Challenges of Estimating Trees Height via LIDAR Based on Point

Transcription

Challenges of Estimating Trees Height via LIDAR Based on Point
Challenges of Estimating
Trees Height via LIDAR
Based on Point Cloud
Study of European Larch (Larix decidua)
and Norway Spruce (Picea abies).
Adam Młodzianowski
LIDAR -Light Detection And
Ranging
The goal of the study
• Which of three based on point cloud top
percentiles (95th, 99th, 100th) the most
accurately predict tree height?
• Check if height measurements based on 100th
percentile overestimate result.
• Investigate the accuracy of segmentation
algorithm.
Why height?
Key attribute estimated in most forest inventories.
Base for quantitative analysis of forests:
• biomass,
• volume,
• carbon stores etc.
Used for calculating indicies e.g. Site Index.
Effective management.
Study area (1)
Góry Stołowe (Table mountains) NP
Study area (2)
Overview of the Spruce plot
Data (1)
Laser scanner data were
collected in the period of
14.08 – 23.09.2007.
Altman's Optech 3100 System
Flight parameters
Flight height
700 m
Width of strip
430 m
Distance from
adjacent strips
214 m
Coverage of strips
50% ≈ 215 m
Flight speed
120 kn ≈ 216
km/h
Laser pulse
repetition
frequency
Scanning frequency
100 kHz
Scanning angle
+/- 18º
51 kHz
Data (2)
710.580
459.620
75.761
LIDAR points
Spruce plot
Within crowns
1.641
Used for
calculation
Methods (1)
Software:
TreesVis
ArcGIS 10
SPSS
Statistics 20
Methods (2)
Automatic single tree segmentation
CHM
Median filter
Primary
segmentation
Layer selection
Final filtering
Results (1)
Automatic Single Tree Segmentation
Norway Spruce
European Larch
1%
3%
15%
17%
80%
84%
Results (2)
Bias and Root Mean Square Error
Norway Spruce
European Larch
3,5
2,5
3,5
2,3
2,5
1,31
1,5
1,68
1,21
1,5
0,74
0,5
0,5
-0,5
-0,5
-1,5
-1,27
-1,01
-2,5
-3,5
-3,09
95th
-0,4
-0,8
-1,5
-2,5
0,55
-1,85
-3,5
99th
100th
95th
99th
100th
Results (3)
Regression analysis – 100th percentile
Norway Spruce
Linear = 0,978
European Larch
Linear = 0,952
Results (4)
Comparison of the results
Bias and RMSE
Coefficient of determination
1,35
1,5
0,98
1
0,55
1
0,99
0,98
0,63
0,97
0,5
0,965
0,957
0,96
0
0,95
-0,14
-0,5
-0,4
0,94
0,93
0,92
-1
-1,13
-1,5
0,91
0,9
Own study Persson et Hyyppä et Kwak et al.
al. (2002) al (2000)
(2007)
Own study
Stephens et al.
(2012)
Coefficient of determination
Conclusion
• Small-footprint LIDAR systems have potential for
the estimation of individual tree height of conifer
species.
• Under given conditions maximum height
percentile derived from ALS point cloud is the
most accurate metrics in tree height estimation.
• Point cloud based metrics tend to underestimate
results.
Further research
• Other tree species have to be investigated –
including hardwoods.
• Influence of the stand age on height
estimation.
• Data filtering.
Thank you for attention.
References
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Gatziolis, D., Fried, J., Monleon, V. (2010). Challenges to Estimating Tree Height via LiDAR in Closed-Canopy Forests. Forest
Science, 2010; 56, 2.
Hyyppä, J.; Hyyppä, H.; Yu, X.; Kaartinen, H.; Kukko, A.; Holopainen, M. (2009). Forest inventory using small-footprint
airborne LiDAR. In Topographic Laser Ranging and Scanning, Principles and Processing; Shan, J., Toth, C.K., Eds.; CRC Press:
Boca Raton, FL, USA, 2009, 335-370.
Heurich, M., Persson, A., Holmgren, J., Kennel, E. (2004). Detecting and measuring individual trees with laser scanning in
mixed mountain forest of Central Europe using and algorithm developed for Swedish boreal forest conditions. In:
Proceedings of the ISPRS Working Group part 8/2, Int Arch Photogramm Remote Sens vol 36, Freiburg, Germany, 2004,
307–312.
Hyyppä, J., Schardt, M., Haggrén, H., Koch, B., Lohr, U., Scherrer, H.U., Paananen, R., Luukkonen, H., Ziegler, M., Hyyppä, H.,
Pyysalo, U., Friedländer, H., Uuttera, J., Wagner, S., Inkinen, M., Wimmer, A., Kukko, A., Ahokas, E., Karjalainen, M. (2001).
