2gh usm
Transcription
2gh usm
Tsunami Risk Reduction Management and Mitigation d ii i Measures 1Teh Su Yean and T hS Y d 2Koh Hock Lye K hH kL 1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, MALAYSIA. 11800 Penang, MALAYSIA. 2School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, MALAYSIA. Tel: 04‐6534770 Fax: 04‐6570910 Email: syteh@usm my Email: [email protected] 26 DECEMBER 2004 TSUNAMI • Tragedy that we would rather not see in future; • By having in place early warning systems (EWS); • And effective mitigation measures; PENANG ISLAND Houses in Kota Kuala Muda destroyed by the tsunami waves tsunami waves Boats and cars in Penang dislocated tens of meters by the tsunami waves y Paddy field killed by saltwater due to tsunami inundation OBJECTIVES • Provide valuable information useful for tsunami EWS and mitigation; • Develop tsunami simulation model TUNA; • Analyze potential impact of tsunami waves; • Investigate potential impact of tsunami on l f Malaysian shores through model simulations. PUBLIC AWARENESS One year after 2004 Tsunami One year after 2004 Tsunami ….. Tsunami Resilient Communities A Risk At Ri k Must M be b Able Abl To: T 1. Identify hazard zones, 2 Develop inundation maps, 2. maps 3. Disseminate evacuation maps; 4.Evacuate Timely during a tsunami. 5. TUNA Simulations can help. 8 SIGN OF DANGER RUN TO HIGHER GROUND TUNA: SWE TUNA: SWE ∂η ∂M ∂N + + =0 ∂t ∂x ∂y ∂M ∂ ⎛ M 2 ⎞ ∂ ⎛ MN ⎞ ∂η gn 2 2 2 + ⎜ + + gD + M M + N =0 ⎟ ⎜ ⎟ 7/3 ∂t ∂x ⎝ D ⎠ ∂y ⎝ D ⎠ ∂x D ∂N ∂ ⎛ MN ⎞ ∂ ⎛ N 2 ⎞ ∂η gn 2 2 2 + ⎜ + + gD + N M + N =0 ⎜ ⎟ ⎟ 7 /3 ∂t ∂x ⎝ D ⎠ ∂y ⎝ D ⎠ ∂y D Δx Δt ≤ 2 h 2gh FINITE DIFFERENCE APPROACH k +1 i, j η M Δt Δt k + 0.5 k + 0.5 ⎡⎣ M i + 0.5, j − M i −0.5, j ⎤⎦ − ⎡⎣ N ik, +j +0.50.5 − N ik, +j −0.50.5 ⎤⎦ =η − Δx Δy k + 0.5 i + 0.5, j Dik+ 0.5, j N k + 0.5 i , j + 0.5 k i, j Δt k ⎡⎣ ηi +1, j − ηik, j ⎤⎦ =M − gD Δx = hi + 0.5, j + 0.5 ⎡⎣ ηik+1, j + ηik, j ⎤⎦ k − 0.5 i + 0.5, j =N k − 0.5 i , j + 0.5 k i + 0.5, j − gD k i , j + 0.5 Δt k ⎡⎣ ηi , j +1 − ηik, j ⎤⎦ Δy Dik, j + 0.5 = hi , j + 0.5 + 0.5 ⎡⎣ ηik, j +1 + ηik, j ⎤⎦ ( ) ( ) ( ) ( ) ( ) 2 2 2 M ik+−10.5.5, j M ik+−00.5.5, j M ik−−00.5.5, j ⎤ ∂ ⎛ M2 ⎞ 1 ⎡ ⎜ ⎟= ⎢λ11 ⎥ + λ 21 + λ 31 ∂x ⎝⎜ D ⎟⎠ Δx ⎢ Dik+−10.5.5, j Dik+−00.5.5, j Dik−−00.5.5, j ⎥ ⎣ ⎦ ( ) 2 2 2 N ik, −j+01.5.5 N ik, −j+00.5.5 N ik, −j−00.5.5 ⎤ ∂ ⎛ N 2 ⎞ 1 ⎡⎢ ⎥ ⎜ ⎟= γ12 + γ 22 + γ 32 k − 0.5 k − 0.5 k − 0 .5 ⎜ ⎟ ∂y ⎝ D ⎠ Δy ⎢ Di, j+1.5 D i , j + 0 .5 Di, j− 0.5 ⎥ ⎣ ⎦ k − 0 .5 k − 0 .5 M ik+−00.5.5, j N ik+−00.5.5, j M ik+−00.5.5, j−1N ik+−00.5.5, j−1 ⎤ ∂ ⎛ MN ⎞ 1 ⎡ M i + 0.5, j+1N i + 0.5, j+1 + γ 21 + γ 31 ⎢ γ11 ⎥ ⎟= ⎜ ∂y ⎝ D ⎠ Δy ⎢⎣ Dik+−00.5.5, j+1 Dik+−00.5.5, j Dik+−00.5.5, j−1 ⎥⎦ k −0.5 k − 0 .5 M ik,−j+00.5.5 N ik,−j+00.5.5 M ik−−10, j.