Presentation slides
Transcription
Presentation slides
Stochastic Polynomial approximation of PDEs with random coefficients Fabio Nobile CSQI-MATHICSE, EPFL, Switzerland and MOX, Politecnico di Milano, Italy Joint work with: R. Tempone, E. von Schwerin (KAUST) L. Tamellini, G. Migliorati (MOX, Politecnico Milano), J. Beck (UCL) WS: “Numer. Anal. of Multiscale Problems & Stochastic Modelling” RICAM, Linz, December 12-16, 2011 Italian project FIRB-IDEAS (’09) Advanced Numerical Techniques for Uncertainty Quantification in Engineering and Life Science Problems Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 1 Outline 1 Elliptic PDE with random coefficients 2 Stochastic multivariate polynomial approximation Galerkin projection Collocation on sparse grids Optimized algorithms Numerical results 3 Polynomial approximation by discrete projection on random points 4 Conclusions Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 3 Elliptic PDE with random coefficients Outline 1 Elliptic PDE with random coefficients 2 Stochastic multivariate polynomial approximation Galerkin projection Collocation on sparse grids Optimized algorithms Numerical results 3 Polynomial approximation by discrete projection on random points 4 Conclusions Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 4 Elliptic PDE with random coefficients Elliptic PDE with random coefficients Let (Ω, F, P) be a complete probability space. Consider ( − div(a(ω, x)∇u(ω, x)) = f (x) x ∈ D, ω ∈ Ω, L(u) = F ⇔ u(ω, x) = 0 x ∈ ∂D, ω ∈ Ω where a : Ω × D → R is a second order random field such that a ≥ amin > 0 a.e. in Ω × D f ∈ L2 (D) deterministic (could be stochastic as well, f ∈ L2P (Ω) ⊗ L2 (D)) By Lax-Milgram lemma, for a.e. ω ∈ Ω, there exists a unique solution CP u(ω, ·) ∈ V ≡ H01 (D), and kukV ⊗L2P ≤ kf kL2 (D) amin The uniform coercivity assumption can be relaxed to E[amin (ω)−p ] < ∞ for all p > 0. Useful for lognormal random fields (see e.g. [Babuska-N.-Tempone ’07, Garvis-Sarkis ’09, Gittelson ’10, Charrier ’11]). Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 5 Elliptic PDE with random coefficients Elliptic PDE with random coefficients Let (Ω, F, P) be a complete probability space. Consider ( − div(a(ω, x)∇u(ω, x)) = f (x) x ∈ D, ω ∈ Ω, L(u) = F ⇔ u(ω, x) = 0 x ∈ ∂D, ω ∈ Ω where a : Ω × D → R is a second order random field such that a ≥ amin > 0 a.e. in Ω × D f ∈ L2 (D) deterministic (could be stochastic as well, f ∈ L2P (Ω) ⊗ L2 (D)) By Lax-Milgram lemma, for a.e. ω ∈ Ω, there exists a unique solution CP u(ω, ·) ∈ V ≡ H01 (D), and kukV ⊗L2P ≤ kf kL2 (D) amin The uniform coercivity assumption can be relaxed to E[amin (ω)−p ] < ∞ for all p > 0. Useful for lognormal random fields (see e.g. [Babuska-N.-Tempone ’07, Garvis-Sarkis ’09, Gittelson ’10, Charrier ’11]). Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 5 Elliptic PDE with random coefficients Elliptic PDE with random coefficients Let (Ω, F, P) be a complete probability space. Consider ( − div(a(ω, x)∇u(ω, x)) = f (x) x ∈ D, ω ∈ Ω, L(u) = F ⇔ u(ω, x) = 0 x ∈ ∂D, ω ∈ Ω where a : Ω × D → R is a second order random field such that a ≥ amin > 0 a.e. in Ω × D f ∈ L2 (D) deterministic (could be stochastic as well, f ∈ L2P (Ω) ⊗ L2 (D)) By Lax-Milgram lemma, for a.e. ω ∈ Ω, there exists a unique solution CP u(ω, ·) ∈ V ≡ H01 (D), and kukV ⊗L2P ≤ kf kL2 (D) amin The uniform coercivity assumption can be relaxed to E[amin (ω)−p ] < ∞ for all p > 0. Useful for lognormal random fields (see e.g. [Babuska-N.-Tempone ’07, Garvis-Sarkis ’09, Gittelson ’10, Charrier ’11]). Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 5 Elliptic PDE with random coefficients Assumption – random field parametrization The stochastic coefficient a(ω, x) can be parametrized by a finite number of independent random variables a(ω, x) = a(y1 (ω), . . . , yN (ω), x) We assume Q that y has a joint probability density function ρ(y) = Nn=1 ρn (yn ) : ΓN → R+ Then u(ω, x) = u(y1 (ω), . . . , yN (ω), x) is a deterministic function of the random vector y. Extensions to the case of infinitely many (countable) random variables is possible provided the solution u(y1 , . . . , yn , . . . , x) has suitable decay properties w.r.t. n. (see e.g. [Cohen-Devore-Schwab, ’09,’10]) Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 6 Elliptic PDE with random coefficients Assumption – random field parametrization The stochastic coefficient a(ω, x) can be parametrized by a finite number of independent random variables a(ω, x) = a(y1 (ω), . . . , yN (ω), x) We assume Q that y has a joint probability density function ρ(y) = Nn=1 ρn (yn ) : ΓN → R+ Then u(ω, x) = u(y1 (ω), . . . , yN (ω), x) is a deterministic function of the random vector y. Extensions to the case of infinitely many (countable) random variables is possible provided the solution u(y1 , . . . , yn , . . . , x) has suitable decay properties w.r.t. n. (see e.g. [Cohen-Devore-Schwab, ’09,’10]) Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 6 Elliptic