gigasecond
Transcription
gigasecond
Excited-State Processes +B kq A* Products Unimolecular Processes: kp P knr kr kr: radiative deactivation (emission) knr: radiationless deactivation kp: chemical reaction Bimolecular Processes: A kq: bimolecular quenching of A* (“products” include energy, electron, and proton transfer between A and B) The timescale of photochemical events 1s -3 10 s ms (milliseconds) 10-6 s µs (microseconds)- 10-9 s ns (nanoseconds) 10-12 s ps (picoseconds) 10-15 s fs (femtoseconds) - fs is the lower limit of the chemistry time scale. - electron motion in molecules takes place in fs. - photon absorption (excitation) take place in fs. The time scale Power Units e.g., Light travels… 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 Exasecond 31.7 109 years age of universe 31.7 billion light-years Petasecond 31.7 10 years oligocene 31.7 million light-years Terasecond 31.7 103 years entering prehistory 31.7 thousand light-years Gigasecond 31.7 years 1 human generation 31.7 light-years Megasecond 11.6 days 1 generation of Drosophila 0.32 light-years Kilosecond 16.7 min coffee break 300 million Km second heartbeat 300 thousand Km millisecond camera shot 300 Km microsecond free radicals 300 m nanosecond electr. excited molecules 30 cm picosecond energy/electron transfer 0.3 mm 6 mol. vibrations femtosecond 0.3 µm electron motion in atoms attosecond 3Å Excited-State Processes +B kq A* Products kp P knr kr A Unimolecular Processes: kr: radiative deactivation (emission) knr: radiationless deactivation kp: chemical reaction Radiative deactivation (Emission) A* kr A + hν 64π 4ν 3 2 kr = µ 12 3h2 A* µ12 = ∫ Ψ1µΨ2 dq ∫ S1S 2 dξ ∑ Χ10 Χ 2 n dQ n kr A Same selection rules as for absorption. In particular, spin-allowed emission Fluorescence spin-forbidden emission Phosphorescence Again, Franck-Condon factors do not affect kr, but determine the shape of the emission band. Rilassamento vibrazionale (“termalizzazione”) degli stati eccitati per Franck-Condon, le molecole elettronicamente eccitate vengono spesso formate con un eccesso di energia vibrazionale rispetto all’ambiente circostante (cioè sono “calde” rispetto alla T del mezzo). 10-12 s hν In fase condensata, le molecole perdono il loro eccesso di energia per collisione con il mezzo in tempi dell’ordine di pochi picosecondi (qualche vibrazione). La maggior parte dei processi fotochimici e fotofisici di interesse avvengono in tempi > 10-11s . Perciò gli stati eccitati, indipendentemente dalla loro formazione, si possono considerare a tutti gli effetti sul livello v = 0. Franck-Condon Factors and Absorption/Emission Bandshape Stokes Shift and Excited-State Distortion Stokes Shift 0 1 2 3 4 5 0 1 2 3 4 5 1.2 1 em abs 0.8 0.6 0.4 0.2 0 0.7-10.0 0.6 0.5 -5.0 em abs 0.