Early metabolic risk in COPD
Transcription
Early metabolic risk in COPD
Early metabolic risk in COPD Bram van den Borst EarlymetabolicriskinCOPD Copyright©2013BramvandenBorst,Maastricht Coverdesign TijsvandenBorst Layout BramvandenBorst Production Proefschriftmaken.nl Publisher UitgeverijBOXPress ISBN 978‐90‐8891‐604‐5 The research described in this thesis was performed at the Department of RespiratoryMedicine,NUTRIMSchoolforNutrition,Toxicology,andMetabolism, at Maastricht University Medical Center+, Maastricht, The Netherlands; and at the Laboratory of Epidemiology, Demography and Biometry, National Institute onAging,Bethesda,MD,USA. The work described in this thesis was performed within the framework of the Dutch Top Institute Pharma, project ‘Transition of systemic inflammation into multiorganpathology,T1‐201.’PartnersinthisprojectareMaastrichtUniversity Medical Center+, University Medical Center Groningen, University Medical CenterUtrecht,GlaxoSmithKline,AstraZenecaNederlandB.V.,DanoneResearch, andNycomed(nowTakeda). ThepublicationofthisthesiswasfinanciallysupportedbyGlaxoSmithKlineB.V., Nutricia Advanced Medical Nutrition, Danone Research – Centre for SpecialisedNutrition, and Chiesi Pharmaceuticals B.V. EarlymetabolicriskinCOPD Proefschrift Terverkrijgingvandegraadvandoctor aandeUniversiteitMaastricht, opgezagvandeRectorMagnificus,Prof.dr.L.L.G.Soete, volgenshetbesluitvanhetCollegevanDecanen, inhetopenbaarteverdedigenop vrijdag17mei2013om12:00uur door BramvandenBorst Geborenop18juli1983teEindhoven Promotor Prof.dr.ir.A.M.W.J.Schols Co‐promotor Dr.H.R.Gosker Beoordelingscommissie Prof.dr.M.K.Hesselink(voorzitter) Prof.dr.M.Laville(UniversitédeLyon,France) Prof.dr.D.S.Postma(UniversitairMedischCentrumGroningen) Prof.dr.C.D.A.Stehouwer Prof.dr.E.E.Blaak CONTENTS Chapter1 Generalintroduction 7 Publishedinpartas:Chronicobstructivepulmonarydisease;co‐morbiditiesand systemicconsequences.BookChapter.2011HumanaPress.Pp171‐92 Chapter2 Is age‐related decline in lean mass and physical function acceleratedbyobstructivelungdiseaseorsmoking? Thorax2011;66(11):961‐9 17 Chapter3 Lossofquadricepsmuscleoxidativephenotypeanddecreased enduranceinpatientswithmild‐to‐moderateCOPD JournalofAppliedPhysiology2012Jul19[Epubaheadofprint] 41 Chapter4 Low‐gradeadiposetissueinflammationinpatientswithmild‐ to‐moderateCOPD AmericanJournalofClinicalNutrition2011;94(6):1504‐12 63 Chapter5 The influence of abdominal visceral fat on inflammatory pathwaysandmortalityriskinobstructivelungdisease AmericanJournalofClinicalNutrition2012;96(3):516‐26 89 Chapter6 Characterizationoftheinflammatoryandmetabolicprofileof 109 adiposetissueinamousemodelofchronichypoxia JournalofAppliedPhysiology2013Mar28[Epubaheadofprint] Chapter7 Dietary fiber and fatty acids in COPD risk and progression: 129 asystematicreview Submitted Chapter8 Discussion Centralfatandperipheralmuscle:partnersincrimeinCOPD AmericanJournalofRespiratoryandCriticalCareMedicine2013;187(1):8‐13 145 Summary 157 Samenvatting 161 Dankwoord 167 CurriculumVitae 171 Listofpublications 175 CHAPTER1 Generalintroduction BramvandenBorst,HarryR.Gosker,AnnemieM.W.J.Schols Inpartpublishedas: Body composition abnormalities in COPD. Book Chapter in: Chronic obstructive pulmonary disease; co‐morbidities and systemic consequences.2011HumanaPress.Pp171‐92 7 GENERALINTRODUCTION AnintroductiontoCOPD Chronic obstructive pulmonary disease (COPD) is a common disease and is associated with high burden. Symptoms include shortness of breath, exercise limitation and cough. Sixty‐four million people suffer from COPD worldwide, being the fourth leading cause of mortality [1]. In the Netherlands, more than 320.000peoplesufferfromCOPD,causing4%ofalldeaths[2]. Cigarette