2gh usm

Transcription

2gh usm
Tsunami Risk Reduction Management and Mitigation d ii i
Measures
1Teh Su Yean and T hS Y
d 2Koh Hock Lye K hH kL
1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, MALAYSIA.
11800
Penang, MALAYSIA.
2School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, MALAYSIA.
Tel: 04‐6534770 Fax: 04‐6570910
Email: syteh@usm my
Email: [email protected]
26 DECEMBER 2004 TSUNAMI
• Tragedy that we would rather not see in future;
• By having in place early warning systems (EWS);
• And effective mitigation measures;
PENANG ISLAND
Houses in Kota Kuala Muda destroyed by the tsunami waves
tsunami waves
Boats and cars in Penang dislocated tens of meters by the tsunami waves
y
Paddy field killed by saltwater due to tsunami inundation
OBJECTIVES
• Provide valuable information useful for tsunami EWS and mitigation;
• Develop tsunami simulation model TUNA;
• Analyze potential impact of tsunami waves;
• Investigate potential impact of tsunami on l
f
Malaysian shores through model simulations.
PUBLIC AWARENESS
One year after 2004 Tsunami
One year after 2004 Tsunami …..
Tsunami Resilient
Communities
A Risk
At
Ri k Must
M
be
b Able
Abl To:
T
1. Identify hazard zones,
2 Develop inundation maps,
2.
maps
3. Disseminate evacuation maps;
4.Evacuate Timely during a
tsunami.
5. TUNA Simulations can help.
8
SIGN OF DANGER
RUN TO HIGHER GROUND
TUNA: SWE
TUNA: SWE
∂η ∂M ∂N
+
+
=0
∂t ∂x ∂y
∂M ∂ ⎛ M 2 ⎞ ∂ ⎛ MN ⎞
∂η gn 2
2
2
+ ⎜
+
+
gD
+
M
M
+
N
=0
⎟
⎜
⎟
7/3
∂t ∂x ⎝ D ⎠ ∂y ⎝ D ⎠
∂x D
∂N ∂ ⎛ MN ⎞ ∂ ⎛ N 2 ⎞
∂η gn 2
2
2
+ ⎜
+
+
gD
+
N
M
+
N
=0
⎜
⎟
⎟
7 /3
∂t ∂x ⎝ D ⎠ ∂y ⎝ D ⎠
∂y D
Δx
Δt ≤
2 h
2gh
FINITE DIFFERENCE APPROACH
k +1
i, j
η
M
Δt
Δt
k + 0.5
k + 0.5
⎡⎣ M i + 0.5, j − M i −0.5, j ⎤⎦ −
⎡⎣ N ik, +j +0.50.5 − N ik, +j −0.50.5 ⎤⎦
=η −
Δx
Δy
k + 0.5
i + 0.5, j
Dik+ 0.5, j
N
k + 0.5
i , j + 0.5
k
i, j
Δt k
⎡⎣ ηi +1, j − ηik, j ⎤⎦
=M
− gD
Δx
= hi + 0.5, j + 0.5 ⎡⎣ ηik+1, j + ηik, j ⎤⎦
k − 0.5
i + 0.5, j
=N
k − 0.5
i , j + 0.5
k
i + 0.5, j
− gD
k
i , j + 0.5
Δt k
⎡⎣ ηi , j +1 − ηik, j ⎤⎦
Δy
Dik, j + 0.5 = hi , j + 0.5 + 0.5 ⎡⎣ ηik, j +1 + ηik, j ⎤⎦