PDE with random coefficients Assumption – random field parametrization The stochastic coefficient a(ω, x) can be parametrized by a finite number of independent random variables a(ω, x) = a(y1 (ω), . . . , yN (ω), x) We assume Q that y has a joint probability density function ρ(y) = Nn=1 ρn (yn ) : ΓN → R+ Then u(ω, x) = u(y1 (ω), . . . , yN (ω), x) is a deterministic function of the random vector y. Extensions to the case of infinitely many (countable) random variables is possible provided the solution u(y1 , . . . , yn , . . . , x) has suitable decay properties w.r.t. n. (see e.g. [Cohen-Devore-Schwab, ’09,’10]) Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 6 Elliptic PDE with random coefficients Examples Material with inclusions of random conductivity a(ω, x) = a0 + PN n=N yn (ω)1Ωn (x) with yn ∼ uniform, lognormal, ... Random, spatially correlated, material properties a(ω, x) is ∞-dimensional random field (e.g. lognormal), suitably truncated a(ω, x) ≈ amin + e PN n=1 yn (ω)bn (x) with yn ∼ N(0, 1), i.i.d. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 7 Elliptic PDE with random coefficients Examples Material with inclusions of random conductivity a(ω, x) = a0 + PN n=N yn (ω)1Ωn (x) with yn ∼ uniform, lognormal, ... Random, spatially correlated, material properties a(ω, x) is ∞-dimensional random field (e.g. lognormal), suitably truncated random field with Lc=1/4 1 0.9 2.5 0.8 2 0.7 1.5 0.6 a(ω, x) ≈ amin + e PN n=1 yn (ω)bn (x) 0.5 1 0.4 0.5 0.3 0 0.2 −0.5 0.1 0 with yn ∼ N(0, 1), i.i.d. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs 0 0.2 0.4 0.6 0.8 1 −1 RICAM, Linz, 12-16/12/2011 7 Elliptic PDE with random coefficients Analytic regularity Theorem [Back-N.-Tamellini-Tempone ’11, Babuska-N.-Tempone ’05, Cohen-DeVore-Schwab ’09/’10] Assume y bounded (e.g. y ∈ ΓN ≡ [−1, 1]N ) Let iQ = (i1 , . . . , iN ) ∈ NN and r = (r1 , . . . , rN ) > 0. Set i r = n rnin . i assume k 1a ∂∂yai kL∞ (D) ≤ ri uniformly in y Then i k ∂∂yui kV ≤ C |i|!( log1 2 r)i uniformly in y u : ΓN → V is analytic and can be extended analyticially to ( ) N X Σ = z ∈ CN : rn |zn − ỹn | < log 2 for some ỹ ∈ ΓN n=1 Better estimates on analyticity region can be obtained by complex analysis. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 8 Elliptic PDE with random coefficients Analytic regularity Theorem [Back-N.-Tamellini-Tempone ’11, Babuska-N.-Tempone ’05, Cohen-DeVore-Schwab ’09/’10] Assume y bounded (e.g. y ∈ ΓN ≡ [−1, 1]N ) Let iQ = (i1 , . . . , iN ) ∈ NN and r = (r1 , . . . , rN ) > 0. Set i r = n rnin . i assume k 1a ∂∂yai kL∞ (D) ≤ ri uniformly in y Then i k ∂∂yui kV ≤ C |i|!( log1 2 r)i uniformly in y u : ΓN → V is analytic and can be extended analyticially to ( ) N X Σ = z ∈ CN : rn |zn − ỹn | < log 2 for some ỹ ∈ ΓN n=1 Better estimates on analyticity region can be obtained by complex analysis. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 8 Stochastic multivariate polynomial approximation Outline 1 Elliptic PDE with random coefficients 2 Stochastic multivariate polynomial approximation Galerkin projection Collocation on sparse grids Optimized algorithms Numerical results 3 Polynomial approximation by discrete projection on random points 4 Conclusions Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 10 Stochastic multivariate polynomial approximation Stochastic multivariate polynomial approximation Idea: approximate the response function u(y, ·) by global multivariate polynomials. Since u(y, ·) is analytic, we expect fast convergence. Let Λ ⊂ NN be an index set of cardinality |Λ| = M, and consider the multivariate polynomial space nQ o N pn PΛ (ΓN ) = span y , with p = (p , . . . , p ) ∈ Λ 1 N n=1 n Polynomial approximation find M particular solutions up ∈ V , ∀p ∈ Λ and build X uΛ (y, x) = up (x)y1p1 y2p2 · · · yNpN p∈Λ Compute statistics of functionals J(u), J ∈ H −1 (D) of the solution as E[J(u)] ≈ E[J(uΛ )] Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 11 Stochastic multivariate polynomial approximation Stochastic multivariate polynomial approximation Idea: approximate the response function u(y, ·) by global multivariate polynomials. Since u(y, ·) is analytic, we expect fast convergence. Let Λ ⊂ NN be an index set of cardinality |Λ| = M, and consider the multivariate polynomial space nQ o N pn PΛ (ΓN ) = span y , with p = (p , . . . , p ) ∈ Λ 1 N n=1 n Polynomial approximation find M particular solutions up ∈ V , ∀p ∈ Λ and build X uΛ (y, x) = up (x)y1p1 y2p2 · · · yNpN p∈Λ Compute statistics of functionals J(u), J ∈ H −1 (D) of the solution as E[J(u)] ≈ E[J(uΛ )] Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 11 Stochastic multivariate polynomial approximation Stochastic multivariate polynomial approximation Idea: approximate the response function u(y, ·) by global multivariate polynomials. Since u(y, ·) is analytic, we expect fast convergence. Let Λ ⊂ NN be an index set of cardinality |Λ| = M, and consider the multivariate polynomial space nQ o N pn PΛ (ΓN ) = span