smoke is the primary cause of COPD, but other risk factors have beenidentifiedincludingoccupationalexposuretotoxicgases,airpollutionand genetic predisposition [3]. COPD patients display an enhanced and persistent inflammatory response to inhaled particles which is believed to underlie local pulmonarypathology[4].Chronicbronchitisandemphysemaarethetwomajor pathological features of COPD. Briefly, chronic bronchitis is characterized by thickening of the airway walls and increased mucus production, whereas emphysema denotes the destruction of alveolar walls. These disruptions of the pulmonary architecture ultimately lead to the obstruction of airflow during exhalation, which is usually progressive in time. As the degree of airflow limitation can be measured relatively easily and with good reproducibility throughspirometry,itiscommonlyusedasthesinglemeasureofCOPDseverity. However,clinicalobservationsandadvancingresearchhaveclearlyshownthat thedegreeofairflowlimitationispoorlycorrelatedwithactualdiseaseburden. Clinicalheterogeneityandbodycomposition Clinical heterogeneity is an important characteristic of COPD that complicates treatment. Different body composition phenotypes contribute to this heterogeneity and reflect important extrapulmonary disease features in COPD, asillustratedbythefollowingcases. Case1:thecachecticCOPDpatient Patient A, 63 years old, has a forced expiratory volume in 1 sec (FEV1) and diffusion capacity for carbon monoxide (DLCO) of 52% and 37% of predicted, respectively.Sincediagnosisshehaslost18kgofbodymassandnowsheweighs only 40 kg resulting in a current body mass index (BMI) of 15.2 kg/m2. Body composition measures reveal a fat‐free mass index (FFMI) and fat mass index (FMI)of12.1and3.1kg/m2,respectively.BoththeFFMIandFMIarebelowthe 5th percentile of reference values, indicative of severe depletion. After having smoked60packyearssheremainsunmotivatedtoquit.Lastyear,shehadbeen admitted to the hospital twice for an acute exacerbation and has also been diagnosedwithosteoporosis.Duetoherweaknesssheishomeboundandspends mostofthedaysedentary.Shehasanarterialoxygentensionof6.9kPa,witha 8 CHAPTER1 carbondioxidepressureof5.6kPa,consistentwitharterialhypoxaemiawithout respiratoryinsufficiency. Case2:thesarcopenicCOPDpatient AlthoughpatientB,72yearsold,wasdiagnosedwithCOPDmanyyearsago,he remainsasmokerwith45packyears.TheFEV1hasbeenstablearound49%of predicted.HisBMIhasremainedstableforyearsat27kg/m2,yethisweighthas recently started to decrease slowly. The FFMI and FMI measure 17.8 (10‐25th percentile) and 9.2 (90‐95th percentile) kg/m2, respectively. His daily 20‐min walkbecomesincreasinglydifficultduetoafeelingofwholebodyweakness.He questionswhetherthisisduetoagingorifthisiscausedbytheCOPD. Case3:theobeseCOPDpatient PatientCis58yearsoldandwasdiagnosedwithCOPDfouryearsago.Shehasa part‐time job and although she experiences mild shortness of breath upon exertion,sheisanactivememberofawalkingclub.TheFEV1andDLCOmeasure 56%and81%ofpredicted,respectively.HerBMIis33kg/m2whichisclassified as obese. FFMI and FMI measure 18.2 (75‐90th percentile) and 12.7 (90‐95th percentile) kg/m2, respectively. Her weight has been stable for decades. Peak oxygen uptake during an incremental cycling test is 89% of predicted during which no arterial desaturation is observed. The COPD is controlled by her general practitioner and after having smoked 45 pack years she succeeded quitting,afterwhichshegainedsomemoreweight.Shehasalsobeendiagnosed withhypertension. Notwithstanding that the lung is the major organ of pathology in COPD, these casesillustratethreepatientswithcomparabledegreesofairflowlimitationbut with widely varying clinical