# Practice 1.3 KEY

## Transcription

Practice 1.3 KEY
```Name
Class
Date
_
~~~~~~~~.~::~
[.~.~~~
Solve each formula for the indicated variable.
1. V
= ~ ,2h, for
2.
h
Solve for x. State any restrictions
4. ~(x + 3) =
S
= L(1 - r), for r
,
3. S
=
fw
+ wh + fh, for w
on the variables.
5. a(x
g
~~:~:.~~~
6• x +
t 3 --?
+ c) = b(x - c)
r
7. Two brothers are saving money to buy tickets to a concert. Their
combined savings is \$55. One brother has \$15 more than the other.
How much has each saved?
8. The sides of a triangle are in the ratio 5 : 12 : 13. What is the length of
each side of the triangle if the perimeter of the triangle is 15 in.?
9. Find three consecutive
numbers whose sum is 126.
Solve each equation.
10. !(x
12. 7y
14.
t -
16. 3(x
- 3) + (~ - x) = 5x
+ 5 = 6y + 11
3(t + 1-)
= 2t + 3
+ 1) = 2(x + 11)
11. 5w
+ 8 - 12w = 16 - 15w
13. 1.2(x
+ 5) = 1.6(2x + 5)
15. 0.5(c
+ 2.8) - c = 0.6c + 0.3
17. ~ + to -
*= 1
18. Mike and Adam left a bus terminal at the same time and traveled
in opposite directions. Mike's bus was in heavy traffic and had to
travel 20 mi/h slower than Adam's bus. After 3 hours, their buses
were 270 miles apart. How fast was each bus going?
19. Two trains left a station at the same time. One traveled north at a certain
iii
"
"
.t
:x:
.!:1
E
c
o
~
'"
"
CI..
en
speed and the other traveled south at twice the speed. After 4 hours, the
trains were 600 miles apart. How fast was each train traveling?
20.
Find four consecutive
odd integers whose sum is 336.
21.
The length of a rectangle is 5 em greater than its width. The perimeter
is 58 em. Find the dimensions of the rectangle.
'"
'"
c
1:
.!!!
:c
::J
c.
o
..!:
c:
.2
10
<.)
::J
'D
W
C
o
en
"
:;;
CI..
Q
P rt A C1l
(1v
QJ 3 ( vf=
!..-
3
h)
3
C{
2
-I\y'h
3V:;1
-
I\~
1\"
=-1--
-L
x-+ X+/5 =sf
2)(+--/5 -;:;55
Ct
I,!
S_==
--
L( (-~)
"r- -
to ]
L)<
~D
:=-
2-
L
Z-
<?
-L
~
X
V
! -
::
r
I
+V- ~
®) ~JW.}-Nh-tl~'\
1w
...;-Jh':"
Y-t!~:;:
_\$ W
Et_~
-::0
20
35
At-1C
~~ ~ ~
,
.f~\.-.-,
.f ·f h )
------,
,
I
:1,_~-.tl1..
vJ
_~
of
l
<j..f!:1(
~9
)( -f''"2\\_t1/~\
.) )1- j.
I
l
(5) . X
~ ~q:J)
X-t3
-']
)C ~
Lt /
j Y
" S)OJ)(+C 1 ~
0{ /-c ~
Cl-Y+-ti\C
~X - b
tt X - 0X
~
==
c
C - {{
- -loc-c;cc
a-b
X -
X-- +
-~c. -Ct-C-
X ~ - 10) ::::-~)
-+
X +-Z :: 1'Z.b.
-S
-
{- ~
Lf
of
'j :- (L
-""X::
J -_~
~
-+ )(-+-1
(25
?
2
Y~Lx-:::-~{{
::~~
c..
~tk
L-
Prtf\Lll c~ (-' 3
(i -X)
1t ~ -
t -tx~5X
lo) ~ (x - 3)
x -
Y-
--1x
-t
+ ~
® -t -' 3 (-t ~ -5: :: L -{
~-x
t2t
::;5f
-4-
-=-
3 t- -
'f
+ 2-b -
.
-rl
7W
S"
-+
If\!
~
~
-
-='
Lit
Lf
l~l~~U
LI
Ib-I)W
{(P
::
- ~
-"5
- -
L£:X}
12VV
+ /.-c
3
-"1-
'5~
(l)5wf2-
-r 3
::;
-2-t-Y~2t.f3
o ;::51 X
S~
LJ
3
-f
I 5"
-t-
~
w
I) W
@
D.c;(C-ft.9.)
O.Se.
-c
+-I.L{
-
=.
C.
(c.
-0,
-fG.")c.
I.'
,
..
@ 3( 'x + I)
3)(""3
-=-1./(..
I-·(~
-
:- 2 c' )(
=-
+
2)<'~ZL
2y
-~
II)
-;;
IK :::
/1j
\)) l ,2/
L"2x-+
- \ .1)(
X
-r))
=-!. ~
=-
-<6
--2
2-
-
=-
-i ))
3.2x+2
-Co
(2):
\.2
2'/.
Z-
r- ( ~X J
f
-g
®(~~
To
301-{
s=- ~
- {
3°(.(
(PL\,+-3u.
I) ]0
,
~(;U
w
= -;-
-
-Su
:;
-i
41{ ;: ::;0
if
~ C1
+-C.·
0.&,(-1(.,;-
-1(.,,)"(...
2Y
0.
:=:-
.S"( it.LI:::
D."- r.. of 0.'3
=_7il
30
~../
@
x:::
AVA-wj '5 r:
)(-20
V{
j
@
5(JEn.1)
x.+-s
::: ('v\1l.&t IS '31.,t.~~, II D
3X
+ 3(Y-2-G)
3x
+
W( OIH
::;LLNul1-(
.:;:21-0
;(+ X +x -t5
3x - {PO.::: 2-::;-0
0'/ -&D -;21u
G '( -::-
X::
-+
x+
S-~
S- ::
>E
L(x -4-/0;:
- -. 10
350
x::-sS-
-10
LfX-=Lf?;
-2u::-j')
L(
~
/7 12X.{
~.J-::r- •. _ ---,
SSfV1;V.
AvI\W1's
MII(r
'~__ t3>lAJ
t31A s :;c 3C;m. v, )
C;
~
1c.~
X ~ Spco'")
L'f
1 Vvl
=-
ct
-
1Z-+t S"PCCD
4-(x +'2X) ~
~
_~
00
&,
L{
2x :::0v
;c
----
so
-::-{ 00
X -:
L){
flIl f\I rJ5 \A,(lIl ( 1Vt /W L-l.(,J~
"1l-t"£
50 M(fi1
20)
X
-+--
f
kt-·\)
I DD (V\()~
2 -t- X 4- Y
~)(+-{1
-+-
- ft.
-I
.
X + (0
~3)~
It
::: ') ~
l
W I.ll.!.:..
DH' - I 2- cvv,I v I 1
of
(
```