y , with p = (p , . . . , p ) ∈ Λ 1 N n=1 n Polynomial approximation find M particular solutions up ∈ V , ∀p ∈ Λ and build X uΛ (y, x) = up (x)y1p1 y2p2 · · · yNpN p∈Λ Compute statistics of functionals J(u), J ∈ H −1 (D) of the solution as E[J(u)] ≈ E[J(uΛ )] Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 11 Stochastic multivariate polynomial approximation Examples of pol. spaces: N = 2, pn ≤ w Total Degree (TD) 16 16 14 14 12 12 10 10 p2 Tensor product: p2 Tensor Product (TP) 8 6 4 4 2 Total P n 8 6 0 Q (pn + 1) ≤w +1 n 2 4 6 8 p1 10 12 14 0 16 16 14 14 12 12 10 10 p2 p2 pn ≤ w 0 2 4 6 8 p1 10 12 14 16 Smolyak (SM) 16 8 6 4 4 2 Smolyak: P n 8 6 0 degree: 2 0 Hyperbolic Cross (HC) Hyperbolic cross: p = 16 f (p) = 2 0 2 Fabio Nobile (EPFL & PoliMi) 4 6 8 p1 10 12 14 16 0 0 2 4 6 8 p1 Polynomial approximation of SPDEs 10 12 14 f(pn ) ≤ f (w ) 0, 1, dlog (p)e, 2 p=0 p=1 p≥2 16 RICAM, Linz, 12-16/12/2011 12 Stochastic multivariate polynomial approximation Galerkin projection Galerkin projection [Ghanem-Spanos, Karniadakis et al, Matthies-Keese, Schwab-Todor et al., Knio-Le Maı̂tre et al,Babuska et al.,. . . ] Project the equation L(y)(u) = F onto the subspace V ⊗ PΛ (Γ) Let {ψj }M j=1 be an orthonormal basis w.r.t. the probability density P ρ(y). Expand uΛ (y) on the basis: uΛ (y) = M j=1 uj ψj (y) Galerkin formulation Find uj ∈ V , j = 1, . . . M s.t. M h i X E L(y)( uj ψj )ψi = E[Fψi ], i = 1, . . . , M j=1 This approach leads to solving M coupled deterministic problems; difficult to assemble and need good preconditioners. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 13 Stochastic multivariate polynomial approximation Collocation on sparse grids Collocation approach [Smolyak ’63, Griebel et al ’98-’03-’04, Barthelmann-Novak-Ritter ’00, Hesthaven-Xiu ’05, N.-Tempone-Webster ’08, Zabaras et al ’07] 1 2 3 e Choose a set of points y(j) ∈ Γ, j = 1, . . . , M Compute the solutions uj ∈ V : L(y(j) )(uj ) = F Pe Interpolate the obtained values: uΛ (y) = M j=1 uj φj (y). φj ∈ PΛ (Γ): suitable combinations of Lagrange polynomials e uncoupled deterministic problems Always leads to solving M e of points needed is larger than the dimension M The number M of the polynomial space (Except for tensor product spaces). Tensor grids are impractical in high dimension (curse of dimensionality) Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 15 Stochastic multivariate polynomial approximation Collocation on sparse grids Collocation approach [Smolyak ’63, Griebel et al ’98-’03-’04, Barthelmann-Novak-Ritter ’00, Hesthaven-Xiu ’05, N.-Tempone-Webster ’08, Zabaras et al ’07] 1 2 3 e Choose a set of points y(j) ∈ Γ, j = 1, . . . , M Compute the solutions uj ∈ V : L(y(j) )(uj ) = F Pe Interpolate the obtained values: uΛ (y) = M j=1 uj φj (y). φj ∈ PΛ (Γ): suitable combinations of Lagrange polynomials e uncoupled deterministic problems Always leads to solving M e of points needed is larger than the dimension M The number M of the polynomial space (Except for tensor product spaces). Tensor grids are impractical in high dimension (curse of dimensionality) Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 15 Stochastic multivariate polynomial approximation Collocation on sparse grids Collocation on a (generalized) Sparse Grid Let i = [i1 , . . . , iN ] ∈ NN+ and m(i) : N+ → N+ an increasing function 1 m(in ) 1D polynomial interpolant operators: Un We use either on m(in ) abscissas. Clenshaw-Curtis (extrema on Chebyshev polynomials) Gauss points w.r.t. the weight Q ρn , assuming that the probability density factorizes as ρ(y) = N n=1 ρn (yn ) 2 3 m(i ) m(i ) m(i −1) m(0) Detail operator: ∆n n = Un n − Un n , Un = 0. N Sparse grid approximation: on an index set Λ ⊂ N uΛ = N XO n) ∆m(i [u] n i∈Λ n=1 Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 16 Stochastic multivariate polynomial approximation Collocation on sparse grids By choosing properly the function m and the set Λ one can obtain a polynomial approximation in any given multivariate polynomial space ([Back-N.-Tamellini-Tempone, 2010]) Examples of sparse grids: Fabio Nobile (EPFL & PoliMi) N = 2, max. polynomial degree p = 16 Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 17 Stochastic multivariate polynomial approximation Collocation on sparse grids By choosing properly the function m and the set Λ one can obtain a polynomial approximation in any given multivariate polynomial space ([Back-N.