Difracción de RX
Transcription
Difracción de RX
Difracción de RX History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for physics. In 1995 the German Post edited a stamp, dedicated to W.C. Röntgen. The Principles of an X-ray Tube X-Ray Cathode Fast electrons Anode focus The Principle of Generation the Characteristic Radiation Photoelectron M Emission Kα-Quant L K Electron Lα Quant Lα-Quant Kβ-Quant The Generating of X-rays energy levels (schematic) of the electrons M Intensity ratios Kα1 : Kα2 : Kβ = 10 : 5 : 2 L K Kα1 Kα2 Kβ1 Kβ2 The Generating of X-rays Anode (kV) Wavelength, λ [Angström] Kα1 : 0,70926 Mo C Cu 20,0 9,0 Kα2 : 0,71354 Kβ1 : Kß-Filter Zr 0,08mm 0,63225 Kα1 : 1,5405 , Kα2 : 1,54434 Ni 0,015mm Kβ1 : 1,39217 Co Kα1 : 1,78890 7,7 Kα2 : 1,79279 β : Kβ1 Fe Fe 0,012mm 1,62073 , Kα1 : 1,93597 7,1 Kα2 : 1,93991 Kβ1 : 1,75654 Mn 0 011mm 0,011mm The Generating of X-rays Emission Spectrum of a Molybdenum X-Ray Tube Bremsstrahlung = continuous spectra characteristic radiation = line spectra ρ Eo Centro difusor ρ Eo ρ E 2θ 1 – Caso simple: électron solo : x ρ i ρ Eo O r y Onda plana 2θ ρ E P z Onda esférica Caso real.- estructura periódica. O Na Cl A A d00 1 2 2 P(x,y, ( ,y, z) Si, P lejos del cristal: ⇒ INTERFERENCIA en ONDAS PLANAS La intensidad difractada esta determinada por fenómenos de dispersión y modulada por un mecanismo de interferencia ( constructivas y d t destructivas) destructivas ti ). Luz Rayos X El t Electrons Neutrons → → → → Dispersión de Rayleigh Dispersión de Thompson Di Dispersión ió electrostática l t táti Dispersión nuclear En todos los casos, casos, on se utiliza un factor de dispersión, dispersión p ,f, q que es proporcional a la amplitud dispersada por un átomo. átomo. Centro dispersor e- 2θ 16 Dispersión elastica elastica:: Conservación de la energía del fotón fotón,, λ=constante λ= constante.. Interférencias : Suma de amplitudes (amplitud et fase) : Σa Dispersión inelástica inelástica:: No conservación de λ. N hay No h interferencias i t f i : Suma de intensidades : Σ|a|2 Consecuencia : Amplificación del fenómeno de dispersión en un cristal. cristal. Σa ∝ Na Σ |a|2 I ∝ N2a2 I ∝ N |a|2 17 Como cambia el factor de dispersión con Z y el ángulo Ca (Z=20) Al0 (Z=13) C (Z=6) 20 15 10 5 0 0 Sinθ Sin θ/λ = 1/2d (nm-1) 1 2 (x10-1) Factor de estructura : Fhkl = Σj fj exp[2πi (huj + kvj + lwj )] Ihkl ∝ F2hkl rj : uj vj wj 21 Factor de estructura y redes de BRAVAIS : Tipo de celda : Primitiva : Todas los planos hkl estan presentes presentes.. Centrada cuerpo : condición de existencia: existencia: h+k+l = par 100,, 200, 100 200, 010, 010, 020, 020, 001, 001, 002, 002, 110, 110, 1-10 10,, 111, 111, 210, 210, … Centrada en las caras caras:: condición de existencia: existencia: h,k,l con la misma paridad.. (todos pares o todos nones). paridad nones). 100,, 200, 100 200, 010, 010, 020, 020, 001, 001, 002, 002, 110, 110, 1-10 10,, 111, 111, 210, 210, … 22 Efecto de tamaño de dominio cristalino. cristalino. Granos grandes Difractograma Granos pequeños Difractograma El ancho de los picos de difracción está relacionado con el tamaño promedio de los cristales D por medio de la fórmula de Scherrer : . Ver cálculo numérico D= λ cos θ ∆2 − ∆2inst . ∆ : ancho del pico (en ( radianes radianes)) medido en 2θ. : ancho instrumental(~ instrumental(~ 0,2°), ∆inst inst.. medido a partir de un polvo de grano grande..) grande ∆ ∆inst . 2θ Existen tres tipos de esfuerzos internos σI, σII, σIII: σi Valeur promedio σI : Valor promedio → Desplazamiento de picos (esfuerzos de tensión→ desplazamiento hacia ángulos pequeñosθ) σII : Distancias grandes grandes→ → Ensanchamiento simétrico de picos σIII : Distancias cortas→ cortas→ Ensanchamiento asimetricos de picos. picos. β = 4εtanθ β = ancho (en radianes) ε = deformación (∆l/l) Powder Diffraction Diffractogram Bragg law nλ=SQ+QT nλ=2d λ 2d sinθ i θ Como indenficar una fase conocida conocida.. ficha JCPDS . λ ref.. ref Indexación dhkl Indicador d confiaza de fi Compuesto Tipo de red G.E.. G.E Densidad calculada Parametros Intensidad número de formules Biblio. + información hardware Standard interno 29 Bragg‐Brentano Diffractometer y A scintillation counter may be used as detector