+50.5 N ik−−10, j.+50.5 ⎤ ∂ ⎛ MN ⎞ 1 ⎡ M i+1, j+0.5 N i+1, j+0.5 + λ 22 + λ 32 ⎟= ⎜ ⎢λ12 ⎥ ∂x ⎝ D ⎠ Δx ⎢⎣ D ik+−10, j.+50.5 D ik,−j+00.5.5 D ik−−10, j.+50.5 ⎥⎦ M ik+−00.5.5, j ≥ 0, λ11 = 0, λ 21 = 1, λ 31 = −1 M ik, −j+00.5.5 ≥ 0, λ12 = 0, λ 22 = 1, λ32 = −1 < 0, λ11 2 = 1, λ 22 = −1, λ 32 = 0 < 0, λ11 = 1, λ 21 = −1, λ 31 = 0 Nik+−00.5.5, j ≥ 0, γ11 = 0, γ 21 = 1, γ 31 = −1 Nik, −j+00.5.5 ≥ 0, γ12 = 0, γ 22 = 1, γ 32 = −1 < 0, γ12 = 1, γ 22 = −1, γ 32 = 0 < 0, γ11 = 1, γ 21 = −1, γ 31 = 0 gn 2 gn 2 k − 0.5 2 2 0.5 ⎤ × 0.5 ⎡⎣ M ik++0.5, M M +N = j + M i + 0.5, j ⎦ 7 3 73 k − 0.5 D ( Di+0.5, j ) gn 2 gn 2 2 2 k − 0.5 ⎤ × 0.5 ⎡⎣ N i,k +j+0.5 N M +N = 0.5 + N i, j+ 0.5 ⎦ 7 3 73 − k 0.5 D ( Di, j+0.5 ) (M ( M ik+−0.5,0.5 j ) + ( Nik+−0.5,0.5 j ) 2 ) + (N k − 0.5 2 i, j+ 0.5 ) k − 0.5 2 i, j+ 0.5 2 STAGGERED SCHEME TUNA vs COMCOT TUNA vs. COMCOT TUNA vs COMCOT TUNA vs. COMCOT TUNA vs COMCOT TUNA vs. COMCOT 0.3 A2 COMCOT 0.5 TUNA 0.2 TUNA 0.2 η (m) η (m) COMCOT 0.3 0.1 0 -0.1 0.1 0 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 0 1 2 3 4 Tim e (hr) 0.2 D2 5 6 COMCOT 7 0 1 2 3 4 Tim e (hr) 5 B1 COMCOT 3 4 Tim e (hr) 5 0.15 TUNA 6 7 TUNA 0.1 0.1 0.05 η ( m) 0 η ( m) C2 04 0.4 01 -0.1 -0.2 0 -0.05 -0.1 -0.3 -0.15 -0.4 04 -0.2 02 0 1 2 3 4 Tim e (hr) 5 6 7 0 1 2 6 7 Source Control Source Control • Gaussian; η = DISP × e X − X0 ⎞ − ⎛⎜ ⎟ ⎝ WIDTH/ 2 ⎠ 2 ×e Y − Y0 ⎞ − ⎛⎜ ⎟ ⎝ LENGTH/ 2 ⎠ 2 m u = 0.0 m / s, v = 0.0 m / s • Okada. 20 BOUNDARY EFFECT 9 10 Case 1 9 8 7 7 6 6 5 5 4 4 3 3 Elevatio on (m) 8 2 1 t = 40 s 0 t = 80 s t = 120 s 9 Case 2 Elevatio on (m) 10 2 1 t = 40 s 0 t = 80 s t = 120 s 9 8 8 7 37 3 6 6 2.5 2.5 5 5 2 2 3 3 1.5 1.5 2 2 4 4 1 1 t = 160 s 0 t = 200 s 0 1 2 3 4 5 6 7 8 1 1 t = 160 s 0.5 0 t = 240 s 9 9 t = 200 s 0 1 2 t = 240 s 3 4 5 6 7 8 0.5 9 9 0 0 8 8 7 -0.5 7 -0.5 6 6 -1 -1 5 5 4 2 1 t = 280 s 0 0 1 2 3 -1.5 -1.5 3 -2 -2 4 3 2 -2.5 t = 320 s 4 5 6 7 8 9 0 1 2 t = 360 s 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 1 t = 280 s 0 -3 0 1 2 3 -2.5 t = 320 s 4 5 6 7 8 9 0 1 2 t = 360 s 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 -3 BATHYMETRY EFFECT 2004 TSUNAMI SOURCE PARAMETERS (GRILLI ET AL., 2007) Segm ent Long. Lat. (°) ((°)) Length ((km)) Width ((km)) Strike Dip ((°)) ((°)) Slip Displacement ((m)) ((°)) S1 94.57 3.83 220 130 323 12 90 18 S2 93.90 5.22 150 130 348 12 90 23 S3 93 21 93.21 7 41 7.41 390 120 338 12 90 12 S4 92 60 92.60 9 70 9.70 150 95 356 12 90 12 S5 92.87 11.70 350 95 10 12 90 12 26 DEC 2004 TSUNAMI TIME SERIES OF WAVE HEIGHTS L ti Location A: Penang B: Langkawi B: Langkawi C: Phuket Five‐segment fault l i Arrival i l Elevation (m) Time (h) 1.2 3.6 1.0 2.9 2.4 1.7 WAVE RUNUP ONTO DRY LAND SLOPE Moving Boundary Moving Boundary 28 Moving Boundary Moving Boundary 29 M i B Moving Boundary d 30 Moving Boundary d 31 MANILA TRENCH • Highly hazardous tsunamigenic earthquakes; tsunamigenic earthquakes; • NO earthquakes > 7.6 recorded in last century; • 1999 Chi‐Chi = 7.6; • 1934 offshore N. Luzon = 7.5; • Build‐up of seismic stress → Build up of seismic stress → significant earthquake significant earthquake outbursts; • Possibility of large earthquake in SCS is high SOUTH CHINA SEA (SCS) • SCSTW3 hosted by Universiti Sains Malaysia (USM) during 3‐5 November 2009. FAULT PLANE SEGMENTS ALONG MANILA TRENCH F1 F2 F3 F4 F5 F6 ETOPO1 BATHYMETRY FAULT PARAMETERS FROM USGS Fault Lon. (°) Lat. (°) Length (km) Width (km) Strike (°) Dip (°) Rake Slip (m) (°) F1 120.5 20.2 160 35 10 10 90 6.68 F2 119.8 18.7 180 35 35 20 90 5.94 F3 119 3 17.0 119.3 17 0 240 35 359 28 90 4 45 4.45 F4 119.2 15.1 170 35 3 30 90 6.29 F5 119.6 13.7 140 35 320 22 90 7.63 F6 120 5 12.9 120.5 12 9 100 35 293 26 90 10.69 10 69 SIX‐SEGMENT FAULT SIX‐SEGMENT FAULT PROPAGATION SIMULATED WAVE HEIGHTS BRUNEI SLIDE (GEE ET AL., 2007) 2007) Field Observations; West Coast of Aceh Bruguiera Bruguiera gy gymnorrhiza Rhizophora stylosa PL = leaf porosity; NT = number of trees per 100 m2; NR = number of prop roots per tree; = number of prop roots per tree; DT = diameter of stem, m; DR = diameter of each prop root, m; DL = diameter of leaf part, m; di fl f HR = height of root part, m; HT = height of stem part, m; HL = height of leaf part, m. (a) Time = 0.05 hr 2.6 2.4 Mangrove Forest 2.2 Width W = 1 km Manning n = 0.3 s/m 1/3 (b) Time = 0.10 hr 2.6 2.4 2.4 2.2 2.2 2 1.8 1.8 1.8 1.6 1.6 1.6 E l e v a ti o n (m ) 1.4 1.2 1 0.8 E l e v a ti o n (m ) 2 2 E l e v a ti o n (m ) 2.6 1.4 1.2 1 0.8 1.2 1 0.8 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 