-Tamellini-Tempone, 2010]) Examples of sparse grids: N = 2, max. polynomial degree p = 16 Tensor Product (TP) Total Degree (TD) 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 y2 y2 0.2 0 −0.2 −0.4 −0.4 −0.6 −0.6 −0.8 −0.8 −1 −1 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 0.4 0.6 0.8 Hyperbolic Cross (HC) −1 −1 1 −0.8 −0.6 −0.4 −0.2 0 0.2 y1 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 y2 1 0 −0.2 −0.2 −0.4 −0.4 −0.4 −0.6 −0.6 −0.6 −0.8 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 Fabio Nobile (EPFL & PoliMi) 0.4 0.6 0.8 1 −1 −1 0.8 1 0 −0.2 −0.8 0.6 Smolyak CC (SM) 1 −1 −1 0.4 Smolyak Gauss (SM) 1 y2 y2 0 −0.2 −0.8 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 0.4 0.6 0.8 1 Polynomial approximation of SPDEs −1 −1 −0.8 −0.6 −0.4 −0.2 0 y1 0.2 0.4 0.6 0.8 1 RICAM, Linz, 12-16/12/2011 17 Stochastic multivariate polynomial approximation Collocation on sparse grids A simple numerical test ( −(a(x, ω)u(x, ω)0 )0 = sin(πx), x ∈ (0, 1), u(0, ω) = u(1, ω) = 0 1D problem: Diffusion coefficient a(x, ω) = e γ(x,ω) : lognormal with either exponential or Gaussian covariance γ(x, ω): stationary Gaussian random field, mean=0; std=1; correlation length: 0.3 Karhunen-Loève expansion 3 2 2 1 1 log − conductivity log − conductivity 3 0 −1 0 −1 −2 −2 −3 −3 0 0.1 0.2 0.3 0.4 0.5 x 0.6 Fabio Nobile (EPFL & PoliMi) 0.7 0.8 0.9 1 0 0.1 0.2 0.3 Polynomial approximation of SPDEs 0.4 0.5 x 0.6 0.7 0.8 0.9 1 RICAM, Linz, 12-16/12/2011 18 Stochastic multivariate polynomial approximation Collocation on sparse grids A simple numerical test Stochastic Collocation approximation: Gauss-Hermite nodes isotropic TD grid (m(i) = i; Λ ≡ {i : |i|1 ≤ w }) measured error kE[u] − E[uΛ ]kL2 ρ comparison with Monte Carlo Exponential cov. Fabio Nobile (EPFL & PoliMi) Gaussian cov. Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 19 Stochastic multivariate polynomial approximation Optimized algorithms Optimization of polynomial spaces Collocation Galerkin uΛSG = X up (x)ψp (y) p∈Λ find uΛSG by Galerkin projection of the equation on PΛ = span{ψp , p ∈ Λ}. uΛSC = X O n) [u]. ∆m(i n i∈Λ n=1,...,N Compute uΛSC by collocation on the corresponding sparse grid Question: What is the best index set Λ in both cases? Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 20 Stochastic multivariate polynomial approximation Optimized algorithms Optimization of polynomial spaces Collocation Galerkin uΛSG = X up (x)ψp (y) p∈Λ find uΛSG by Galerkin projection of the equation on PΛ = span{ψp , p ∈ Λ}. uΛSC = X O n) [u]. ∆m(i n i∈Λ n=1,...,N Compute uΛSC by collocation on the corresponding sparse grid Question: What is the best index set Λ in both cases? Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 20 Stochastic multivariate polynomial approximation Optimized algorithms Galerkin projection – best M term approximation Galerkin optimality: ku − uΛSG kV ⊗L2ρ (Γ) ≤ C inf vΛ ∈V ⊗PΛ ku − vΛ kV ⊗L2ρ (Γ) Let {ψp , p ∈ NN } be the orthonormal basis of multivariate Q polynomials w.r.t. the denisty ρ(y) = Nn=1 ρn (yn ) and vΛ the truncated expansion of u X vΛ = up ψp , up = E[uψp ] p∈Λ Parseval’s identity: ku − vΛ k2V ⊗L2ρ (Γ) = P p∈Λ / kup k2V Best M terms approximation The optimal index set Λ of cardinality M is the one that contains the M largest Legendre coefficients kup kV Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 21 Stochastic multivariate polynomial approximation Optimized algorithms Galerkin projection – best M term approximation Galerkin optimality: ku − uΛSG kV ⊗L2ρ (Γ) ≤ C inf vΛ ∈V ⊗PΛ ku − vΛ kV ⊗L2ρ (Γ) Let {ψp , p ∈ NN } be the orthonormal basis of multivariate Q polynomials w.r.t. the denisty ρ(y) = Nn=1 ρn (yn ) and vΛ the truncated expansion of u X vΛ = up ψp , up = E[uψp ] p∈Λ Parseval’s identity: ku − vΛ k2V ⊗L2ρ (Γ) = P p∈Λ / kup k2V Best M terms approximation The optimal index set Λ of cardinality M is the one that contains the M largest Legendre coefficients kup kV Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 21 Stochastic multivariate polynomial approximation Optimized algorithms Galerkin projection – best M term approximation Galerkin optimality: ku − uΛSG kV ⊗L2ρ (Γ) ≤ C inf vΛ ∈V ⊗PΛ ku − vΛ kV ⊗L2ρ (Γ) Let {ψp , p ∈ NN } be the orthonormal basis of multivariate Q polynomials w.r.t. the denisty ρ(y) = Nn=1 ρn (yn ) and vΛ the truncated expansion of u X vΛ = up ψp , up = E[uψp ] p∈Λ Parseval’s identity: ku − vΛ k2V ⊗L2ρ (Γ) = P p∈Λ / kup k2V Best M terms approximation The optimal index set Λ of cardinality M is the one that contains the M largest Legendre coefficients kup kV Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 21 Stochastic multivariate polynomial approximation Optimized algorithms Galerkin projection – best M term approximation Galerkin optimality: ku − uΛSG kV ⊗L2ρ (Γ) ≤ C inf vΛ ∈V ⊗PΛ ku − vΛ kV ⊗L2ρ (Γ) Let {ψp , p ∈ NN } be the orthonormal basis of multivariate Q polynomials w.r.t. the denisty ρ(y) = Nn=1 ρn (yn ) and vΛ the truncated expansion of u X vΛ = up ψp , up = E[uψp ] p∈Λ Parseval’s identity: ku − vΛ k2V ⊗L2ρ (Γ) = P p∈Λ / kup k2V Best M terms approximation The optimal index set Λ of cardinality M is the one that contains the M largest Legendre coefficients kup kV Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 21 Stochastic multivariate polynomial approximation Optimized algorithms Estimate of Fourier coefficients For the diffusion problem with uniform random variables, the solution u(y) is analytic in Γ = [−1, 1]N and the following estimate of the Legendre coefficients holds [Cohen-DeVore-Schwab ’10, Back-N.