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 wavenumbers (kK) 0.4 0.3 0.2 0.1 0 0.4-10.0 0.3 -5.0 em abs 0.0 wavenumbers (kK) 0.2 0.1 0 0.4-10.0 0.3 -5.0 em abs 0.0 wavenumbers (kK) 0.2 0.1 0 -10.0 0.3 0.25 -5.0 em abs 0.0 wavenumbers (kK) 0.2 0.15 0.1 0.05 0 -10.0 -5.0 0.0 wavenumbers (kK) CH2 CH CH3 anthracene (OH)HC O N quinine N Excited-State Processes +B A* Products kq kp P knr kr A Unimolecular Processes: kr: radiative deactivation (emission) knr: radiationless deactivation kp: chemical reaction Radiationess Transitions knr A* A* knr A A 2π 2 Ψ1 H ' Ψ2 ρ 2 h Fermi’s golden rule k nr = k nr = 2 2π 0 n Ψ S H ' Ψ S dqd ξ X X dQ ∫ 1 1 ∫ 1 2 2 2 h H’ is that part of the Hamiltonian responsible for driving the process. - spin orbit coupling operator for spin-forbidden transitions - nuclear kinetic energy (vibronic coupling) for spin-allowed ρf(E) is the density of vibrational states of A isoenergetic with A* k nr = 2π h 0 n ∫ Ψ1S1H 'Ψ2 S 2dqdξ ∫ X 1 X 2 dQ 2 Electronic factors: Spin Selection Rule spin-allowed internal conversion spin-forbidden intersystem crossing El Sayed Rule: ISC allowed if change of orbital configuration (rotation of charge density) Franck-Condon factor 2 2π 0 n Ψ1S1H'Ψ2S2dqdξ Σ n∫ X1 X2 dQ Radiative case, kr = ∫ h 2 2π 0 n Radiationless, kr = Ψ1S1H'Ψ2S2dqdξ ∫ X1 X2 dQ ∫ h FC factor extremely important in determining knr. =1 Radiationless transitions. Role of the Franck-Condon factor A* A A* A “Nested” states. “Crossing” states. Bad Franck-Condon factor. Classically, abrupt change in nuclear kinetic energy. Good Franck-Condon factor. Classically, nuclear kinetic energy is conserved. Slow process. Rate decreases with increasing “energy gap”. Very fast process Energy Gap Law Poor overlap Better overlap Deuteration Effect knr A* A C-H knr A* A C-D Kasha’s Rule: Radiative (and most other intersting) processes always occur from S1 or T1, independent on the energy of initial excitation S3 S2 T3 S1 T2 T1 S0 Rationale: Small energy gaps between excited states, large energy gap between S1 and the ground state. Very fast, 100% efficient radiationless deactivation from upper states to S1. Consequence: Simplified effective Jablonski diagram e.g., perylene So → S2 1.6 S1 → S0 1.4 Abs/em int. 1.2 1.0 So → S1 0.8 0.6 0.4 0.2 0.0 -0.2 excitation 200 300 excitation 400 500 600 λ Emission = Fluorescence from S1 Independent (constant Φ) on excitation wavelength 700 Excited State Kinetics +B A* Products kq [A*]0 kp P knr [ A*] 0 2 .72 kr τA* A − d [A *] = (k r + k nr + k p ) [A *] = ∑ik i [A *] dt excited-state decay kinetics efficiency of process i ηi = ki ∑ ik i τ A* = 1 (kr + knr + k p ) = 1 ∑iki excited-state lifetime Quantum yield of Φ = η (− Α*)η = ki i ∑i ki process i Kinetic Scheme Dependence of experimental parameters τS, Φf, τT, Φp on rate constants of individual processes S1 kisc τS = 1/(kF + kIC + kISC) T1 kp kf kic Φ f = η f(S 1) = kf/(kf + k ic + kIisc ) = kf τS τT = 1/(kP + kISC’) kisc’ Φ p = η isc (S 1) × η r(T1) = η isc (S 1) × [kp/(k p + k isc’)] = η isc (S1) kpτT η isc (S1) = k isc /(kf + k ic + kIisc ) = k isc τS S0 Example: Lowest π−π* state Example: Lowest n−π* state 0.9 Organic chromophores “typical” behavior Lowest π−π∗ states Lowest n−π∗ states − τ(S1), ns − τ(S1), ps − ΦF = 0.1-1.0 − ΦF = 0 −ηISC < 1 − ηISC = 1 −ΦF+ ηISC ≈1 −ηIC = 0 − ηIC = 0 − τ(T1), µs-ms − τ(T1), ms-s Excited-State Processes +B A* Products kq kp P knr kr Unimolecular