K-Raum - Medizinische Fakultät Mannheim
Transcription
K-Raum - Medizinische Fakultät Mannheim
RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 1/27 Hochschule Mannheim Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie III: Der k-Raum Dr. Friedrich Wetterling RF Methoden und Bildgebung Lehrstuhl für Computerunterstützte Klinische Medizin Medizinische Fakultät Mannheim, Universität Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Deutschland [email protected] www.ma.uni-heidelberg.de/inst/cbtm/ckm/ RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 2/27 Phase Encoding: Principle Gx - phase encoding gradient includes a spatial dependency of the spin phase according to: φp = – γ · Gx · x · tx = – kx · x - sequence has to be repeated N-times ! source: Reiser and Semmler. “Magnetresonanztomographie” 2002 Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 3/27 Movie: Signal Phase © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 4/27 Frequency and Phase Encoding frequency encoding - in both encoding techniques the transversal magnetization of all voxels of the excited slice contribute to the detected FID-signal phase encoding - the spatial information is encoded in the phase difference which has been developed during the phase encoding gradient source: Reiser and Semmler. “Magnetresonanztomographie” 2002 Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 5/27 k-Raum K-Space: Definition the k-space construction is a relation between spatial encoding (phase and frequency encoding) and the Fourier transformation frequency encoded signal: ∞ S (t ) = ∫ ρ ( x) ⋅ e − i ⋅γ ⋅G x ⋅ x ⋅t ⋅ dx −∞ kx = γ 2 ⋅π ⋅Gx ⋅t ∞ S (k x ) = ∫ ρ ( x) ⋅ e − i ⋅ 2 ⋅π ⋅ k x ⋅ x ⋅ dx −∞ RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 6/27 K-Space: Note S(kx) is defined only for a limited number of measuring points in the k-space k-space coordinates of measured points define the so called trajectory in k-space Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 7/27 Sampling Trajectories frequency encoded FID frequency encoded echo ky ky φ kx kx k x = γ ⋅ G x ⋅ (t − TE ) k y = γ ⋅ G y ⋅ (t − TE ) k x = γ ⋅ G x ⋅ t k y = γ ⋅ G y ⋅ t k x = k ⋅ cos φ k y = k ⋅ sin φ k = γ ⋅ G ⋅ t = γ ⋅ t ⋅ G 2 + G 2 fe x y Gy φ = arctan Gx RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 8/27 Sampling Trajectories: General - the k-space sampling trajectory of a frequency encoded signal is a straight line if a temporally constant gradient is used for encoding - in general: G fe = G fe (t ) t r r k ( t ) = γ ⋅ G fe (τ ) ⋅ d τ ∫ 0 Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 9/27 Radial Trajectory ky slice selection kx radial readout sequence diagram k-space trajectory Glover and Pauly. MRM 1992 RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 10/27 K-Space: Gridding gridding density pre-compensation - non-rectilinear k-space trajectories data points not on equally spaced grid points - - necessary to adjust positions of data points before FFT sample data points are interpolated onto grid points using frequency-limited kernel (KaiserBessel window function) - amplitude density compensation - FFT - divide by inverse of interpolation kernel - most commonly used method called "gridding“: sinc, density precompensation, etc. O‘Sullivan. IEEE Trans Med Imaging 1985 Jackson et al. IEEE Trans Med Imaging 1991 Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 11/27 Spiral Trajectory Cartesian Imaging spiral imaging FAT-SAT RF-pulse α spoiler time k-space volunteer: kidney-MRA Proband: Herz, TrueFISP gradient design RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 12/27 Frequency Encoding: FID FID kx = γ ⋅Gx ⋅t 0 ≤ t ≤ T acq trajectory starts at kx = 0 und ends at Seite kx = γ ⋅Gx ⋅t RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 13/27 Frequency Encoding: Gradient-Echo gradient-echo preparation: k x = −γ ⋅ G x ⋅ t acquisition: k x = −γ ⋅ G x ⋅ T acq 2 + γ ⋅ G x ⋅ t − T acq 2 0 ≤ t ≤ T acq 2 ( ) = γ ⋅ G x ⋅ ( t − T acq ) = γ ⋅ G x ⋅ ( t − TE ) t − TE ≤ T acq 2 - trajectory is a symmetrical line through k-space origin during acquisition: starts at kx = −γ ⋅ Gx ⋅Tacq / 2 and ends at kx = γ ⋅ Gx ⋅ Tacq / 2 RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 14/27 Frequency Encoding: Spin-Echo spin-echo preparation: kx = γ ⋅Gx ⋅t 180°-pulse: k x = γ ⋅ G x ⋅ T acq 2 → acquisition: k x = −γ ⋅ G x ⋅ T acq 2 + γ ⋅ G x ⋅ t − T acq 2 0 ≤ t ≤ T acq 2 k x = − γ ⋅ G x ⋅ T acq 2 ( ) = γ ⋅ G x ⋅ ( t − T acq ) = γ ⋅ G x ⋅ ( t − TE ) - trajectory the same as with gradient-echo Seite t − TE ≤ T acq 2 RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Phase Encoding Trajectory Dr. Friedrich Wetterling 11/24/2011 | Page 15/27 r r r − i ⋅γ ⋅G pe ⋅ r ⋅T pe 3 S (t ) = ρ (r ) ⋅ e ⋅ d r ⋅ e − i ⋅ω 0 ⋅t Obj ∫ after demodulation: r S (k ) = ∫ r r r − i ⋅ 2 ⋅π ⋅ k ⋅ r ρ (r ) ⋅ e ⋅ d 3r r r k = γ ⋅ G pe ⋅ T pe Obj r r S (k ) as a function of k has the same form as for frequency encoding RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 16/27 Frequency and Phase Encoding: Note note: - with respect to frequency and phase encoding a measured time signal is represented in different way in k-space: phase encoding: r k has a fixed value for a given Gpe and Tpe frequency encoding: r k is always a function of time Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 17/27 1D MR Imaging Sequence ∞ wanted image function: ∞ ∫ ∫ ρ ( x , y , z ) ⋅ dydz I ( x) = −∞ −∞ spin-echo ∞ spin-echo signal: S (t ) = ∞ ∞ ∫ ∫ ∫ ρ ( x, y, z ) ⋅ e − i ⋅γ ⋅G x ⋅(t − TE ) dxdydz −∞ −∞ −∞ ∞ = ∫ I ( x) ⋅ e − i ⋅γ ⋅G x ⋅ (t − TE ) dx −∞ RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 18/27 Movie: 1D K-Space © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada Seite t − TE ≤ T acq 2 RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 19/27 1D Imaging Equation using the substitution: k x = γ ⋅ G x ⋅ (t − TE ) ∞ S (k x ) = ∫ I ( x ) ⋅ e − i ⋅ 2 ⋅π ⋅ k x ⋅ x dx −∞ 1D imaging equation RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 20/27 2D MR Imaging Sequence - interval between 90°- and 180°-pulse (phase encoding interval) k x = γ ⋅ G ⋅ (t − t 0 ) k y = γ ⋅ n ⋅ ∆ G y ⋅ (t − t 0 ) - point A: ( t 0 ≤ t ≤ t 0 + T acq 2 k A = γ ⋅ G x ⋅ T pe , γ ⋅ n ⋅ ∆ G y ⋅ T pe - 180°-pulse: k B = −k A acquisition: k x = γ ⋅ G ⋅ (t − TE ) k y = −γ ⋅ n ⋅ ∆ G y ⋅ T pe t − TE ≤ T acq 2 source: Liang and Lauterbur. “Principles of Magnetic Resonance Imaging” 2000 Seite ) RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 21/27 Movie: 2D K-Space X © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 22/27 Movie: 2D K-Space Y © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 23/27 Movie: 2D K-Space X and Y © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 24/27 Movie: 2D K-Space Signal Encoding © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 25/27 3D MR Imaging Sequence - acquisition: k x = γ ⋅ G x ⋅ (t − TE ) k y = γ ⋅ m ⋅ ∆ G y ⋅ T pe k z = γ ⋅ n ⋅ ∆ G z ⋅ T pe t − TE ≤ T acq 2 ∞ S (k x , k y , k z ) = ∞ ∞ ∫∫∫ I ( x, y, z ) ⋅ e ( − i ⋅ 2 ⋅π ⋅ k x ⋅ x + k y ⋅ y + k z ⋅ z )dxdy dz −∞ −∞ −∞ source: Liang and Lauterbur. “Principles of Magnetic Resonance Imaging” 2000 RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 26/27 Surfing through K-Space read read phase phase constant gradient results in a straight trajectory 180°-pulse change in polarity inverts the trajectory Seite RF refocusing pulse (180°) inverts phase (mirroring at origin) RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin K-Space and Image-Space I Dr. Friedrich Wetterling 11/24/2011 | Page 27/27 k-space image-space hologram image frequency distribution density distribution RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 28/27 Fourier Transformation (FT) - definition: kx = γ 2 ⋅π S (k x , k y ) = ⋅Gx ⋅t ky = ∞ ∞ ∫ ∫ ρ (x , y ) e γ 2 ⋅π ( ⋅ G pe ⋅ T pe i 2π k x x + k y y ) dx dy − ∞− ∞ FT - image of spin density distribution is calculated by inverse Fourier Transformation (FT): Jean Baptiste Joseph Fourier (1768–1830) ∞ ∞ ρ (x , y ) = ∫ ∫ S (k x , k y ) e −∞−∞ Seite ( − i 2π k x x + k y y ) dk x dk y RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Point Spread Function: PSF Dr. Friedrich Wetterling 11/24/2011 | Page 29/27 k-space image Fourier transformation optics / MRI : PSF = image of a point-like radiation / magnetization source RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 30/27 PSF: K-Space Inhomogeneity k-space 15 echoes ∆TE = 10 ms T2 = 50 ms position [pixel] Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 31/27 NMR History: Imaging II Paul Lauterbur • second scanner: collecting many points at once. • the improved method was based on the principle of back projection. • magnetic field gradients were used to realize the projections. 1973 Nature 1973;242:190-191 Richard R. Ernst Zurich • 2D Fourier transform MRI 1974 © Yves De Deene. University of Gent, Belgium RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 32/27 K-Space and Image-Space II k-space image-space k y = γ Gp t y = ω/(γ Gp) FT k x = γ Gr t Seite x = ω/(γ Gr) RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 33/27 K-Space Properties reference k-space RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 34/27 Movie: K-Space FT Point © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada Seite image RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 35/27 Movie: K-Space FT Line © Plewes DB, Plewes B, Kucharczyk W. The Animated Physics of MRI, University Toronto, Canada RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 36/27 K-Space Quiz k-Raum-Darstellung ???? Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 37/27 K-Space: Mona Lisa RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 38/27 K-Space: Non Locality Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 39/27 K-Space: Summary density y image Fourier transformation x ky k-space kx hologram RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 40/27 sampling theorem: K-Space: Sampling Requirements I ∆k x ≤ 1 Wx ∆k x = γ ⋅ G x ⋅ ∆t ∆ k y = γ ⋅ ∆ G y ⋅ T pe ∆k y ≤ 1 Wy Gx : ∆t : ∆ Gy : Tpe : source: Liang and Lauterbur. “Principles of Magnetic Resonance Imaging” 2000 Seite frequency encoding gradient frequency encoding interval phase encoding increment phase encoding interval RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 41/27 K-Space: Sampling Requirements II ∆t ≤ 2 ⋅π 2 ⋅π = γ ⋅ G x ⋅W x γ ⋅ G x ⋅ N x ⋅ ∆x ∆G y ≤ 2 ⋅π 2 ⋅π = γ ⋅ T pe ⋅ W y γ ⋅ T pe ⋅ N y ⋅ ∆ y Nyquist - interval RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 42/27 Example - during a MR measurement the signal S(t) is discretely sampled (frequency encoding interval ∆t) in a total acquisition time taq (typical 5 - 30 ms) → number of measuring points N = taq / ∆t S(∆t), S(2∆t), ... S(N∆t) ⇒ spatial resolution ∆x is limited by: ∆x = Wx 2π = Nx γ ⋅ G x ⋅ N x ⋅ ∆t example: Nx = 256 ∆t = 30 µs Gx = 1,566 mT/m ∆x = 1.593 mm ⇒ W x = N · ∆x = 50 cm Seite RUPRECHT-KARLSUNIVERSITY HEIDELBERG Computerunterstützte Klin. Medizin Dr. Friedrich Wetterling 11/24/2011 | Page 43/27 Nobel Prizes NMR 1944 Nobel prize in physics Isidor Rabi spin of nuclei (1939) 1952 Nobel prize in physics Felix Bloch and Edward Purcell discovery of NMR (1946) 1991 Nobel prize in chemistry Richard Ernst Fourier transformation, MRS (1966) 2002 Nobel prize in chemistry Kurt Wüthrich 3D structure of proteins, MRS (1982) 2003 Nobel prize in medicine Paul Lauterbur and Peter Mansfield MR-imaging, MRI (1973) Seite