Challenges of Estimating Trees Height via LIDAR Based on Point
Transcription
Challenges of Estimating Trees Height via LIDAR Based on Point
Challenges of Estimating Trees Height via LIDAR Based on Point Cloud Study of European Larch (Larix decidua) and Norway Spruce (Picea abies). Adam Młodzianowski LIDAR -Light Detection And Ranging The goal of the study • Which of three based on point cloud top percentiles (95th, 99th, 100th) the most accurately predict tree height? • Check if height measurements based on 100th percentile overestimate result. • Investigate the accuracy of segmentation algorithm. Why height? Key attribute estimated in most forest inventories. Base for quantitative analysis of forests: • biomass, • volume, • carbon stores etc. Used for calculating indicies e.g. Site Index. Effective management. Study area (1) Góry Stołowe (Table mountains) NP Study area (2) Overview of the Spruce plot Data (1) Laser scanner data were collected in the period of 14.08 – 23.09.2007. Altman's Optech 3100 System Flight parameters Flight height 700 m Width of strip 430 m Distance from adjacent strips 214 m Coverage of strips 50% ≈ 215 m Flight speed 120 kn ≈ 216 km/h Laser pulse repetition frequency Scanning frequency 100 kHz Scanning angle +/- 18º 51 kHz Data (2) 710.580 459.620 75.761 LIDAR points Spruce plot Within crowns 1.641 Used for calculation Methods (1) Software: TreesVis ArcGIS 10 SPSS Statistics 20 Methods (2) Automatic single tree segmentation CHM Median filter Primary segmentation Layer selection Final filtering Results (1) Automatic Single Tree Segmentation Norway Spruce European Larch 1% 3% 15% 17% 80% 84% Results (2) Bias and Root Mean Square Error Norway Spruce European Larch 3,5 2,5 3,5 2,3 2,5 1,31 1,5 1,68 1,21 1,5 0,74 0,5 0,5 -0,5 -0,5 -1,5 -1,27 -1,01 -2,5 -3,5 -3,09 95th -0,4 -0,8 -1,5 -2,5 0,55 -1,85 -3,5 99th 100th 95th 99th 100th Results (3) Regression analysis – 100th percentile Norway Spruce Linear = 0,978 European Larch Linear = 0,952 Results (4) Comparison of the results Bias and RMSE Coefficient of determination 1,35 1,5 0,98 1 0,55 1 0,99 0,98 0,63 0,97 0,5 0,965 0,957 0,96 0 0,95 -0,14 -0,5 -0,4 0,94 0,93 0,92 -1 -1,13 -1,5 0,91 0,9 Own study Persson et Hyyppä et Kwak et al. al. (2002) al (2000) (2007) Own study Stephens et al. (2012) Coefficient of determination Conclusion • Small-footprint LIDAR systems have potential for the estimation of individual tree height of conifer species. • Under given conditions maximum height percentile derived from ALS point cloud is the most accurate metrics in tree height estimation. • Point cloud based metrics tend to underestimate results. Further research • Other tree species have to be investigated – including hardwoods. • Influence of the stand age on height estimation. • Data filtering. Thank you for attention. References • • • • • • • • • • • • • • • • • • • • • • • Gatziolis, D., Fried, J., Monleon, V. (2010). Challenges to Estimating Tree Height via LiDAR in Closed-Canopy Forests. Forest Science, 2010; 56, 2. Hyyppä, J.; Hyyppä, H.; Yu, X.; Kaartinen, H.; Kukko, A.; Holopainen, M. (2009). Forest inventory using small-footprint airborne LiDAR. In Topographic Laser Ranging and Scanning, Principles and Processing; Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA, 2009, 335-370. Heurich, M., Persson, A., Holmgren, J., Kennel, E. (2004). Detecting and measuring individual trees with laser scanning in mixed mountain forest of Central Europe using and algorithm developed for Swedish boreal forest conditions. In: Proceedings of the ISPRS Working Group part 8/2, Int Arch Photogramm Remote Sens vol 36, Freiburg, Germany, 2004, 307–312. Hyyppä, J., Schardt, M., Haggrén, H., Koch, B., Lohr, U., Scherrer, H.U., Paananen, R., Luukkonen, H., Ziegler, M., Hyyppä, H., Pyysalo, U., Friedländer, H., Uuttera, J., Wagner, S., Inkinen, M., Wimmer, A., Kukko, A., Ahokas, E., Karjalainen, M. (2001). HIGH-SCAN: The first european-wide attempt to derive single tree information from laserscanner data. Photogramm. J. Finl. 2001, 17, 58-68. Hyyppä, J., Pyysalo, U., Hyyppä, H. & Samberg, A. (2000). Elevation accuracy of laser scanning-derived digital terrain and target models in forest environment. In: (eds.). the 4th EARSeL workshop on LIDAR Remote Sensing of Land and Sea. Dresden, Germany, 139-147. Kwak, D.A., Lee, W.K., Lee, J.H., Biging, G., Gong, P. (2007). Detection of individual trees and estimation of tree height using LiDAR data. J For Res, 2007, 12:425–434. Lim, K., Treitz, P., Wulder, M., St-Onge, B. & Flood, M. (2003). LiDAR remote sensing of forest structure. Prog. Phys. Geog. 27: 88_/106. McCombs, J.W., Roberts, S.D., Evans, D.L. (2003). Influence of fusing Lidar and multispectral imagery on remotely sensed estimates of stand density and mean tree height in managed Loblolly Pine plantation. For. Sci. 2003, 49(3):457-466. Means, J., Acker, S., Fitt, B., Renslow, M., Emerson, L., Hendrix, C. (2000). Predicting forest stand characteristics with airborne scanning LIDAR. Photogramm. Eng. Rem. Sens. 2000, 66:1367-1371. Miller, D.R., Quine, C.P., Warwick, H. (2000). An investigation of the potential of digital photogrammetry to provide measurements of forest characteristics and abiotic damage. Forest Ecology and Management 2000, 135, 279-288. Næsset, E. (1997). Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997, 61:246–253 • • • • • • • • • • • • • • • • • • • • • • • • • Naesset, E. (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88-99. Naesset,. E., Okland, T. (2002). Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment 79 (2002) 105–115. Persson, Å., Holmgren J., Södermann U. (2002). Detecting and Measuring Individual Trees using an Airborne Laser Scanner. Photogrammetric Engineering & Remote Sensing. Vol. 68. No. 9., 2002, 925-932. Popescu, S.C., Wynne, R.H., Scrivani, J.A. (2004). Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA, Forest Science 2004, 50(4):551-565. Reitberger, J., Heurich, M., Krzystek, P. (2010) Estimation of Stem Volume by Using 3D Segments Derived from Full-Waveform LiDAR Data. In Proceedings of SilviLaser 2010, Freiburg, Germany, 2010, 14–17. Reutebuch, S., McGaughey, R., Andersen, H.E., Carson, W. (2003). Accuracy of a high resolution LIDAR-based terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing (in press). Stephens, P., Kimberley, M., Beets, P., Paul, T., Searles, N., Bell, A., Brack, C., Broadley, J. (2012). Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sensing of Environment 2012, 117, 348–357. Stereńczak K. 2011a Wykorzystanie danych lotniczego skanowania laserowego do określania zagęszczenia drzew w jednopiętrowych drzewostanach sosnowych. PhD thesis. Forestry Faculty, Warsaw University of Life Sciences. Stereńczak K., Kozak J. 2011b. Evaluation of digital terrain models generated from airborne laser scanning data under forest conditions. Scandinavian Journal of Forest Research, 26: 374-384. DOI: 10.1080/02827581.2011.570781. Stereńczak, K., Będkowski, K., Weinacker, H. (2011c). Accuracy of crown segmentation of selected trees and forest stand parameters in order to resolution of used DSM and NDSM models generated from dense small-footprint LIDAR data. Commission VI, WG VI/5. Straub, C., Koch, B. (2011). Estimating Single Tree Stem Volume of Pinus sylvestris Using Airborne Laser Scanner and Multispectral Line Scanner Data. Remote Sens. 2011, 3, 929-944. Takahashi, T., Yamamoto, K. (2005). Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J For Res 2005, 10:135–142 Thomas, V., Treitz, P., McCaughey, J.H., Morrison, I., (2006). Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density. Canadian Journal of Forest Research 36, 34-47.