PDF - Odlučivanje
Transcription
PDF - Odlučivanje
Data Science u poljoprivredi: tehnološka platforma za automatizaciju daljinske detekcije pomoću bespilotnih letelica Gostujuće predavanje Milan Dobrota 18.12.2015 2 Globalni izazovi u poljoprivredi ... 2050 Gubici zbog korova, bolesti i štetočina su veći od 20 % godišnje 9 milijardi ljudi, 70 % povećanja proizvodnje hrane Većina poljoprivrednog zemljišta se već obrađuje ... proizvesti više hrane sa manje obradivog zemljišta ! 3 Uvod Precizna poljoprivreda (Precision Agriculture) is the application of geospatial techniques and sensors (e.g. GIS, Remote sensing, GPS) to identify variations in the field and to deal with them. High-resolution satellite imagery was more commonly used. Small unmanned aerial systems (UAS), are shown to be a potential alternative given. Daljinska detekcija (Remote Sensing) predstavlja metod prikupljanja informacija putem sistema koji nisu u direktnom, fizičkom kontaktu sa ispitivanim objektom. U užem smislu obuhvata analizu i interpretaciju različitih snimaka zemljišta. Informacije se prikupljaju registrovanjem i snimanjem odbijene ili emitovane energije objekta i obradom, analiziranjem i korišćenjem tih podatka. Bespilotne letelice (UAV, UAS) platforms offer new possibilities to agriculture in order to obtain high spatial resolution imagery delivered in near-real time. The increase of spatial and temporal resolution of the geomatic products obtained with UAVs should be accompanied with the use of new algorithms and techniques for information abstraction from these products. A clear example of this fact is the use of vegetation indices such as NDVI, which can be substituted by computer vision techniques or other indices based on RGB bands information, which can be obtained with inexpensive sensors. 4 Šta radimo Razvioj tehnološke platforme za daljinsku detekciju AgriSens Tehnologija je deo Precizne poljoprivrede koja koristi: Daljinsku detekciju za snimanje velikih obradivih površina Prikupljanje velike količine podataka u realnom vremenu Obradu i analizu podataka koristeći statističke metode i algoritme sposobne da uče Izlazi iz sistema su geo-referencirane mape područja sa procesiranim i analiziranim podacima od interesa za specifični zahtev u poljoprivredi 5 Kako to radimo Snimanje i obrada slika visoke rezolucije i odgovarajućeg spektra (RGB, NIR...), snimljene uz pomoć bespilotnih letelica i pre-procesiranje algoritmima obrade slika. Obrada podataka izvlačenjem skrivenih šablona u podacima dobijenim iz slike, koristeći analitičke algoritme, što takođe uključuje samoučeće algoritme, odlučivanje pomoću neuronskih mreža i sl. Analiza korišćenjem Vegetativnih Indeksa (VI) dobijenih obradom podataka rezultat će biti geo-referencirana mapa posmatranog polja. Algoritmi će u prvim iteracijama ulazne parametre dobijati od eksperata, da bi kasnije sami učili i ispravljali se 6 Inovacija UAV (bespilotne letelice) uz niže troškove omogućavaju češća snimanja, visoku rezoluciju zahvaljujućim niskim visinama i malim brzinama leta i značajno manje potrebne obuke za korišćenje. Satelitski snimci i fotografije iz vazduha su ograničeni vremenom potrebnim za snimanje, niskom rezolucijom, zavisnošću od oblaka i visokim troškovima za ažurne slike. Integrisanost i sveobuhvatnost alata za prikupljanje i obradu velike količine podataka, omogućava krajnjim korisnicima gotove rezultate, snimanjem u različitim spektrima, data mining-om, mašinskim učenjem i automatizacijom čitavog procesa, bez potrebe za ekpertskim znanjem korisnika. Očuvanje životne sredine primenom SSWC (site specific weed control) principa ima značajne ekološke prednosti smanjenom upotrebom pesticida i hebicida. 7 Primena tehnologije – u obuhvatu projekta Identifikacija korova, u prvoj fazi kod široko-rednih zasada (kukuruz, suncokret, šećerna repa, itd.) Detekcija stresa koji može biti posledica oboljenja, štetočina ili suše, praćenjem promena na listovima useva. Razlike refleksije među različitim delovima EM spektra se koriste za razlikovanje zdrave vegetacije od uvenule ili bolesne. Brojanje biljaka i procena prinosa, naročito kod široko-rednih i višegodišnjih zasada 8 Drugi primeri primena Detekcija hlorofila: EM energija emitovana od useva varira tokom cele sezone i tokom dana u zavisnosti od sunčevog zračenja. Detekcija nedostatka azota: distributeri azotnog đubrivo nemaju algoritam po kome upravljaju količinom đubriva distribuiranom na pojedinim delovima zemljišta što može dovesti do povećanja troškova i smanjenja prinosa. Klasifikacija zemljišta: fizičke osobine zemljišta su u korelacijama sa reflektovanim elektromagnetnim talasima određenih talasnih dužina i zbog toga slike imaju potencijal u automatskoj klasifikaciji vrsta zemljišta i njihovom mapiranju 9 Korisnici tehnologije 10 Koncepet rešenja 11 Video 12 Proces, ogledi, analize... 