Document 6529179
Transcription
Document 6529179
Sample Size logistic regression . ! "# $#% Email: [email protected] Web: http://home.kku.ac.th/nikom Sample Size simple logistic regression #9: dichotomous Hosmer & Lemeshow (2000) 1 1 1 1 Z + + Z + 1− β * 1− α 1− π π 1 − π π exp β1 n = ( 1 + 2 P0 )x P0 β1*2 e β0 P0 = 1 + e β0 2 (Hosmer & Lemeshow 2000) β1* = ln (odds ratio); π = ;% ;" Sample Size Multiple logistic regression n #9: dichotomous 2 ∑ ( yi − πˆi ) n nm = (1 − r 2 ) r2 = i =1 n ∑ ( yi − y ) i =1 2 <9=> ? ;? myocardial infraction ?;" (adjusted) " ;@# LDL ;@# HDL :"A <=>$A % B% odds ratio = 1.5 r = 0.1123 ; β 0 = −1.041 ;π = 0.5 P0 = e −1.041 1+ e −1.041 = 0.261 1 1.645 1 + 1 + 0.842 1 + 1 − .5 .5 1 − .5 .5e [ ln ( 1.5 )] n = ( 1 + 2( 0.261 ))x 0.261[ ln ( 1.5 )] 2 nm = 827 2 (1 − 0.1123 ) = 836.86 2 = 827 STATA : sampsi_logit (Thanomsieng,N, 2006) sampsi_logit p0(#) p(#) cov(str)] or(#) [r(#)] alpha(#) power(#) [tailed(str) .sampsi_logit,p0(0.261) r(.1123) p(.5) or(1.5) alpha(.05) power(.80) tailed(one) Sample Size for Logistic Regression (covariate is dichotomous) Logistic all n n/2 alpha power Odds ratio R square = = = = = = 837 419 (per group) .05 Zalpha = .8 Zbeta = 1.5 .01261129 1.645 0.842 Sample Size logistic regression #9: continuous ( − 0.25 β1*2 (1 − 2 p0δ ) z1−α + z1− β e n= x 2 *2 1− ρ p0 β1 e β0 p0 = P( y = 1 | x = 0) = β0 1+ e δ = ( 1+ 1+ β 1+ e )e *2 1.25 β1*2 1 − 0.25 β1*2 (Hosmer & Lemeshow 2000) ) 2 <9=> " ;?C< coronary ?;9 adjusted dm, ldl, smoking (sk) ?;#9:< $ pilot study ;D <C9#;%$%C; EA9$; " F one tailed (alpha = 0.05 ,beta = .20) . logit coro sk ldl dm age Logistic regression Log likelihood = -42.00821 Number of obs LR chi2(4) Prob > chi2 Pseudo R2 = = = = 100 54.61 0.0000 0.3939 -----------------------------------------------------------------------------coro | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------sk | 1.225443 .7900385 1.55 0.121 -.3230043 2.77389 ldl | .1235868 .9591088 0.13 0.897 -1.756232 2.003406 dm | 1.824256 .8701591 2.10 0.036 .1187758 3.529737 age | .1791178 .0642733 2.79 0.005 .0531444 .3050911 _cons | -1.08303 .088567 -12.23 0.000 -16.13651 -4.02955 ------------------------------------------------------------------------------ STATA : sampsi_logit (Thanomsieng,N, 2006) sampsi_logit p0(#) p(#) cov(str)] or(#) [r(#)] alpha(#) power(#) [tailed(str) . di (exp(-1.08303))/(1+exp(-1.08303) ) .25293305 . di sqrt(.3939) .62761453 . di exp(.1791178) 1.1961616 .sampsi_logit,p0(0.25293305) r(.62761453) or(1.1961616) alpha(.05) power(.80) tailed(one) cov(c) Sample Size for Logistic Regression (covariate is continuous) Logistic all n n/2 alpha power Odds ratio R square = = = = = = 1909 955 (per group) .05 Zalpha = .8 Zbeta = 1.196162 .39389996 1.645 0.842 Sample Size simple logistic regression #9: continuous (Hsieh, F.Y. (1989) n= [ Zα + exp(−θ *2 / 4) Z β ]2 (1 + 2 P0δ ) ( Pθ *2 ) θ * = log odds ratio = ln(or ) = coefficient δ = [1 + (1 + θ *2 ) exp(5θ *2 / 4)][1 + exp(−θ *2 / 4)]−1 P0 = exp(β 0) /[1 + exp(β 0 )] Sample Size Multiple logistic regression #9: continuous n nm = (1 − r 2 ) Reference: Sample Size logistic regression -Hosmer DW., Lemeshow S.(2000). Applied Logistic Regression: Second Edition. John Wiley & Sons,Inc.,New York. -Hsieh, F.Y. (1989). Sample Size tables for logistic regression. Statistics in Medicine, 16, 965-802 -Whitemore, A.S. (1981). Sample Size tables for logistic regression with small response probability. Journal of the American Statistical Association,76, 27-32.