 4 There is no “one for all” recipe: the structure of the problem (hence of the solution) leads to the appropriate choice of approximation Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 68 Conclusions References J. Bäck and F. Nobile and L. Tamellini and R. Tempone On the optimal polynomial approximation of stochastic PDEs by Galerkin and Collocation methods, MOX Report 2011, submitted. J. Bäck and F. Nobile and L. Tamellini and R. Tempone Stochastic Spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, LNCSE Springer, Vol. 76, 2011. I. Babuška, F. Nobile and R. Tempone. A stochastic collocation method for elliptic PDEs with random input data, SIAM Review, 52(2):317–355, 2010 F. Nobile and R. Tempone Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients, IJNME, 80:979–1006, 2009 F. Nobile, R. Tempone and C. Webster An anisotropic sparse grid stochastic collocation method for PDEs with random input data, SIAM J. Numer. Anal., 46(5):2411–2442, 2008 F. Nobile, R. Tempone and C. Webster A sparse grid stochastic collocation method for PDEs with random input data, SIAM J. Numer. Anal., 46(5), 2309–2345, 2008 Fabio Nobile (MOX, Politecnico di Milano) Polynomial approx. of stochastic PDEs LJLL, Paris, May 27, 2011 71
Similar documents
view presentation
Stochastic Collocation approximation Collocate the equation in a set of points yk
More informationPresentation slides
Compute the solutions uj ∈ V : L(y(j) )(uj ) = F Pe Interpolate the obtained values: uΛ (y) = M j=1 uj φj (y). φj ∈ PΛ (Γ): suitable combinations of Lagrange polynomials e uncoupled deterministic p...
More information