MRT Systeme - Medizinische Fakultät Mannheim
Transcription
MRT Systeme - Medizinische Fakultät Mannheim
RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 1/20 Hochschule Mannheim Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie II: MR-Systeme und Kodierverfahren Dr. Friedrich Wetterling RF Methoden und Bildgebung Lehrstuhl für Computerunterstützte Klinische Medizin Medizinische Fakultät Mannheim, Universität Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Deutschland [email protected] www.ma.uni-heidelberg.de/inst/cbtm/ckm/ RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 2/20 Zusammenfassung MRT Ia • Das MR Signal: - magnetisches Moment des Kerns - Drehimpuls des Kerns • Anregung mit RF Puls ⇒ Präzession • Blochsche Gleichungen • Relaxation in Flüssigkeiten: - Spin-Gitter Relaxation (T1) - Spin-Spin Relaxation (T2) • Grundlagen der MR Messung: - Spin echo ⇒ T2 - Inversion Recovery ⇒ T1 - Repetitionszeit (TR) - Echo Zeit (TE) Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 3/20 Zusammenfassung MRT Ib • Komponenten eines Spektrometers: - Polarisationsmagnet - Shimspulen - Hochfrequenzspule - Breitbandverstärker zum Senden und Empfangen • Das MR Signal: - magnetisches Moment des Kerns - Drehimpuls des Kerns - Magnetisierung bildet sich aus • Anregung mit RF Puls ⇒ Präzession • Detektion in Leiterschleife ⇒ Induktion RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 4/20 Notation: NMR & MRI (Nuclear) (Kernspin) Magnetic Magnet N S Resonance Resonanz (Imaging) Tomographie Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 5/20 Gradient Field: Slice Selection magnetic field gradient, i.e. Gz G z radiofrequency: ω(z) = γ (B0 + Gzz) gradient Gz RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 6/20 Gradient Coil: Principle I coil for static B0 field typical value for G: 1 - 25 (40) mT/m example: x = 30 cm, B0 = 1 T, G = 10 mT/m B = 0.9985 T .... 1.0015 T y-gradient x-gradient z-gradient Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 7/20 Gradient Coil: Principle II gradient • paper clip design • localization of MR signal • current through coil design • linear increasing magnetic field technical data • gradient strength • rise time • linearity • active shielding • cooling • noise 10 - 40 mT/m 200 - 600 µs 35 - 40 cm RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 8/20 Gradient Coil: Active Shielding concept • elimination of gradient fields outside the gradient tube • desired field inside the gradient tube realization • counter-windings on a second radius • increased total currents power • 500 A at 2000 V → MW power for short time Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 9/20 Gradient Coil: Design • current through the coil pairs runs in opposite directions • B-field of the gradient coil is added or subtracted to B0, respectively RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 10/20 Gradient Coil: Construction Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 11/20 Gradients: General - total magnetic field: r r B = (B 0 + B G , z )⋅ k - three gradient coils simultaneously: BG , z = G x ⋅ x + G y ⋅ y + G z ⋅ z r r B = B0 + G x ⋅ x + G y ⋅ y + G z ⋅ z ⋅ k ( - abbreviations: - direction of ) r r r r G = Gx ,G y ,Gz = Gx ⋅i + G y ⋅ j + Gz ⋅ k ( ) r r r G is defined as gradient orientation of B or B G r r r r B G , z = G ⋅ r in general: G = G (t ) RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 12/20 Gradient Homogeneity Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 13/20 Gradient Eddy Current Compensation I(t) problem • time-varying gradient fields induce eddy currents • partial annihilation of gradient fields t compensation • modified shaping of gradient-timesignal (gradient pre-emphasis) • short and long eddy current time constants G(t) RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 14/20 station: I Gradient Post-Processing: Cut & Glue II III IV Seite V VI RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 15/20 station: Gradient Post-Processing: Cut & Glue I II III IV V VI RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 16/20 Gradient’s “3D Piano” magnetic field gradient G “3D piano” Gz Gy _ b # Gx Gx precession frequency ω=γ•B Gy with B = B0 + Gx + Gy + Gz Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 17/20 NMR History: Imaging I Downstate Medical Center Brooklyn Raymond V. Damadian • the first scanner for clinical purposes 1972 United States Patent 3,789,832 The method envisioned scanning with a focused “sweet spot” similar to the scanning raster on a television. Either the “sweet spot” would move, or the patient would move across the “sweet spot”, thereby collecting one tissue data point at a time. © Yves De Deene. University of Gent, Belgium RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 18/20 Magnetic Resonance Imaging: Principle interaction of spins with static magnetic field B0 → M0 ω = γ.B0 interaction of protons with resonant magnetic radiofrequency field B1 → FID signal ∆E = hω linear magnetic field gradient across the object G → spatial encoding ω(x) = γ.B0(x) B = B0 + Gx·x B0 x Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 19/20 radiofrequency RF MRI Components: Physical Parameters gradients Gxyz shim coils static field B0 transmitter shim receiver 350 MHz control panel computer 350 MHz image processor gradient technical component static field B0 physical parameter M0 radiofreq. RF signal gradients Gxyz image RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 20/20 MRI Components • strong magnet producing a homogeneous static magnetic field (0,1 - 8,0 Tesla) (for comparison: earth magnetic field 30 µT - 60 µT) • radiofrequency unit creating a periodical magnetic field used for spin excitation and signal detection • gradient coils producing a linear magnetic field gradient for spatial encoding • receiver coils for signal detection • computer for controlling