Why is the sky blue during day time, and red... Scattering of light !! 1
Transcription
Why is the sky blue during day time, and red... Scattering of light !! 1
Why is the sky blue during day time, and red at sunset or sunrise? Scattering of light !! 1 Rayleigh Scattering Scattering object << wave length Æ Harmonic Oscillator Scattering cross section 8π d 6 ε − 1 σs = 3 λ4 ε + 2 2 σs d: diameter of object n: refractive index λ : wavelength 450 600 λ Scattering object : air molecules earth sun air 2 When the size of the object is larger.. Mie scattering Prism bulk Prism, Object size ~> wavelength Object size >> wavelength … cloud particle ~ several microns … droplet p of water -White Cloud scattering all the wavelength equally - Brocken spectre (Brockengespenst) wavelength dependent scattering by cloud 3 Pictures from Wikipedia Contents 1. Dielectric constant of metals (what is metal for light) 2. Surface Plasmon (bulk) 3. Localized surface plasmon resonance Æ scattering tt i off nano particle ti l 4 Dielectric constant ε=ε’+ ’ i ε’’’’ Real: Imaginary: How much is polarized polarized. ÆReflection when negative How much H h iis outt off phase h Æloss D = εεE= ε0εrE Transparent material Lossy material Metallic material Reflectivity: R= ε r −1 εr +1 Æ ε: real, positive Æ ε: complex Æ ε: complex, negative real part When εr <= 0, then R =1, 100% reflection 5 Drude model Light (= electric field + magnetic field) interacts with electrons d 2u m du Equation of motion : m 2 + = qE0 exp(−iωt ) dt τ dt Friction term :loss Solution: Polarization: Induction: u=− m : effective mass of electron u : position t : time q : elemental charge g E : field, E0exp(-iwt) τ : relaxation time q 1 E0 exp(−iωt ) m ω (ω + i / τ ) P= Nqu P Nq 2 1 P=− E m ω (ω + i / τ ) D = ε 0 E + P = ε 0ε r E ωp2 ε r = 1− ω (ω + i / τ ) Nq 2 ωp = mε 0 Volume plasmon freq. (εr=0 without friction) 6 * Drude-Lorentz model: include “spring bouncing” term proportional to position u 5.0 Drude model 0.0 ε’ , ε’’ 0.0 -5.0 2.0 4.0 6.0 eV e_real e_im -10.0 -15.0 -20.0 Measured values 7 P.B.Johnson et al; Phys.Rev. B v6.n12 (1972), Phys.Rev. B v9.n12 (1974), Surface Plasmon : Wave propagation on plane surface z Electric field is perpendicular to the surface Dielectric(eg.water) kp x Ey=0 metal B.C. C kp = k x diel =k x met z k diel Tangential component , Speed of light in dielectric Surface propagating wave: k x 2 diel +k z 2 diel kp = ω c ⎛ω ⎞ = ε diel ⎜ ⎟ ⎝c⎠ ε diel = z k met ε met Normal component 2 ε met ε diel ε met + ε diel Dispersion relation ε is also ω dependent Resonance at ′ + ε diel = 0 ε met ω sp = ω p 1 1 + ε diel 8 Dispersion relation of “free” wave in dielectric medium (x component) ω ωill = c ε diel 2 ⋅ sin θ ⋅ kill − p Dispersion relation of free wave in dielectric(θ<90°) Dispersion relation of free wave in dielectric(θ=90°) ωp ωsp Dispersion relation of SP k Mode should match to excite SP Ædispersion p relation should intersect Di l t i medium Dielectric di εdiel Metal thin film prism p εprism > εdiel Reflection intenssity Kretschmann-configuration angle 9 Localized Surface Plasmon Structure size < Wavelength There is no propagating wave at surface, but there is surface field… Hard to describe the system with simple wave equations. -Numerical simulation -Analytical calculation on simplest system : sphere Æ Mie Theory 10 Mie theory