2000 4000 6000 8000 0 10000 12000 14000 16000 18000 20000 -0.2 0 2000 4000 6000 8000 x (m) 0 10000 12000 14000 16000 18000 20000 -0.2 0 2.4 2.4 2.4 22 2.2 22 2.2 22 2.2 2 2 2 1.8 1.8 1.8 1.6 1.6 1.6 E l e v a ti o n (m ) 1 0.8 E l e v a ti o n (m ) (e) Time = 0.25 hr 2.6 1.2 1.4 1.2 1 0.8 0.4 0.4 0.2 0.2 8000 0 10000 12000 14000 16000 18000 20000 -0.2 0 x (m) (f) Time = 0.30 hr 0.8 0.2 6000 10000 12000 14000 16000 18000 20000 1 0.4 4000 8000 1.2 0.6 2000 6000 1.4 0.6 0 -0.2 0 4000 x (m) 2.6 1.4 2000 x (m) (d) Time = 0.20 hr 2.6 E l e v a ti o n (m ) 1.4 0.6 0 -0.2 0 (c) Time = 0.15 hr 0.6 2000 4000 6000 8000 0 10000 12000 14000 16000 18000 20000 -0.2 0 x (m) 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 x (m) Reduction Ratio Reduction Ratio ηfor max rη = ηmax u for max ru = umax rη = reduction ratio of elevation; ηformax = maximum elevation with mangrove forest; ηmax = maximum elevation without mangrove forest; ru = reduction ratio of velocity; uformax = maximum velocity with mangrove forest; maximum velocity with mangrove forest; f umax = maximum velocity without mangrove forest. 1 Wave Length (km) 0.9 60 0.8 30 10 0.7 rη 0.6 0.5 0.4 0.3 Reduction ratios of elevation rη as a function of forest width id h relative l i to wave length 0.2 0.1 0 0 (a) 0.01 0.02 0.03 0.04 0.05 Forest Width/Wave Length 1 Wave Length (km) 0.9 60 30 10 0.8 0.7 0.6 ru Reduction ratios of velocity ru (right) as a f function i off forest f width id h relative to wave length 0.5 0.4 0.3 0.2 0.1 0 (b) 0 0.01 0.02 0.03 Forest Width/Wave Length 0.04 0.05 OBJECTIVE • To provide a platform for academics and university students, insurance industry i it t d t i i d t professionals, industry regulators and representatives from the relevant government agencies as well as other government agencies, as well as other interested private and public sector organisations from the ASEAN region; • To share and exchange information on the To share and exchange information on the latest scientific research and developments relating to natural disasters (including earthquakes, floods and (including earthquakes, floods and typhoons); • In order to raise greater public awareness and understanding of the risks and g potential impact and thereby provide a springboard for affirmative action towards achieving effective catastrophe risk management against such natural hazards. Th k Thank you