(
)
(
)
(
)
(
)
(
)
2
2
2
M ik+−10.5.5, j
M ik+−00.5.5, j
M ik−−00.5.5, j ⎤
∂ ⎛ M2 ⎞ 1 ⎡
⎜
⎟=
⎢λ11
⎥
+ λ 21
+ λ 31
∂x ⎝⎜ D ⎟⎠ Δx ⎢
Dik+−10.5.5, j
Dik+−00.5.5, j
Dik−−00.5.5, j ⎥
⎣
⎦
(
)
2
2
2
N ik, −j+01.5.5
N ik, −j+00.5.5
N ik, −j−00.5.5 ⎤
∂ ⎛ N 2 ⎞ 1 ⎡⎢
⎥
⎜
⎟=
γ12
+ γ 22
+ γ 32
k − 0.5
k − 0.5
k − 0 .5
⎜
⎟
∂y ⎝ D ⎠ Δy ⎢
Di, j+1.5
D i , j + 0 .5
Di, j− 0.5 ⎥
⎣
⎦
k − 0 .5
k − 0 .5
M ik+−00.5.5, j N ik+−00.5.5, j
M ik+−00.5.5, j−1N ik+−00.5.5, j−1 ⎤
∂ ⎛ MN ⎞ 1 ⎡ M i + 0.5, j+1N i + 0.5, j+1
+ γ 21
+ γ 31
⎢ γ11
⎥
⎟=
⎜
∂y ⎝ D ⎠ Δy ⎢⎣
Dik+−00.5.5, j+1
Dik+−00.5.5, j
Dik+−00.5.5, j−1
⎥⎦
k −0.5
k − 0 .5
M ik,−j+00.5.5 N ik,−j+00.5.5
M ik−−10, j.+50.5 N ik−−10, j.+50.5 ⎤
∂ ⎛ MN ⎞ 1 ⎡ M i+1, j+0.5 N i+1, j+0.5
+ λ 22
+ λ 32
⎟=
⎜
⎢λ12
⎥
∂x ⎝ D ⎠ Δx ⎢⎣
D ik+−10, j.+50.5
D ik,−j+00.5.5
D ik−−10, j.+50.5
⎥⎦
M ik+−00.5.5, j ≥ 0, λ11 = 0, λ 21 = 1, λ 31 = −1
M ik, −j+00.5.5 ≥ 0, λ12 = 0, λ 22 = 1, λ32 = −1
< 0, λ11 2 = 1, λ 22 = −1, λ 32 = 0
< 0, λ11 = 1, λ 21 = −1, λ 31 = 0
Nik+−00.5.5, j ≥ 0, γ11 = 0, γ 21 = 1, γ 31 = −1
Nik, −j+00.5.5 ≥ 0, γ12 = 0, γ 22 = 1, γ 32 = −1
< 0, γ12 = 1, γ 22 = −1, γ 32 = 0
< 0, γ11 = 1, γ 21 = −1, γ 31 = 0
gn 2
gn 2
k − 0.5
2
2
0.5
⎤
× 0.5 ⎡⎣ M ik++0.5,
M M +N =
j + M i + 0.5, j ⎦
7
3
73
k − 0.5
D
( Di+0.5, j )
gn 2
gn 2
2
2
k − 0.5
⎤
× 0.5 ⎡⎣ N i,k +j+0.5
N M +N =
0.5 + N i, j+ 0.5 ⎦
7
3
73
−
k
0.5
D
( Di, j+0.5 )
(M
( M ik+−0.5,0.5 j ) + ( Nik+−0.5,0.5 j )
2
) + (N
k − 0.5 2
i, j+ 0.5
)
k − 0.5 2
i, j+ 0.5
2
STAGGERED SCHEME
TUNA vs COMCOT
TUNA vs. COMCOT
TUNA vs COMCOT
TUNA vs. COMCOT
TUNA vs COMCOT
TUNA vs. COMCOT
0.3
A2
COMCOT
0.5
TUNA
0.2
TUNA
0.2
η (m)
η (m)
COMCOT
0.3
0.1
0
-0.1
0.1
0
-0.1
-0.2
-0.2
-0.3
-0.3
-0.4
0
1
2
3
4
Tim e (hr)
0.2
D2
5
6
COMCOT
7
0
1
2
3
4
Tim e (hr)
5
B1
COMCOT
3
4
Tim e (hr)
5
0.15
TUNA
6
7
TUNA
0.1
0.1
0.05
η ( m)
0
η ( m)
C2
04
0.4
01
-0.1
-0.2
0
-0.05
-0.1
-0.3
-0.15
-0.4
04
-0.2
02
0
1
2
3
4
Tim e (hr)
5
6
7
0
1
2
6
7
Source Control
Source Control
• Gaussian;
η = DISP × e
X − X0 ⎞
− ⎛⎜
⎟
⎝ WIDTH/ 2 ⎠
2
×e
Y − Y0 ⎞
− ⎛⎜
⎟
⎝ LENGTH/ 2 ⎠
2
m
u = 0.0 m / s, v = 0.0 m / s
• Okada.