Maxwell’s equation is linear Total Field = Plane wave (excitation) + Outgoing wave + Standing wave (scattered wave) (wave inside) ÆSolve the coefficient of each wave, by matching boundary conditions (same as wave guide theory) Solve the wave equation on spherical coordinate 11 Mie theory – spherical waves Maxwell eq. Plane wave ∇× E = − Wave eq: (∇ 2 + k 2 )ψ (r ) = 0 ψ = Aeikr ∂B ∂t ∇⋅B = 0 ∇× H = ∂D ∂t ∇⋅D = 0 Spherical wave Wave eq in spherical coordinate: ⎡1 ∂ ⎛ 2 ∂ ⎞ r 1 ∂ ⎛ ∂ ⎞ 1 ∂2 2⎤ + sin i θ + + k ψ ( r )=0 r ⎟ 2 ⎜ ⎟ 2 ⎢ 2 ⎜ ⎥ 2 ∂θ ⎠ r sin θ ∂φ ⎣ r ∂r ⎝ ∂r ⎠ r sin θ ∂θ ⎝ ⎦ Solution 1: out going wave ψ m ,n (kr ,θ , φ ) = hn (1) (kr ) Pnm (cos θ )eimφ Infinite @ r=0 Solution 2: “regular” regular wave (inside sphere) Rgψ m ,n (kr , θ , φ ) = jn (kr ) Pnm (cos θ )e imφ (1) Finite @ r=0 General Solution : linear combination of all the special solutions ψ = ∑∑ (K mn ⋅ψ mn + Lmn ⋅ Rgψ mn ) m n 12 Simplified Scattering Model for very small spherical particle Assumption: + + + + E 1st order in mulipole expansion in Mie Theory - - - Dipole oscillator Homogenous field R l i h scattering Rayleigh tt i 8π d 6 ε − 1 σs = 3 λ4 ε + 2 2 Scattering Cross Section 3 σs = 2π ′ − ε diel ) 2 + (ε met ′′ ) 2 ⎛ω4 ⎞ 2 2 (ε met ⎜⎜ ⎟⎟ε diel ⋅ V 2 2 ′ ′ ′ c ( ε 2 ε ) ( ε ) + + ⎝ ⎠ met diel met Extinction Cross Section σ ext = 9 ω c (ε diel ) 3 ⋅ V V : volume of particle σ abs = σ ext − σ s ′′ ε met ′ + 2ε diel ) 2 + (ε met ′′ ) 2 (ε met 13 Comparison with normal SPR and LSPR SPR Resonance when ε’met = -εdiel kp = LSPR (nanoparticle) Resonance when A Au ε’met = -2εdiel σ ext = 9 ω c ω c ε met ε diel ε met + ε diel (ε diel ) 3 ⋅ V ′′ ε met ′ + 2ε diel ) 2 + (ε met ′′ ) 2 (ε met 10 8 εdiel = 2.25 (n=1.5) 6 4 2 0 200 er 300 400 500 600 ei 700 800 -2 -4 SPR ~520nm -6 -8 LSPR ~550nm -10 14 Calculated scattering cross section from simplified Mie theory nglass or nwater 3 σs = 2π 20nm Au ′ − ε diel ) 2 + (ε met ′′ ) 2 ⎛ω4 ⎞ 2 2 (ε met ⎜⎜ ⎟⎟ε diel ⋅ V 2 2 ′ ′ ′ c ( ε + 2 ε ) + ( ε ) ⎝ ⎠ met diel met Scatttering cross s section n=1.5 n=1.33 400 450 500 550 600 650 700 750 800 Wavelength / nm Resonance peak shifts by different surrounding medium Æ sensing application 15 Simulated scattering spectrum and field map E field map 10nm Au particle in water(n=1.33) Sccattering in ntensity E Field enhancement at resonance 450 500 550 600 650 Wave length 700 750 800 16 Literature “Mie S “Mi Scattering” tt i ” R.M. Drake and J.E. Gordon Am. J. Phys. 53 955 (1985). “Scattering of Electromagnetic Waves –theories and applications” Leung Tsang, Jin Au Kong, Kung-Hau Ding 2000 John Wiley&Sons, Inc. “Nanophotonics with Surface Plasmons” V.M. Shalaev, S.Kawata 2007 Elsevier Etc….. Useful software “Mie Plot” http://www philiplaven com/mieplot htm http://www.philiplaven.com/mieplot.htm 17 Appendix • Overview of Mie Theory 18 Mie theory – spherical waves Maxwell eq. Plane wave ∇× E = − Wave eq: (∇ 2 + k 2 )ψ (r ) = 0 ψ = Aeikr ∂B ∂t ∇⋅B = 0 ∇× H = ∂D ∂t ∇⋅D = 0 Spherical wave Wave eq in spherical coordinate: ⎡1 ∂ ⎛ 2 ∂ ⎞ r 1 ∂ ⎛ ∂ ⎞ 1 ∂2 2⎤ + sin i θ + + k ψ ( r )=0 r ⎟ 2 ⎜ ⎟ 2 ⎢ 2 ⎜ ⎥ 2 ∂θ ⎠ r sin θ ∂φ ⎣ r ∂r ⎝ ∂r ⎠ r sin θ ∂θ ⎝ ⎦ Solution 1: out going wave ψ m ,n (kr ,θ , φ ) = hn (1) (kr ) Pnm (cos θ )eimφ Infinite @ r=0 Solution 2: “regular” regular wave (inside sphere) Rgψ m ,n (kr , θ , φ ) = jn (kr ) Pnm (cos θ )e imφ (1) Finite @ r=0 