-Tamellini-Tempone ’11] kup kV ≤ C0 e − P n gn pn |p|! (1) p! P Q for some gn > 0, with |p| = n pn , p! = n pn !. Then the optimal index set of level w is (TD-FC) n o X |p|! ≤w Λ(w ) = p ∈ NN : gn pn − log p! n In practice, we estimate numerically the rates gn by inexpensive 1D analyses. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 24 Stochastic multivariate polynomial approximation Optimized algorithms Estimate of Fourier coefficients For the diffusion problem with uniform random variables, the solution u(y) is analytic in Γ = [−1, 1]N and the following estimate of the Legendre coefficients holds [Cohen-DeVore-Schwab ’10, Back-N.-Tamellini-Tempone ’11] kup kV ≤ C0 e − P n gn pn |p|! (1) p! P Q for some gn > 0, with |p| = n pn , p! = n pn !. Then the optimal index set of level w is (TD-FC) n o X |p|! Λ(w ) = p ∈ NN : gn pn − log ≤w p! n In practice, we estimate numerically the rates gn by inexpensive 1D analyses. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 24 Stochastic multivariate polynomial approximation Optimized algorithms Estimate of Fourier coefficients For the diffusion problem with uniform random variables, the solution u(y) is analytic in Γ = [−1, 1]N and the following estimate of the Legendre coefficients holds [Cohen-DeVore-Schwab ’10, Back-N.-Tamellini-Tempone ’11] kup kV ≤ C0 e − P n gn pn |p|! (1) p! P Q for some gn > 0, with |p| = n pn , p! = n pn !. Then the optimal index set of level w is (TD-FC) n o X |p|! Λ(w ) = p ∈ NN : gn pn − log ≤w p! n In practice, we estimate numerically the rates gn by inexpensive 1D analyses. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 24 Stochastic multivariate polynomial approximation Optimized algorithms Numerical tests We consider the 1D problem ( −(a(x, y)u(x, y)0 )0 = 1 x ∈ D = (0, 1), y ∈ Γ u(0, y) = u(1, y) = 0, y ∈ Γ with several choices of a(x, y) and compute Θ(u) = u( 12 ). We compare: (Aniso) TD space: ( Λ(w ) = ) p ∈ NN : X gn pn ≤ w . n (Aniso) TD-FC space: ( Λ(w ) = Fabio Nobile (EPFL & PoliMi) N X |p|! p ∈ NN : gn pn − log ≤w p! n=1 Polynomial approximation of SPDEs ) . RICAM, Linz, 12-16/12/2011 26 Stochastic multivariate polynomial approximation Optimized algorithms Numerical tests We consider the 1D problem ( −(a(x, y)u(x, y)0 )0 = 1 x ∈ D = (0, 1), y ∈ Γ u(0, y) = u(1, y) = 0, y ∈ Γ with several choices of a(x, y) and compute Θ(u) = u( 12 ). We compare: (Aniso) TD space: ( Λ(w ) = ) p ∈ NN : X gn pn ≤ w . n (Aniso) TD-FC space: ( Λ(w ) = Fabio Nobile (EPFL & PoliMi) N X |p|! p ∈ NN : gn pn − log ≤w p! n=1 Polynomial approximation of SPDEs ) . RICAM, Linz, 12-16/12/2011 26 Stochastic multivariate polynomial approximation Optimized algorithms A numerical check: a(x, y) = 1 + 0.1xy1 + 0.5x 2y2 −1 10 Legendre coeff TD appr TD−FC appr −2 10 −4 10 −6 10 best M term TD iso−TD TD−FC −2 10 −3 10 −4 −8 10 −10 10 10 −5 10 −12 −6 10 10 −14 10 −7 10 −16 10 −8 10 −18 10 −9 −20 10 0 20 40 60 80 100 Figure: Legendre coeffs of Θ(u) in lexicographic order, with TD and TD-FC estimates 10 0 20 40 60 80 Figure: Convergence plot for kΘ(u) − Θ(uM )k2L2ρ (Γ) w.r.t. M = |Λ| The Legendre coefficients have been computed with a sufficiently high level sparse grids. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 27 Stochastic multivariate polynomial approximation Optimized algorithms Optimization of sparse grids uM = SΛm [u] = N XO n) ∆m(i [u]. n i∈Λ n=1 We use a knapsack problem-approach [Griebel-Knapek ’09, Gerstner-Griebel ’03, Bungartz-Griebel ’04]: for each multiindex i estimate ∆E (i): how much error decreases if i is added to Λ (error contribution) ∆W (i): how much work, i.e. number of evaluations, increases if i is added to Λ (work contribution) Then estimate the profit of each i as ∆E (i) P(i) = ∆W (i) and build the sparse grid using the set Λ of the M indices with the largest profit. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 28 Stochastic multivariate polynomial approximation Optimized algorithms Optimization of sparse grids uM = SΛm [u] = N XO n) ∆m(i [u]. n i∈Λ n=1 We use a knapsack problem-approach [Griebel-Knapek ’09, Gerstner-Griebel ’03, Bungartz-Griebel ’04]: for each multiindex i estimate ∆E (i): how much error decreases if i is added to Λ (error contribution) ∆W (i): how much work, i.e. number of evaluations, increases if i is added to Λ (work contribution) Then estimate the profit of each i as ∆E (i) P(i) = ∆W (i) and build the sparse grid using the set Λ of the M indices with the largest profit. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 28 Stochastic multivariate polynomial approximation Optimized algorithms Optimization of sparse grids uM = SΛm [u] = N XO n) ∆m(i [u]. n i∈Λ n=1 We use a knapsack problem-approach [Griebel-Knapek ’09, Gerstner-Griebel ’03, Bungartz-Griebel ’04]: for each multiindex i estimate ∆E (i): how much error decreases if i is added to Λ (error contribution) ∆W (i): how much work, i.e. number of evaluations, increases if i is added to Λ (work contribution) Then estimate the profit of each i as ∆E (i) P(i) = ∆W (i) and build the sparse grid using the set Λ of the M indices with the largest profit. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 28 Stochastic multivariate polynomial approximation Optimized algorithms Estimates for ∆W and ∆E 1 ∆W (i): for nested points (e.g. Clenshaw Curtis, Gauss-Patterson) ∆W (i) = nb. new pts. in N O n) ∆m(i n = n=1 2 N Y ( m(in ) − m(in − 1) ) n=1 ∆E (i): we use the heuristic argument: use expansion on P orthnormal basis u = p up ψp X ∆E (i) = k∆m(i) [u]kV ⊗L2ρ = k up ∆m(i) ψp kV ⊗L2ρ p ≤ X kup kV k∆m(i) ψp kL2ρ ≈ kum(i−1) kV k∆m(i) ψm(i−1) kL2ρ p≥m(i−1) where kum(i−1) kV : estimated with a-priori / a-posteriori L(m(i)) := k∆m(i) ψm(i−1) kL2ρ : estimated numerically Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 29 Stochastic multivariate polynomial approximation Optimized algorithms Estimates for ∆W and ∆E 1 ∆W (i): for nested points (e.g. Clenshaw Curtis, Gauss-Patterson) ∆W (i) = nb. new pts. in N O n) ∆m(i n = n=1 2 N Y ( m(in ) − m(in − 1) ) n=1 ∆E (i): we use the heuristic argument: use expansion on P orthnormal basis u = p up ψp X ∆E (i) = k∆m(i) [u]kV ⊗L2ρ = k up ∆m(i) ψp kV ⊗L2ρ p ≤ X kup kV k∆m(i) ψp kL2ρ ≈ kum(i−1) kV k∆m(i) ψm(i−1) kL2ρ p≥m(i−1) where kum(i−1) kV : estimated with a-priori / a-posteriori L(m(i)) := k∆m(i) ψm(i−1) kL2ρ : estimated numerically Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 29 Stochastic multivariate polynomial approximation Optimized algorithms Estimates for ∆W and ∆E 1 ∆W (i): for nested points (e.g. Clenshaw Curtis, Gauss-Patterson) ∆W (i) = nb. new pts. in N O n) ∆m(i n = n=1 2 N Y ( m(in ) − m(in − 1) ) n=1 ∆E (i): we use the heuristic argument: use expansion on P orthnormal basis u = p up ψp X ∆E (i) = k∆m(i) [u]kV ⊗L2ρ = k up ∆m(i) ψp kV ⊗L2ρ p ≤ X kup kV k∆m(i) ψp kL2ρ ≈ kum(i−1) kV k∆m(i) ψm(i−1) kL2ρ p≥m(i−1) where kum(i−1) kV : estimated with a-priori / a-posteriori L(m(i)) := k∆m(i) ψm(i−1) kL2ρ : estimated numerically Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 29 Stochastic multivariate polynomial approximation Optimized algorithms All the pieces together Optimal index set ( Λ(w ) = i ∈ NN +: N X m(in − 1)gn − log i=n N X n=1 |m(i − 1)|! − m(i − 1)! L(m(in )) log ≤w m(in ) − m(in − 1) ) (EW - Error Work grids) where Legendre coeff + L(m(i)) = error estimate work estimate Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 30 Stochastic multivariate polynomial approximation Optimized algorithms A numerical check: a(x, y) = 1 + 0.1xy1 + 0.5x 2y2 −1 10 0 ∆E(i) Legm(i−1)[ψ(u)] 10 −3 Legm(i−1)[ψ(u)] ⋅ Leb[m(i)] 10 −6 iso SM EW adaptive best M terms −3 10 −5 10 10 −9 10 −7 10 −12 10 −9 10 −15 10 0 5 10 15 20 25 30 Figure: Estimates of ∆E (i) for Θ(u)] in lexicographic order 0 20 40 60 80 100 120 140 Figure: Convergence plot for kΘ(u) − Θ(uM )k2L2ρ (Γ) w.r.t. |Λ| Nested Clenshaw-Curtis knots The terms ∆E (i) have been computed with a sufficiently high level sparse grids. Comparison with dimension adaptive algorithm Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs [Gerstner-Griebel ’03, Klimke, PhD ’06] RICAM, Linz, 12-16/12/2011 31 Stochastic multivariate polynomial approximation Numerical results Numerical test - 1D stationary lognormal field L = 1, D = [0, L]2 . −∇ · a(y, x)∇u(y, x) = 0 u = 1 on x = 0, h = 0 on x = 1 no flux otherwise a(x, y) = e γ(x,y) µγ (x) = 0 Cov γ (x, x0 ) = σ 2 e − |x1 −x01 |2 LC 2 We approximate γ as γ(y, x) ≈ µ(x) + σa0 y0 + σ K X k=1 h π π i ak y2k−1 cos kx1 + y2k sin kx1 L L with yi ∼ N (0, 1), i.i.d. |z|2 Given the Fourier series σ 2 e − LC 2 = Fabio Nobile (EPFL & PoliMi) P∞ k=0 ck cos π L kz Polynomial approximation of SPDEs , ak = √ ck . RICAM, Linz, 12-16/12/2011 32 Stochastic multivariate polynomial approximation Numerical results Numerical test - 1D stationary lognormal field Quantity of interest: effective permeability "Z # L ∂u(·, x) E[Φ(u)], with Φ = k(·, x) dx ∂x 0 Convergence: |E[Φ(uSG )] − E[Φ(u)]| We compare Monte Carlo estimate with Knapsack grids based on Gauss-Hermite-Patterson points (nested Gauss-Hermite) Estimate of Hermite coefficients decay: for the simpler problem ∇ · a(y)∇u(y, x) = f , PN in a(y) = e b0 + n=1 yn bn , we have kui kV = C √bni ! . Qn Heuristic: use the same ansaz kui kV ≈ C N n=1 estimate the rates gn numerically. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs −gn in e√ in ! but RICAM, Linz, 12-16/12/2011 33 Stochastic multivariate polynomial approximation Numerical results Numerical test - 1D stationary lognormal field Quantity of interest: effective permeability "Z # L ∂u(·, x) E[Φ(u)], with Φ = k(·, x) dx ∂x 0 Convergence: |E[Φ(uSG )] − E[Φ(u)]| We compare Monte Carlo estimate with Knapsack grids based on Gauss-Hermite-Patterson points (nested Gauss-Hermite) Estimate of Hermite coefficients decay: for the simpler problem ∇ · a(y)∇u(y, x) = f , PN in a(y) = e b0 + n=1 yn bn , we have kui kV = C √bni ! . Qn Heuristic: use the same ansaz kui kV ≈ C N n=1 estimate the rates gn numerically. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs −gn in e√ in ! but RICAM, Linz, 12-16/12/2011 33 Stochastic multivariate polynomial approximation Numerical results Numerical test - 1D stationary lognormal field Quantity of interest: effective permeability "Z # L ∂u(·, x) E[Φ(u)], with Φ = k(·, x) dx ∂x 0 Convergence: |E[Φ(uSG )] − E[Φ(u)]| We compare Monte Carlo estimate with Knapsack grids based on Gauss-Hermite-Patterson points (nested Gauss-Hermite) Estimate of Hermite coefficients decay: for the simpler problem ∇ · a(y)∇u(y, x) = f , PN in a(y) = e b0 + n=1 yn bn , we have kui kV = C √bni ! . Qn Heuristic: use the same ansaz kui kV ≈ C N n=1 estimate the rates gn numerically. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs −gn in e√ in ! but RICAM, Linz, 12-16/12/2011 33 Stochastic multivariate polynomial approximation Numerical results Numerical test - 1D stationary lognormal field Correlation length: LC = 0.2 Standard deviation: σ = 0.3 (c.o.v. ∼ 30%) 0 10 −2 10 4 11 −4 14 10 17 sparse grid −6 1/N0.5 10 1/N1.7 19 MC run1 10 24 21 MC run2 −8 MC run3 29 MC run4 −10 10 0 10 1 10 2 10 3 10 4 10 5 10 The optimal set construction automatically adds new variables when needed. No need to truncate a-priori the random field Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 34 Stochastic multivariate polynomial approximation Numerical results How the sparse grid looks like η1 5 5 5 5 5 0 0 0 0 0 −5 −5 0 η 2 −5 5 −5 5 0 −5 −5 0 0 η3 −5 5 −5 5 0 −5 5 −5 5 0 −5 5 −5 5 0 0 −5 5 −5 5 0 −5 −5 0 η4 0 −5 5 −5 5 0 0 −5 5 −5 5 0 −5 5 −5 5 0 0 −5 −5 5 0 0 0 −5 5 −5 5 0 0 −5 5 −5 5 0 −5 5 −5 5 0 0 η5 −5 5 −5 5 0 −5 5 −5 5 0 −5 −5 0 5 0 5 0 5 0 5 0 5 0 η7 5 0 0 0 −5 5 −5 5 0 −5 5 −5 5 0 η6 −5 −5 η2 Fabio Nobile (EPFL & PoliMi) η3 η4 η5 Polynomial approximation of SPDEs η6 RICAM, Linz, 12-16/12/2011 35 Polynomial approximation by discrete projection on random points Outline 1 Elliptic PDE with random coefficients 2 Stochastic multivariate polynomial approximation Galerkin projection Collocation on sparse grids Optimized algorithms Numerical results 3 Polynomial approximation by discrete projection on random points 4 Conclusions Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 38 Polynomial approximation by discrete projection on random points Discrete L2 projection using random evaluations (see poster 11 – G. Migliorati) Another way to compute a polynomial approximation (besides Galerkin and sparse grid collocation) consists in doing a discrete least square approx. using random evaluations (see e.g. [Burkardt-Eldred 2009, Hosder-Walters et al. 2010, Eldred 2011, Blatman-Sudret 2008, ...]) 1 2 3 Generate M random i.i.d. samples yk ∈ Γ, k = 1, . . . , M Compute the corresponding solutions uk = u(y(k) ) Find the discrete least square approximation ΠΛ,ω M u ∈ V ⊗ PΛ (Γ) M 1 X kuk − v (y(k) )k2V M v ∈V ⊗PΛ (Γ) k=1 ΠΛ,ω M u = argmin Two relevant questions For a given set Λ, how many samples should one use? What is the accuracy of the random discrete least square Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 39 Polynomial approximation by discrete projection on random points Discrete L2 projection using random evaluations (see poster 11 – G. Migliorati) Another way to compute a polynomial approximation (besides Galerkin and sparse grid collocation) consists in doing a discrete least square approx. using random evaluations (see e.g. [Burkardt-Eldred 2009, Hosder-Walters et al. 2010, Eldred 2011, Blatman-Sudret 2008, ...]) 1 2 3 Generate M random i.i.d. samples yk ∈ Γ, k = 1, . . . , M Compute the corresponding solutions uk = u(y(k) ) Find the discrete least square approximation ΠΛ,ω M u ∈ V ⊗ PΛ (Γ) M 1 X kuk − v (y(k) )k2V M v ∈V ⊗PΛ (Γ) k=1 ΠΛ,ω M u = argmin Two relevant questions For a given set Λ, how many samples should one use? What is the accuracy of the random discrete least square Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 39 Polynomial approximation by discrete projection on random points Discrete L2 projection using random evaluations (see poster 11 – G. Migliorati) Another way to compute a polynomial approximation (besides Galerkin and sparse grid collocation) consists in doing a discrete least square approx. using random evaluations (see e.g. [Burkardt-Eldred 2009, Hosder-Walters et al. 2010, Eldred 2011, Blatman-Sudret 2008, ...]) 1 2 3 Generate M random i.i.d. samples yk ∈ Γ, k = 1, . . . , M Compute the corresponding solutions uk = u(y(k) ) Find the discrete least square approximation ΠΛ,ω M u ∈ V ⊗ PΛ (Γ) M 1 X kuk − v (y(k) )k2V M v ∈V ⊗PΛ (Γ) k=1 ΠΛ,ω M u = argmin Two relevant questions For a given set Λ, how many samples should one use? What is the accuracy of the random discrete least square Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 39 Polynomial approximation by discrete projection on random points Some theoretical results [Migliorati-N.