instead of film to yield exact intensity data. y Using automated goniometers step by step scattered intensity may be measured and stored digitally. The Bragg‐Brentano gg Geometry Detector Tube q focusingcircle Sample measurement circle 2q The Bragg‐Brentano gg Geometry Antiscatterslit Divergence g slit Monochromator Detectorslit Tube Sample Esquema de funcionamiento del difractometro.: difractometro .: muestra fuente RX Círculo de desplazamiento del monocromador y del detector. . θ . haz difrac ctado 2θ } Circulo de focalisación primario monocromador Kβ ángulo α fijo Kα detector 47 49 Comparison Bragg‐Brentano Geometry versus Parallel y Beam Geometry Bragg-Brentano Geometry Parallel Beam Geometry generated by Göbel Mirrors Parallel Beam Geometry with Parallel‐Beam Geometry with Göbel Mirror Göbel mirror Detector Soller Slit Tube Sample “Grazing Incidence X‐ray g y Diffraction” Soller slit Tube Sample Measurement circle Detector “Grazing Grazing Incidence Diffraction Incidence Diffraction” with Göbel Mirror Soller slit Göb l mirror Göbel i Tube S Sample l Measurement circle Detector Powder Pattern and Structure y The d‐spacings of lattice planes depend on the size of the elementary cell and Th d i f l tti l d d th i f th l t ll d determine the position of the peaks. y The intensity of each peak is caused by the crystallographic structure, the position of the atoms within the elementary cell and their thermal vibration. i i f h i hi h l ll d h i h l ib i y The line width and shape of the peaks may be derived from conditions of measuring and properties ‐ like particle size ‐ of the sample material. Phase Identification & Lattice Constant D i i Determination A) Ph Phase Identification Id tifi ti 1) Compare the observed spectrum to a library (JCPDS) containing diffraction patterns of known compounds 2) Index the peaks from known lattice constants B) Lattice Constant Determination 1) Lattice Constant Refinement a) Least squares refinement of individually fit peaks b) Whole pattern fitting uto de g 2)) Autoindexing a) Internal standard critical b) Unidentified impurities significantly reduce p y the probability of success Structure Determination 1) Determine the Crystal System and Lattice Constants (By indexing the peaks in the diffraction pattern) 2)) Identify Id if the h Space S G Group (Using the systematic absences) 3) Determine an Approximate Structure a) Empirical Methods b) Ab Initio Approach 4) Refine the Approximate pp Structure (Using the Rietveld refinement method) 5) Test and compare alternative models Sources of Peak Broadening 1) Instrumental Broadening a) Nonideal optics b) Wavelength W l th dispersion di i c) Specimen transparency d) Misalignment 2)) Finite Crystallite ll Size 3) Strain a) Uniform strain (shifts peaks) b) Nonuniform strain (broadens peaks) 4) Extended Defects a)) Stacking g faults b) Antiphase boundaries In short ‐ XRD information are taken from: In short. XRD information are taken from: y peak position y peak intensity y peak broadening y scaling factor amount dimension of the elementary cell content of the elementary cell strain/crystallite size quantitative phase Neutron Powder Diffraction 1) Neutrons are scattered by nuclei instead of electrons. This leads to a completely different scattering power distribution for the elemets. This is extremely useful for determining positions of light atoms in compounds containing both light and heavy atoms. light and heavy atoms 2) The absorption coefficients for neutrons are much smaller than they are for x‐rays. y This results in much greater penetration depths for neutrons (i.e. 25 mm depth for neutrons compared with 25 mm depth for x‐rays). This is advantageous in reducing errors such as matrix effects and preferred orientation, but can be disadvantageous in that larger samples are needed. are needed 3) Scattering factors do not decrease with 2θ. This increases the information content of the high angle region of the diffraction pattern. 4) Resolution is typically lower than found in high resolution x‐ray diffraction. This can be problematic if there is considerable peak overlap. On overlap On the other hand, peak hand peak shapes are more easily modeled.