General Solution : linear combination of all the special solutions ψ = ∑∑ (K mn ⋅ψ mn + Lmn ⋅ Rgψ mn ) m n 19 How do these functions look like? Rgψ m ,n (kr , θ , φ ) = jn (kr ) Pnm (cos θ )e imφ (1) ψ m ,n (kr ,θ , φ ) = hn (kr ) Pnm (cos θ )eimφ (1) Legendre function n+ m (−1) m 2 m/2 d 2 n P ( x) = n (1 − x ) ( x − 1 ) 2 n! dx n + m m n Spherical Harmonics Ynm = N ⋅ Pnm (cos θ )e imφ n Same as electron orbits around atom model ! m Hankel function hn ( x)= jn ( x) + iyn ( x) (1) jn (x) : yn (x) : Bessel function of 1st kind Bessel function of 2nd kind 20 Bessel function Relation like exp(ix) and sin(x), exp(x) and sinh(x) Hankel function 21 Bessel funciton 1 t kind 1st ki d 2nd kind infinite 22 Scattering of sphere : sphere + plane wave ….very different symmetries Plane wave on spherical coordinate, or spherical wave on cartesian coordinate? How to express plane wave in spherical coordinate? Vector spherical harmonics: ~ 3 base vector in harmonics 23 Define 3 vector spherical wave functions: With Rg : Bessel function based Without Rf : Hankel function based Expression of Plane wave traveling on z axis : 24 Now, finally scattering! Wave inside Possible waves in the scattering event Subscript p Plane wave Scattered wave Incident plane wave field scattered wave field Internal field Outside the sphere Outside the sphere inside the sphere Task : Solve an,bn,cn,dn 25 Solve at the boundary BC B.C. Continuity of a and (or ) at r = a Compare the coeffcient of M, N Æ solve a,b,c,d k : outside k : inside kp i id sphere h 26 z Set the field along the axis for simplicity Scattering field: S1 illumination θ y x E E S2 φ Unpolarized(sum of the two above) : Scattering cross section (Integrate (Es)2 around the sphere) Scattering efficiency 27 Extinction….. Scattering object : Perfect Electric Conductor = + Incoming plane wave Total field Scattered field Small field due to interference Extinction Æ out of phase component in forward scattering Æ imaginary part Forward scattering ( θ = 0 ) Extinction cross section Destructive component : Imaginary part of forward scattering x incident 28 How to measure ??? Lambert-Beer ‘s law Definition of “extinction” = “scattering” + ”absorption” Macroscopic z I0 I α: extinction (absorption) coeff. Microscopic view Detect only scattered wave : scattering spectrum Scattering object Detect only forward wave : extinction spectrum Incoming wave 29 Rayleigh Scattering ⎛ d 2u 2 ⎞ m⎜⎜ 2 + ω0 u ⎟⎟ = qE0 exp(−iωt ) ⎠ ⎝ dt Harmonic Oscillator u=− Polarization : Fi ld ffrom di Field dipole l : (r>>u) Poynting vector : qE qE E0 E0 exp( − i ω t ) → − exp(−iωt ) 2 2 2 m(ω0 − ω ) mω 0 ω<<ω0 q 2 E0 p = q ⋅u = − 2 mω0 ω2 [n × (n × p )]exp((ik ⋅ r − iωt ) Es (r , t ) = − 2 4πε 0 c r Ss = Es × Bs μ0 = Es k k 2 cμ 0 n Illumination : 2 4 ω 4 q E0 2 < S > >= sin Θ s 4 2 2 3 2 Time average: 32π ε 0 c r ω0 m 1 n= < Si >= > E0 2 2cμ 0 30 ks Θ dipole n = (sin θ ,0, cos θ ) coordinate E 0 = E0 (cosψ , sinψ ,0) x ki cos Θ = z n ⋅ E0 = cosψ sin θ E0 2 Segment of cross section: σ =∫ 2π 0 dψ ∫ π 0 4 ⎞ ω4 dσ < S s > ⎛ ω q2 2 2 ⎟ = = ⎜⎜ sin Θ = a sin Θ 0 4 4 2 2 ⎟ dΩ < Si > ⎝ 4πε 0 mc ⎠ ω0 ω0 8π ω 4 2 sin θ dθ ⋅ a0 sin Θ = a 4 0 3 ω0 2 For spherical object p = 4πε 0 a (ε − ε 0 )a E0 2ε 0 + ε 3 q 2 E0 p = q ⋅u = − 2 mω0 Instead of Lorentz-Lorenz model σ= 8π ω 6 ⎛ ε − ε 0 a ⎜⎜ 4 3 c ⎝ 2ε 0 + ε 4 ⎞ ⎟⎟ ⎠ 2 31