-von Schwerin-Tempone ’11] For functions φ : Γ ⊂ RN → R, define R continuous norm: kφk2L2ρ = Γ v 2 (y)ρ(y)dy P 2 discrete norm: kφk2M,ω = M1 M i=1 φ(yi ) , with yi ∼ ρ(y)dy, i.i.d. random discrete least square projection: ΠΛ,ω M φ ∈ PΛ (Γ), 2 ΠΛ,ω M φ = argmin kφ − v kM,ω . v ∈PΛ (Γ) Theorem 1 ω Let C (M, Λ) := sup v ∈PΛ (Γ) 1 2 kv k2L2ρ kv k2M,ω . Then C ω (M, Λ) → 1 almost surely when M → ∞ p 2 ≤ (1 + kφ − ΠΛ,ω φk C ω (M, Λ)) inf v ∈PΛ (Γ) kφ − v kL∞ L M ρ Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 40 Polynomial approximation by discrete projection on random points Some theoretical results [Migliorati-N.-von Schwerin-Tempone ’11] So far we have only a result for 1D functions, Γ = [−1, 1], uniform distribution and approx. in the polynomial space Pw of degree w. Theorem 2 For any α ∈ (0, 1), let M be such that Then, it holds r w,ω P kφ − ΠM φkL2ρ ≤ 1+2 M 3 log((M+1)/α) M +1 3 log α √ = 4 3 w2 ! ! inf kφ − v kL∞ v ∈Pw ≥ 1 − α. Notice that log((M + 1)/α) ≈ log (C w2 /α) These results are confirmed numerically; the high dimentional case seems more foregiving w.r.t. the constraint M ∼ #Λ2 To achieve an approximation in PΛ , does this technique need less sampling points than the corresponding sparse grid ? Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 41 Polynomial approximation by discrete projection on random points Some theoretical results [Migliorati-N.-von Schwerin-Tempone ’11] So far we have only a result for 1D functions, Γ = [−1, 1], uniform distribution and approx. in the polynomial space Pw of degree w. Theorem 2 For any α ∈ (0, 1), let M be such that Then, it holds r w,ω P kφ − ΠM φkL2ρ ≤ 1+2 M 3 log((M+1)/α) M +1 3 log α √ = 4 3 w2 ! ! inf kφ − v kL∞ v ∈Pw ≥ 1 − α. Notice that log((M + 1)/α) ≈ log (C w2 /α) These results are confirmed numerically; the high dimentional case seems more foregiving w.r.t. the constraint M ∼ #Λ2 To achieve an approximation in PΛ , does this technique need less sampling points than the corresponding sparse grid ? Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 41 Polynomial approximation by discrete projection on random points Some theoretical results [Migliorati-N.-von Schwerin-Tempone ’11] So far we have only a result for 1D functions, Γ = [−1, 1], uniform distribution and approx. in the polynomial space Pw of degree w. Theorem 2 For any α ∈ (0, 1), let M be such that Then, it holds r w,ω P kφ − ΠM φkL2ρ ≤ 1+2 M 3 log((M+1)/α) M +1 3 log α √ = 4 3 w2 ! ! inf kφ − v kL∞ v ∈Pw ≥ 1 − α. Notice that log((M + 1)/α) ≈ log (C w2 /α) These results are confirmed numerically; the high dimentional case seems more foregiving w.r.t. the constraint M ∼ #Λ2 To achieve an approximation in PΛ , does this technique need less sampling points than the corresponding sparse grid ? Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 41 Conclusions Outline 1 Elliptic PDE with random coefficients 2 Stochastic multivariate polynomial approximation Galerkin projection Collocation on sparse grids Optimized algorithms Numerical results 3 Polynomial approximation by discrete projection on random points 4 Conclusions Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 48 Conclusions Conclusions Solutions to elliptic equations with random coefficients typically feature analytic dependence on the parameters. Polynomial approximations are very effective. Sharp a-priori / a-posteriori analysis of the decay of the expansion of the solution in polynomial chaos allows to construct optimized polynomial spaces / sparse grids that provide effective approximations also in the infinite dimensional case. Discrete least square projection using random evaluations is a possible alternative to Galerkin or Collocation approaches. However, a better understanding is needed on the stability of the projection and the correct number of samples to use. Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 49 Conclusions References G. Migliorati and F. Nobile and E. von Schwrin and R. Tempone Analysis of the discrete L2 projection on polynomial spaces with random evaluations, submitted. Available as MOX-Report. J. Bäck and F. Nobile and L. Tamellini and R. Tempone On the optimal polynomial approximation of stochastic PDEs by Galerkin and Collocation methods, MOX Report 23/2011, to appear in M3AS. I. Babuška, F. Nobile and R. Tempone. A stochastic collocation method for elliptic PDEs with random input data, SIAM Review, 52(2):317–355, 2010 F. Nobile and R. Tempone Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients, IJNME, 80:979–1006, 2009 F. Nobile, R. Tempone and C. Webster An anisotropic sparse grid stochastic collocation method for PDEs with random input data, SIAM J. Numer. Anal., 46(5):2411–2442, 2008 Fabio Nobile (EPFL & PoliMi) Polynomial approximation of SPDEs RICAM, Linz, 12-16/12/2011 50
Similar documents
Optimal polynomial approximation of PDEs with stochastic
Collocation on sparse grids [Smolyak ’63, Griebel et al ’98-’03-’04, Barthelmann-Novak-Ritter ’00, Hesthaven-Xiu ’05, N.-Tempone-Webster ’08, Zabaras et al ’07]
More information