13 Prikupljanje slika Prikupljanje slika može biti podeljeno u tri faze: Planiranje misije Letenje UAV-om i slikanje (RGB & NDVI, Normalized Difference Vegetation Index) Spajanje-mozaiking orthophoto slika 14 Dokumentovanje ogleda 15 Ekstrakcija vegetacijskih indeksa Vegetation interacts with solar radiation in a different way than other natural materials. The vegetation spectrum (figure 3) typically absorbs in the red and blue wavelengths, reflects in the green wavelength, strongly reflects in the near infrared (NIR) wavelength, and displays strong absorption features in wavelengths where atmospheric water is present. Different plant materials, water content, pigment, carbon content, nitrogen content, and other properties cause further variation across the spectrum 16 Automatic labelling Provides the automatic proposal of the OOI on the image. Various clustering methods are be used for this task, namely k-means and its modifications, DBSCAN and its modifications, OPTICS and its modifications. 17 Automatic labelling Method name Parameters Scalability Usecase Geometry (metric used) K-Means number of clusters Very large n_samples, General-purpose, even medium n_clusterswith Mini cluster size, flat geometry, Batch code not too many clusters Affinity propagation damping, sample preference Not scalable with n_samples Mean-shift bandwidth Many clusters, uneven Not scalable withn_samples cluster size, non-flat geometry Distances between points Spectral clustering number of clusters Medium n_samples, small n_clusters Graph distance (e.g. nearest-neighbor graph) Ward hierarchical clustering number of clusters Many clusters, uneven cluster size, non-flat geometry Few clusters, even cluster size, non-flat geometry Large n_samples andn_clust Many clusters, possibly ers connectivity constraints Distances between points Graph distance (e.g. nearest-neighbor graph) Distances between points Agglomerative clustering Many clusters, possibly number of clusters, linkage Large n_samples andn_clust connectivity constraints, type, distance ers non Euclidean distances DBSCAN neighborhood size Very large n_samples, medium n_clusters Non-flat geometry, uneven cluster sizes Distances between nearest points Gaussian mixtures many Not scalable Flat geometry, good for density estimation Mahalanobis distances to centers Birch branching factor, threshold, Large n_clusters andn_samp Large dataset, outlier optional global clusterer. les removal, data reduction. Any pairwise distance Euclidean distance between points 18 Automatic labelling – stress monitoring 19 Image Recognition Counting: Template matching, a is a technique in digital image processing for finding small parts of an image which match a template image Haar-like feature based cascade sums up the pixel intensities in each region and calculates the difference between these sums. This difference is then used to categorize subsections of an images are digital image features used in object recognition. Stress identification and Yield estimation: Histogram matching is the transformation of an image so that its histogram matches a specified histogram. An image histogram is a type of histogram that acts as a graphical representation of the tonal distribution in a digital image 20 Software 21 Poslovni model Key Partners Key Activities Value Propositions Customer Relationships Customer Segments Vendors of equipment Development of technology (integration of HW and SW) and know-how Delivery of cost-effective intelligence about crops Direct contacts and networking with potential customers Individual agricultural producers, using survey services Increase crops yields and reduction of risks from pests Weak relations exists so far, at the level of pilot projects Large companies in agriculture who wish to implement technology and perform surveys Vendors of software tools External consultants (know-how or sales activities) Sales activities Key Resources Comprehensive technology integrated with advanced knowhow in use for the benefit of customer Skilled experts in area of IT, data Satisfaction of customer needs science, agriculture, of improving their farming in mechatronics... cost-effective manner Funding for development and marketing activities Government agriculture sectors Channels Insurance companies Raising initial awareness through Large technology companies internet, fairs and exhibitions interested in buying technology Channels of sales is under Environmental care (decrease of development at this point (direct sales) pollution) Cost Structure Revenue Streams Costs for developers and engineers to develop technology Fees for external consultants (not part of the core project) Purchase of hardware equipment (UAV, camera, etc.) Expenses related to sales activities Expenses related to field research Services of crops examinations provided as a service Sold out technology, either fully or partially It is expected that customers currently pay more expensive technology Technology selling would be less frequent but generating bigger revenue at one shot 22 Hvala na pažnji! [email protected]