HIGH-SCAN: The first european-wide attempt to derive single tree information from laserscanner data. Photogramm. J. Finl.
2001, 17, 58-68.
Hyyppä, J., Pyysalo, U., Hyyppä, H. & Samberg, A. (2000). Elevation accuracy of laser scanning-derived digital terrain and
target models in forest environment. In: (eds.). the 4th EARSeL workshop on LIDAR Remote Sensing of Land and Sea.
Dresden, Germany, 139-147.
Kwak, D.A., Lee, W.K., Lee, J.H., Biging, G., Gong, P. (2007). Detection of individual trees and estimation of tree height using
LiDAR data. J For Res, 2007, 12:425–434.
Lim, K., Treitz, P., Wulder, M., St-Onge, B. & Flood, M. (2003). LiDAR remote sensing of forest structure. Prog. Phys. Geog. 27:
88_/106.
McCombs, J.W., Roberts, S.D., Evans, D.L. (2003). Influence of fusing Lidar and multispectral imagery on remotely sensed
estimates of stand density and mean tree height in managed Loblolly Pine plantation. For. Sci. 2003, 49(3):457-466.
Means, J., Acker, S., Fitt, B., Renslow, M., Emerson, L., Hendrix, C. (2000). Predicting forest stand characteristics with airborne
scanning LIDAR. Photogramm. Eng. Rem. Sens. 2000, 66:1367-1371.
Miller, D.R., Quine, C.P., Warwick, H. (2000). An investigation of the potential of digital photogrammetry to provide
measurements of forest characteristics and abiotic damage. Forest Ecology and Management 2000, 135, 279-288.
Næsset, E. (1997). Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997,
61:246–253
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Naesset, E. (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field
data. Remote Sens. Environ. 2002, 80, 88-99.
Naesset,. E., Okland, T. (2002). Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve.
Remote Sensing of Environment 79 (2002) 105–115.
Persson, Å., Holmgren J., Södermann U. (2002). Detecting and Measuring Individual Trees using an Airborne Laser Scanner.
Photogrammetric Engineering & Remote Sensing. Vol. 68. No. 9., 2002, 925-932.
Popescu, S.C., Wynne, R.H., Scrivani, J.A. (2004). Fusion of small-footprint lidar and multispectral data to estimate plot-level volume and
biomass in deciduous and pine forests in Virginia, USA, Forest Science 2004, 50(4):551-565.
Reitberger, J., Heurich, M., Krzystek, P. (2010) Estimation of Stem Volume by Using 3D Segments Derived from Full-Waveform LiDAR
Data. In Proceedings of SilviLaser 2010, Freiburg, Germany, 2010, 14–17.
Reutebuch, S., McGaughey, R., Andersen, H.E., Carson, W. (2003). Accuracy of a high resolution LIDAR-based terrain model under a
conifer forest canopy. Canadian Journal of Remote Sensing (in press).
Stephens, P., Kimberley, M., Beets, P., Paul, T., Searles, N., Bell, A., Brack, C., Broadley, J. (2012). Airborne scanning LiDAR in a double
sampling forest carbon inventory. Remote Sensing of Environment 2012, 117, 348–357.
Stereńczak K. 2011a Wykorzystanie danych lotniczego skanowania laserowego do określania zagęszczenia drzew w jednopiętrowych
drzewostanach sosnowych. PhD thesis. Forestry Faculty, Warsaw University of Life Sciences.
Stereńczak K., Kozak J. 2011b. Evaluation of digital terrain models generated from airborne laser scanning data under forest conditions.
Scandinavian Journal of Forest Research, 26: 374-384. DOI: 10.1080/02827581.2011.570781.
Stereńczak, K., Będkowski, K., Weinacker, H. (2011c). Accuracy of crown segmentation of selected trees and forest stand parameters in
order to resolution of used DSM and NDSM models generated from dense small-footprint LIDAR data. Commission VI, WG VI/5.
Straub, C., Koch, B. (2011). Estimating Single Tree Stem Volume of Pinus sylvestris Using Airborne Laser Scanner and Multispectral Line
Scanner Data. Remote Sens. 2011, 3, 929-944.
Takahashi, T., Yamamoto, K. (2005). Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous
areas using small-footprint airborne LiDAR. J For Res 2005, 10:135–142
Thomas, V., Treitz, P., McCaughey, J.H., Morrison, I., (2006). Mapping stand-level forest biophysical variables for a mixedwood boreal
forest using lidar: an examination of scanning density. Canadian Journal of Forest Research 36, 34-47.