k - Dipartimento di Fisica
Transcription
k - Dipartimento di Fisica
Metodi diffrattivi per studi cristallografici di volume e di superficie Le informazioni cristallografiche possono essere ottenute con esperimenti di scattering effettuati con opportune particelle sonda (elettroni, neutroni, fotoni X). L’onda diffusa (o scatterata) è descritta da: Ψj = Ψ0 eik·R /R f j (k0, k) ei(k-ko)·Rj dove fj (k0, k) fattore di scattering atomico ei(k-ko)·Rj sfasamento tra centri scatteratori Se Rj=(n1a1,n2a2)+rj la funzione dell’onda scatterata totale si partiziona: Ψ= ∑jΨj ∝ ∑j fj (k0,k) e i(k-ko)·Rj Fattore di forma fj =F⋅G Fattore di struttura dipendente dalla posizione delle singole celle unitarie Scattering factor atomico dipendente dall’interazione sonda-atomo r r F∆k = ∑ f j exp(i∆k ⋅ rj ) j fattore di forma dipendente dalla posizione degli atomi all’interno della cella unitaria Fattore di scattering fj Il fattore di scattering dipende dall’energia degli elettroni. Ad alta energia (1100 eV) la sezione d’urto è tutta in avanti (0°). Ad energie minori (300-500 eV) diventa importante il picco di backscattering (180°), mentre a bassa energia (<100 eV) si hanno fenomeni di interferenza che portano intensità anche a grandi angoli dalla traiettoria incidente (picchi a 60° e 120° in figura). Fattore di Struttura G in 2D Esempio: caso 2 Dim. G = ∑n = 0 e M1 1 posto Rj=(n1a1,n2a2) e supponendo M1 x M2 celle si ottiene: r r in1a1 ( k − k 0 ) ∑ M2 n2 = 0 e r r in2 a2 ( k − k 0 ) L’intensità nei singoli canali di diffrazione vale quindi r r 2 r r 2 1 1 [sin( M 1a1 (k − k0 ))] [sin( M 2 a2 (k − k0 ))] 2 2 2 2 2 G = ⇒ M M 1 2 r r 2 r r 2 1 1 [sin( a1 (k − k0 )] [sin( a2 (k − k0 ))] 2 2 che ha massimi per a·(k-ko)=nπ π, ossia in corrispondenza dei vettori del reticolo reciproco G=(2π πn/a1, 2π πm/a2). Nella terza dimensione i picchi si estendono indefinitamente (barre o rods). La forma angoalre dei picchi di diffrazione è Lorenziana. Sono stretti se M1 e M2 >>1. M1 ed M2 sono limitati da: lunghezza di coerenza L, che dipende da come si prepara la superficie. Essa può eccedere 1000 Å per monocristalli o essere limitata dalla presenza di dislocazioni. Lunghezza di trasferimento W, dipendente dall’apparato sperimentale Definizione: spazio reciproco e zona di Brillouin Caso 3D: una volta definiti i vettori a1, a2, a3 nello spazio diretto si possono definire i vettori b1, b2, b3 a 3 × a1 a1 × a 2 a2 × a23 b2 = 2π b 3 = 2π b1 = 2π a1 ⋅ a 2 × a 3 a1 ⋅ a 2 × a 3 a1 ⋅a2 × a3 b i ⋅ a j = 2πδ ij gν 1ν 2ν 3 = ν 1b1 +ν 2b 2 +ν 3b 3 con v1, v2, v3 numeri interi Dimensione di R [L] Dimensione di g [1/L] La zona di Brillouin è definita come la cella di Wigner-Seitz cell nello spazio reciproco Zone di Brillouin in 3D Costruzione di Ewald Le particelle sonda rimbalzano elasticamente conservando energia (ħk)2 e quantità di moto (ħk) k = (k ) r' r r k = k + ghkl 2 ' 2 Conservazione dell’energia Conservazione della quantità di moto Dove ghkl è un vettore del reticolo reciproco, (2 indici per problemi in 2 Dim, 3 per problemi in 3 Dim). Per avere diffrazione k’- k deve essere confrontabile o maggiore di g. Ewald Sphere Construction in 3D Reciprocal Space 2π 2mE k= = 2 λ h 12 1) A vector k is drawn terminating at the origin of the reciprocal space 2) A sphere of radius k is constructed about the beginning of k 3) For any point at which the sphere passes through a reciprocal lattice point, a line to this point from the center of the sphere represents a diffracted beam k’ 4) Notice the reciprocal lattice vector ghkl Diffraction Techniques in 3D Space There is a variety of techniques based on the diffraction process suitable for volume structural determination: Electrons IN/Electrons OUT TED (Transmission High Energy Electron Diffraction) Photons IN/Photons OUT XRD (X-Ray Diffraction) Neutrons IN/Neutrons OUT …. (Elastic Neutron Scattering) ……Photon IN/Electron OUT : EXAFS (see later …) The best probe particles to study 3D crystallography by diffraction are neutrons and X-rays, for which the single scattering approximation holds. Inverting the scattered intensities allows to reconstruct the position of the scatterers in direct space. Electrons are suited for microscopes since they can be easily focused. Diffraction in 2D k = (k ) r 2 r 2 r' 2 r' 2 k|| + k⊥ = k || + k ⊥ 2 ' 2 r r r k '|| = k|| + g hk Conservation of Energy Conservation of Momentum r k⊥ is not conserved since the translational symmetry normal to the surface is now broken The indexing of the diffracted beams is, by convention, referenced