20
BOUNDARY EFFECT
9
10
Case 1
9
8
7
7
6
6
5
5
4
4
3
3
Elevatio
on (m)
8
2
1 t = 40 s
0
t = 80 s
t = 120 s
9
Case 2
Elevatio
on (m)
10
2
1 t = 40 s
0
t = 80 s
t = 120 s
9
8
8
7
37
3
6
6
2.5
2.5
5
5
2
2
3
3
1.5
1.5
2
2
4
4
1
1 t = 160 s
0
t = 200 s
0
1
2
3
4
5
6
7
8
1
1 t = 160 s
0.5
0
t = 240 s
9
9
t = 200 s
0
1
2
t = 240 s
3
4
5
6
7
8
0.5
9
9
0
0
8
8
7
-0.5
7
-0.5
6
6
-1
-1
5
5
4
2
1 t = 280 s
0
0 1 2 3
-1.5
-1.5
3
-2
-2
4
3
2
-2.5
t = 320 s
4
5
6
7
8
9
0
1
2
t = 360 s
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9 10
1 t = 280 s
0
-3
0 1 2 3
-2.5
t = 320 s
4
5
6
7
8
9
0
1
2
t = 360 s
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9 10
-3
BATHYMETRY EFFECT
2004 TSUNAMI
SOURCE PARAMETERS (GRILLI ET AL., 2007)
Segm
ent
Long. Lat. (°)
((°))
Length ((km))
Width ((km))
Strike Dip ((°))
((°))
Slip Displacement ((m))
((°))
S1
94.57
3.83
220
130
323
12
90
18
S2
93.90
5.22
150
130
348
12
90
23
S3
93 21
93.21
7 41
7.41
390
120
338
12
90
12
S4
92 60
92.60
9 70
9.70
150
95
356
12
90
12
S5
92.87 11.70
350
95
10
12
90
12
26 DEC 2004 TSUNAMI
TIME SERIES OF WAVE HEIGHTS
L ti
Location
A: Penang
B: Langkawi
B: Langkawi
C: Phuket
Five‐segment fault l
i
Arrival i l
Elevation (m)
Time (h)
1.2
3.6
1.0
2.9
2.4
1.7
WAVE RUNUP ONTO DRY LAND SLOPE
Moving Boundary
Moving Boundary
28
Moving Boundary
Moving Boundary
29
M i B
Moving Boundary
d
30
Moving Boundary
d
31
MANILA TRENCH
• Highly hazardous tsunamigenic earthquakes;
tsunamigenic earthquakes; • NO earthquakes > 7.6 recorded in last century;
• 1999 Chi‐Chi = 7.6; • 1934 offshore N. Luzon = 7.5;
• Build‐up of seismic stress →
Build up of seismic stress → significant earthquake significant earthquake
outbursts;
• Possibility of large earthquake in SCS is high
SOUTH CHINA SEA (SCS)
• SCSTW3 hosted by Universiti Sains Malaysia (USM) during 3‐5 November 2009.
FAULT PLANE SEGMENTS
ALONG MANILA TRENCH
F1
F2
F3
F4
F5
F6
ETOPO1 BATHYMETRY
FAULT PARAMETERS FROM USGS
Fault
Lon.
(°)
Lat.
(°)
Length
(km)
Width
(km)
Strike
(°)
Dip
(°)
Rake
Slip (m)
(°)
F1
120.5 20.2
160
35
10
10
90
6.68
F2
119.8 18.7
180
35
35
20
90
5.94
F3
119 3 17.0
119.3
17 0
240
35
359
28
90
4 45
4.45
F4
119.2 15.1
170
35
3
30
90
6.29
F5
119.6 13.7
140
35
320
22
90
7.63
F6
120 5 12.9
120.5
12 9
100
35
293
26
90 10.69
10 69
SIX‐SEGMENT FAULT
SIX‐SEGMENT FAULT PROPAGATION
SIMULATED WAVE HEIGHTS
BRUNEI SLIDE (GEE ET AL., 2007)
2007)
Field Observations; West Coast of Aceh
Bruguiera
Bruguiera gy
gymnorrhiza Rhizophora stylosa PL = leaf porosity;
NT = number of trees per 100 m2;
NR = number of prop roots per tree;
= number of prop roots per tree;
DT = diameter of stem, m;
DR = diameter of each prop root, m;
DL = diameter of leaf part, m;
di
fl f
HR = height of root part, m;
HT = height of stem part, m;
HL = height of leaf part, m.