Processes: A kr: radiative deactivation (emission) knr: radiationless deactivation kp: chemical reaction stati elettronici eccitati ****R ***R **R Y ⇒ FOTOCHIMICA ⇒ CHIMICA X *R hν R P stato fondamentale k R P E transition state reactants ∆G # ∆G 0 MR k = (kBT/h) exp(-∆G#/RT) products TS reaction coordinate MP e.g., k = (k BT/h) exp(-∆G#/RT) HCHO → H2 + CO H C O H H C O H H H +C O Excited states are short-lived ⇓ to be efficient, excited-state reactions must be very fast: i.e., activationless or downhill prototype reaction: breaking (stretching) of a σ bond Stretching of a σ Bond e.g., H-H, CH3-CH3 Correlation of states: - Same spin -Same symmetry -No state crossing between states of same spin&symmetry Rules for the correlation of states between different molecular geometries - must have the same spin - must have the same symmetry - states of same symmetry and spin can never cross Ψ = c1Ψ10 + c2Ψ20 ( E1 − E2 ) 2 − 4 H 12 E1 + E2 m E= 2 2 c1 (E1 − E ) + c2 H12 = 0 ( ) c H c E E + − = 0 2 12 2 2 2 1 0.8 alf 0.6 a% % AB %A+B- 0.4 0.2 0 -20 -10 0 10 20 30 40 Stretching of a σ Bond e.g., H-H, CH3-CH3 S2 Z2 Z1 S1 T1 3 D D 1 S0 Schematic State Correlation prototype reaction: twist around a double bond (cis-trans isomerization) A A B A B B A B State correlation diagram (no inforamtion) S2(π∗2) S2(π∗2) S1(ππ∗) S1(ππ∗) T1(ππ∗) T1(ππ∗) S0(π2) S0(π2) A B A B cis A B B A trans S 2(π∗2 ) S2 (π∗ 2 ) S1 (ππ∗) S1(ππ∗) T1(ππ∗) T1 (ππ∗) S0(π 2 ) S 0(π 2 ) A B A B cis A B B A trans orbital correlation A A B A B B B state correlation A π∗ S 2(π∗2 ) S2 (π∗ 2 ) S1 (ππ∗) S1(ππ∗) T1(ππ∗) T1 (ππ∗) S0(π 2 ) S 0(π 2 ) π∗ π π A A A B B B A B A A B B A B B A A B cis A B A B B A trans cis trans S 2(π∗2 ) S2 (π∗ 2 ) S1 (ππ∗) S1(ππ∗) T1(ππ∗) T1 (ππ∗) S0(π 2 ) S 0(π 2 ) A B A B cis A B B A trans state correlation real potential energy S 2 (π∗2 ) S 2 (π∗2 ) S 1 (ππ∗) S 1 (ππ∗) T1 (ππ∗) T1 (ππ∗) S 0 (π 2 ) S 0(π 2 ) A B A B cis A B B A trans Photochromic Diarylethenes e.g., 1 .5 R R N O hν (430 nm) N O O 0 .9 A O 1 .2 R' R' S S R' hν (530 nm) S S R' closed open 0 .6 0 .3 0 .0 300 400 500 nm 600 Cylobutene → Butadiene CONROT DISROT Ground vs excited states: different reactivity? Answer: correlation of MOs and states between reactant and products. CONROT Relevant symmetry element: C2 C2 DISROT σv C Relevant symmetry element: σv C2 σv C C2 σv C Symmetry must be maintained along the reaction coordinate Cyclobutene – Butadiene conrotatory ring opening/closure CH3 CH3 H H Orbital Correlation: State Correlation: φ4∗ σ∗ π∗ φ3∗ π φ2 σ φ1 -thermally allowed -photochemically forbidden σπ2σ∗ Φ1Φ22Φ4∗ Cyclobutene – Butadiene disrotatory ring opening/closure CH3 CH3 H H σv σv Orbital Correlation: State Correlation: σ∗ φ4∗ π∗ φ3∗ σ2 π∗2 π φ2 σ φ1 -thermally forbidden -photochemically allowed Φ1 2Φ3∗2 conrotatory disrotatory Hexatriene-Cyclohexadiene disrotatory ring closure/opening Hexatriene-Cyclohexadiene disrotatory ring closure/opening H CH3 H H H CH3 CH3 CH3 σv σv - thermally allowed - photochemically forbidden H CH3 H H C2 CH3 CH3 CH3 H C2 - thermally forbidden - photochemically allowed