to the substrate real and reciprocal net. If the selvedge or adsorbate structures have larger periodicities, the surface reciprocal net is smaller than that of the substrate alone. The extra reciprocal net points and associated diffracted beams are denoted by fractional rather than integral indices. Ewald Sphere Construction in 2D Reciprocal Space Notice that the reciprocal lattice is now replaced by infinite reciprocal lattice rods perpendicular to the surface and passing through the reciprocal net points 1) At surfaces 2D translational symmetry holds thereby only the wave vector parallel to the surface is conserved with the addition of a reciprocal net vector 2) The dashed scattered wave vectors propagate into the solid and are not observable 2D Crystallography: Surface Reciprocal Lattice The reciprocal net vectors c1* and c2* of the surface mesh are defined as c1 • c2* = c2 • c1* = 0 c1 • c1* = c2 • c2* = 2π (or 1) The reciprocal net points of a diperiodic net may be thought of (in 3D space) as rods. The rods are infinite in extent and normal to the surface plane where they pass through the 3D reciprocal net points. Zone di Brillouin 2D bcc fcc Diffraction Techniques in 2D Space Techniques based on the diffraction process suitable for surface structural determination: Electrons IN/Electrons OUT LEED (Low Energy Electron Diffraction) RHEED (Reflected High Energy Electron Diffraction) Photons IN/Photons OUT GIXD (Grazing Incidence X-Ray Diffraction) Atoms IN/Atoms OUT ABS (Atom Beam Scattering) Electrons are the least expensive tool for diffraction experiments, but multiple scattering is important which makes the inversion of the diffraction intensities complicated 2D-Superstructures and nomenclature Superstructures correspond to the formation of larger lattices due to surface reconstruction or to the presence of an adsorbate layer at the surface. Examples of LEED Patterns (a) Si(111) (b) GaAs(110) (c) Sr2CuO2Cl2 20 eV<Ei<500 eV Notice that the LEED spots span a variety of relative intensities (see below) LEED Process 1) The incident wave is exponentially attenuated while the electron propagates in the solid. Inelastic mean free path depends on electron energy and is smallest around 100 eV. 2) Since atom-electron scattering cross sections can be very large (≈ 1 Å2, i.e. 1010 times larger than in X-ray diffraction), multiple scattering must be included. This means that each incident electron is treated as a superposition of the primary wave and the scattered waves. 3) The atomic scattering cross section (fj) involves a phase shift (also dependent on k) and is thus complex. 4) The diffraction intensity is modulated by the Bragg conditions in vertically to the surface. LEED Since the penetration depth of the primary electrons is finite, one has thickness-modulated vertical reciprocal rods instead of infinite uniform-thickness reciprocal rods within the Ewald sphere construction Ewald sphere construction in 2D space LEED dinamico: l’intensità nei singoli canali di diffrazione dipende dall’interferenza. Invertendo tali intensità si può risalire alla posizione dei nuclei LEED Esempio di curve intensità energia (I-V) La modulazione dell’intensità e la posizione dei picchi sono date grossolanamente dalle condizioni di interferenza positiva tra i piani cristallografici. I picchi sono spostati dalla posizione attesa a causa del potenziale interno al cristallo (che modifica l’energia degli elettroni) e dallo scattering multiplo. Quest’ultimo può anche indurre ulteriori strutture. LEED Examples of spot profiles as a function of the primary beam energy Spot profile analysis reveals the inadequacy of the simple scattering approach. Multiple scattering plays a major role and it must be included in the theory. Esempio: film sottile Fe3O4 cresciuto epitassialmente su Pt(111) Basic Instrumental Components of a LEED Experiment •UHV Apparatus •Sample •Sample Preparation Facilities •LEED Optics •Electron Gun •Grids & Fluorescent Screen •CCD Camera/Computer Schematic of a Three-Grid LEED Optics Usually the electron beam at a selected kinetic energy hits the surface along the normal direction Surface sensitivity in LEED is achieved by combining the low IMFP (≈ 5 Å) with the high backscattering probability (ion core cross section as high as 1 Å2) LEED Optics In this case one UHV flange is just needed Recording LEED with a CCD Camera Effetto energia incidente 90 eV Effetto energia incidente 140 eV Effetto sovrastrutture su G Effetto sovrastrutture su G Effetto sovrastrutture