(a) Time = 0.05 hr
2.6
2.4
Mangrove Forest
2.2
Width W = 1 km
Manning n = 0.3 s/m 1/3
(b) Time = 0.10 hr
2.6
2.4
2.4
2.2
2.2
2
1.8
1.8
1.8
1.6
1.6
1.6
E l e v a ti o n (m )
1.4
1.2
1
0.8
E l e v a ti o n (m )
2
2
E l e v a ti o n (m )
2.6
1.4
1.2
1
0.8
1.2
1
0.8
0.6
0.6
0.4
0.4
0.4
0.2
0.2
0.2
2000
4000
6000
8000
0
10000 12000 14000 16000 18000 20000 -0.2 0
2000
4000
6000
8000
x (m)
0
10000 12000 14000 16000 18000 20000
-0.2 0
2.4
2.4
2.4
22
2.2
22
2.2
22
2.2
2
2
2
1.8
1.8
1.8
1.6
1.6
1.6
E l e v a ti o n (m )
1
0.8
E l e v a ti o n (m )
(e) Time = 0.25 hr
2.6
1.2
1.4
1.2
1
0.8
0.4
0.4
0.2
0.2
8000
0
10000 12000 14000 16000 18000 20000 -0.2 0
x (m)
(f) Time = 0.30 hr
0.8
0.2
6000
10000 12000 14000 16000 18000 20000
1
0.4
4000
8000
1.2
0.6
2000
6000
1.4
0.6
0
-0.2 0
4000
x (m)
2.6
1.4
2000
x (m)
(d) Time = 0.20 hr
2.6
E l e v a ti o n (m )
1.4
0.6
0
-0.2 0
(c) Time = 0.15 hr
0.6
2000
4000
6000
8000
0
10000 12000 14000 16000 18000 20000
-0.2 0
x (m)
2000
4000
6000
8000
10000 12000 14000 16000 18000 20000
x (m)
Reduction Ratio
Reduction Ratio ηfor max
rη =
ηmax
u for max
ru =
umax
rη = reduction ratio of elevation; ηformax = maximum elevation with mangrove forest; ηmax = maximum elevation without mangrove forest; ru = reduction ratio of velocity; uformax
= maximum velocity with mangrove forest; maximum velocity with mangrove forest;
f
umax = maximum velocity without mangrove forest. 1
Wave Length (km)
0.9
60
0.8
30
10
0.7
rη
0.6
0.5
0.4
0.3
Reduction ratios of
elevation rη as a
function of forest
width
id h relative
l i to
wave length
0.2
0.1
0
0
(a)
0.01
0.02
0.03
0.04
0.05
Forest Width/Wave Length
1
Wave Length (km)
0.9
60
30
10
0.8
0.7
0.6
ru
Reduction ratios of
velocity ru (right) as a
f
function
i off forest
f
width
id h
relative to wave length
0.5
0.4
0.3
0.2
0.1
0
(b)
0
0.01
0.02
0.03
Forest Width/Wave Length
0.04
0.05
OBJECTIVE
• To provide a platform for academics and university students, insurance industry i
it t d t i
i d t
professionals, industry regulators and representatives from the relevant government agencies as well as other
government agencies, as well as other interested private and public sector organisations from the ASEAN region;
• To share and exchange information on the To share and exchange information on the
latest scientific research and developments relating to natural disasters (including earthquakes, floods and
(including earthquakes, floods and typhoons);
• In order to raise greater public awareness and understanding of the risks and g
potential impact and thereby provide a springboard for affirmative action towards achieving effective catastrophe risk management against such natural hazards.
Th k
Thank you