the MRI scanner • input/ouput panel for data-flow and -evaluation Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 21/20 NMR History: Scanner The first MR scanners ... normal MRI unit interventional MRI unit open MRI unit mobile MRI unit … and the most recent © Yves De Deene. University of Gent, Belgium RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 22/20 Slice Selective Excitation frequency spectra of RF pulse ω ω ω = γ (B0+Gzz) ω (z2) ω (z1) ω( z ) = γ ⋅ ( B0 + Gz ⋅ z ) d = ω0 I(ω) z1z2 z d ∆ω 2π ∆ f = z γ ⋅G γ ⋅Gz 1. slice thickness d = z2 - z1 can be varied by RF bandwidth (frequency width) or gradient strength Gz. 2. slice position can be changed by shifting the frequency spectra with constant RF bandwidth Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 23/20 Slice Selective Excitation: Sinc-Pulse - RF excitation with a sin(x) / x amplitude function (sinc-pulse) creates a rectangular frequency distribution - sinc-pulse at different gradient strength leads to slices with different positions and thickness - problem: Larmor frequency is different within slice thickness source: Liang and Lauterbur. “Principles of Magnetic Resonance Imaging” 2000 RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 24/20 Gradient Compensation excited slice “dephasing” of transversal magnetization after unipolar gradient pulse z-gradient with compensation and RF sinc-pulse for creating a homogeneous transversal magnetization source: Dössel. “Bildgebende Verfahren in der Medizin” 2000 Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 25/20 Gradient Compensation: Magnetization RF Gslice slice thickness vector sum of transversal magnetization RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 26/20 Other Slice Selective RF-Pulses τ − a ⋅ t − A⋅e 2 2 • Gauss-pulse B1e ( t ) = • Secans hyperbolicus-pulse B1e ( t ) = B1 ⋅ sech( β ⋅ t )1+ i µ 2 = B1 ⋅ β ⋅t − β ⋅t e +e Seite 1+ i µ RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 27/20 Frequency Encoding - iso-frequency-lines are perpendicular to G - oscillation frequency of an activated MR-signal is linearly dependent on spatial coordinate, since ω(x) = γ (B0+ Gx·x) source: Liang and Lauterbur. “Principles of Magnetic Resonance Imaging” 2000 RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 28/20 Frequency Encoding: Gradient Schema RF signal acquisition t - superposition of a gradient field Bx= Gx·x during the acquisition phase results in: ω(x) = γ (B0+ Gx·x) Gz t where the Lamor frequency is linked with the spatial information x - spatial information is encoded in the precision frequency of the transversal magnetization Gx t Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Principle of Frequency Encoding Dr. Friedrich Wetterling 11/24/2011 | Page 29/20 y Gx - all nuclei in a stripe perpendicular to the gradient direction are contributing to the NMR signal at Lamor frequency ω(x) x ⇒ direct one-dimensional diagram of the spatial distribution of excited nuclei in the slice z x1 x2 frequency spectrum - Fourier-transformation of the FID-signal yields the amount of different frequency components I(ω) - I(ω) ~ number of nuclei at frequency ω ω(x1) ω(x2) x = ω(x)~x projection of spin density in direction of gradient ω − γ B0 γG x RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 30/20 Frequency Encoding: Spatial Resolution - FID-signal S(t) is digitalized by using an “analog to digital converter” ADC and a discrete timing interval ∆t in a total acquisition window taq - for the Fourier-analysis of the FID-signal there are in total N = taq/∆t measured data points: S(∆t), S(2∆t), S(3∆t), … , S(N∆t) - spatial resolution in x-direction ∆x is given by the sampling theorem: ∆x = X / N = 2π / γ Gx N ∆t with X: the maximum object diameter (FOV), N: number of sampling points, Gx: gradient strength, ∆t: sampling interval (= bandwidth BW in Hz/pixel) - example: with N = 256, ∆t = 30 µs, Gx = 1.566 mT/m the spatial resolution in x-direction (pixel resolution in x) is: ∆x = 1.953 mm and X = N ∆x = 50 cm (= field-of-view FOV) Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 31/20 in-vivo Problem: Chemical Shift Artifact 1H-spectrum of human thigh at 1.5 T BW = 220 Hz/pixel BW = 20 Hz/pixel BW = 20 Hz/pixel BW = 20 Hz/pixel + fat suppression - chemical shift between protons of water H2O and fatty tissue CH2 is about 3.5 ppm or 220 Hz at 1.5 T - frequency encoding of fat and water leads to a spatial shift between fat and water structures in the image, e.g. a frequency encoding interval of 110 Hz (bandwidth BW) results in a shift of 2 pixels in the image - to avoid chemical shift artifact a frequency encoding interval of about 200 Hz has to be used at 1.5 T RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 32/20 Phase Encoding - phase encoding is performed by stamping an initial phase angle onto the spins of an excited slice - iso-phase-lines are perpendicular to G - after switching off the phase encoding gradient the magnetization is continuing to precede at the same frequency ω0 but with different phase - phase information of an activated MR-signal is linearly dependent on spatial coordinate, since φ(x) = - γ · Gx · x · Tpe source: Liang and Lauterbur. “Principles of Magnetic Resonance Imaging” 2000 Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 33/20 Gz Phase Encoding: Gradient Schema slice selection gradient Gy phase encoding gradient Ty y - phase encoding is performed before signal acquisition - gradient field is switched on for a constant time Ty - gradient strength is increased stepwise by ∆Gy after every sequence passage RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 34/20 Zusammenfassung • Komponenten eines MRTs: - Polarisationsmagnet - Shimspulen - Hochfrequenzspule - Breitbandverstärker zum Senden und Empfangen - Gradienten • Möglichkeiten der Bildkodierung: - Frequenzkodierung - Phasenkodierung Seite