su G RHEED: Reflection high energy electron diffraction The primary beam hits the surface and the diffracted beam emerges at very grazing incidence (<5°). This, combined with the high forward scattering probability and notwithstanding the high primary energy (30÷100 keV), ensures a high surface sensitivity. This primary-beam/sample/screen geometry is typically preferred during MBE growth, i.e. when the sample must face the Knudsen cells. The Ewald sphere is now very large relative to the spacing of the reciprocal net rods (see LEED) and cuts these rods at grazing angles. The combination of the very grazing angle of intersection of the Ewald sphere with the broadened reciprocal net rods (due to the real quality of surface order and the instrumental transfer width) leads to streaking of the diffraction spots. Diffracted Electron Beams Edge of Ewald sphere Primary Electron Beam k Sample φ Grid Fluorescent Screen RHEED Ewald sphere Reciprocal Lattice Rods Reciprocal Lattice Rods Allowed Reciprocal Lattice Vectors First Order Second Order Perfectly flat surface Reciprocal rods have no width Ewald sphere Reciprocal lattice points First Order Second Order Surface with monolayer roughness. Broadened rods. First Order Second Order Surface with large roughness. Transmission features. RHEED: Ideal Pattern Fractional-order spots in some azimuths indicate surface reconstruction The spacing gives the surface lattice constant Splitting of the beams indicates a faceted surface. The separation gives the surface tilt. This distance gives the angle of incidence Image of the incident electron beam RHEED Apparatus RHEED and Ewald Sphere RHEED Scattering and Diffraction Geometry (01 ) (00) L s θ (01) RHEED Patterns RHEED oscillations How RHEED oscillations are applied to monitor MBE growth processes. The (0,0) beam is recorded for destructive interference conditions for scattering from the first layer and from the added layer. The scattered intensity is lowest when the added layer has half a monolayer coverage. Monitoring the beam intensity vs layer growth time allows therefore to determine when the layer is compete. RHEED Oscillations The intensity of the spots oscillates as layers are deposited if the surface becomes alternately rough and smooth. The period of the oscillation gives the growth rate and can be used to determine composition in some cases Intensity Envelope shows the surface roughness evolution. Surface smoothness recovers if growth is stopped one monolayer Time High Resolution in k space High k-resolution is needed to observe large objects since scattering must be coherent over them. Large objects give rise to small momentum transfers --- small angle scattering Easily achieved with neutrons and TEAS for which the sources are far away from the target, more difficult with electrons which may easily be deflected by stray fields . Limiti nella risoluzione: Lunghezza di trasferimento La Lunghezza di trasferimento definisce la zona su cui l’onda incidente è colpisce il campione con la stessa fase: Definendo il momento trasferito q||=kf||-ki || q||= k |sinθf-sin θi| posto w=2π/∆q|| con ∆q|| incertezza su q|| (larghezza macchie di diffrazione) ∆q||=(∂q|| /∂E) ∆E+(∂q||/∂θ) ∆θ si ottiene: wθ=2π/(kcosθf ∆θf) wE=2π 2 k/(∆E |sinθf -sinθi|) Per la diffrazione di elettroni lenti (LEED) k≅ 0.51 √E con E ≅ 100 eV e ∆θf ≅10-2 rad wθ ≅ 100 Å<< wE la nitidezza dell’immagine di diffrazione è limitata dalla divergenza angolare del fascio di elettroni (l’onda non è piana, ma sferica) Diffraction Intensities for particular configurations Spot Separation Halfwidth (relative to 2π/a) One atom Two atoms (distance a) ∞ ∞ 1 1/2 1 1/N N atoms in a row (regular distance a) Several (M) groups of N atoms each (regularly spaced) [distance of group centers (N+1/2)a] 1/[N+(1/2)] Several groups of varying size (arranged as in (d)) 1 N atoms randomly 1 distributed over 2N regular sites 1/{M[N+(1/2)]} dependening on spot size and mixture 1/(2N) LEED Stepped Surfaces: Ewald Sphere Construction LEED How surface defects affect the reciprocal lattice rods and the resultant LEED spot profile High Resolution LEED: SPA-LEED Instrumental Apparatus for Spot profile Analysis LEED vs SPA LEED Reciprocal space E gun crystal shield window Ewald sphere The deflection is achieved via an octupole field. Since the reciprocal space is scanned changing also the angle of incidence the Ewald construction implies a twice as large “modified Ewals sphere Reciprocal space modified Ewald sphere Standard sphere SPA-LEED