presentations. Skeletal muscle wasting and weakness, osteoporosis, but also obesity are common in COPD patients, and differentially contribute to disease burden throughout the disease course. Only veryrecently,however,ithasbeenofficiallyrecognizedinthedefinitionofCOPD that “…comorbidities contribute to theoverall severity in individual patients” [4]. Infact,ithasbeenshownthatCOPDpatientshaveonaveragetwotothreeother chronic conditions, of which skeletal muscle dysfunction and cardiovascular comorbiditiesareparticularlycommon[5]. SkeletalmuscledysfunctioninCOPD Skeletal muscle dysfunction is probably the most investigated extrapulmonary manifestation in COPD. Muscle wasting, along with general weight loss, is particularly outspoken in but not restricted to advanced COPD, and has been 9 GENERALINTRODUCTION identified as a poor prognostic factor independently of the degree of airflow limitation[6].Importantly,weightgaincanreversethisprognosis[7]. With aging, particularly in the eighth decade of life, a change in body composition occurs which has been termed sarcopenia [8]. Sarcopenia is the processofadecreasingmusclemassduringwhichfatmassincreasesorremains stable, and during which body weight can remain stable. This hidden loss of musclemasshasbeenidentifiedinasignificantproportionofCOPDpatientsin cross‐sectionalstudies(upto25%[9‐11]),butwhethersarcopeniaoccursinan acceleratedfashioninCOPDneedstobeinvestigatedinlongitudinalstudieswith appropriatecontrolgroups. Inadditiontomusclewasting,intrinsicalterationsintheskeletalmuscleof COPDpatientshavebeenidentified.Thesearecharacterizedbyashiftfromless oxidative towards more glycolytic fibers, decreased oxidative enzyme capacity andmitochondrialdysfunctionleadingtoearlyfatiguedmusclesanddecreased exercise capacity [12, 13]. Although the intrinsic alterations underlying muscle dysfunction have been well‐documented in patients with advanced COPD, few studieshaveexploredthemechanismsofskeletalmuscledysfunctioninearlier stagesofCOPD. CardiovascularcomorbidityinCOPD Throughout all severity stages COPD patients have an approximate 2 to 3‐fold increased risk of cardiovascular disease (CVD), which goes beyond cigarette smokeexposure[14].VariousfactorshavebeensuggestedtoincreaseCVDrisk in COPD patients, including generic risk factors (unhealthy lifestyle) as well as COPD‐related factors such as low‐grade systemic inflammation, hypoxaemia, oxidativestress,andsystemicelastinabnormalities.TheobservationthatCVDis even the leading cause of mortality in COPD patients with mild‐to‐moderate airflowlimitation[15],stressestheneedtoidentifyunderlyingmechanismsthat drivecardiovascularriskparticularlyinthissubgroupofCOPDpatients. ThemetabolicsyndromeanddiabetesappeartobemorecommoninCOPD patientscomparedtocontrolpopulations,withmild‐to‐moderateCOPDpatients being more affected than severe COPD patients [16]. Likely, these co‐morbid conditionsalsocontributetoCVDrisk.Peripheralskeletalmusclemitochondrial dysfunctionhasbeenassociatedwithinsulinresistanceindiabetesandobesity [17], and excessive abdominal visceral fat accumulation has been suggested to play an upstream role in low‐grade systemic inflammation, hypertension and atheroscleroticdiseaseinepidemiologicalpopulationstudies[18].Itisunknown whether these metabolic alterations already exist in patients with mild‐to‐ moderateCOPD. 10 CHAPTER1 Low‐gradesystemicinflammationinCOPD:aroleforadipose tissue? Pathophysiological mechanisms linking COPD and extrapulmonary manifestations remain incompletely understood. As several studies have suggestedthatsmokingdoesnotfullyaccountfortheseassociations,itappears thatotherfactorsareimplicated[19].Ithasbeensuggestedthatincreasedlevels of circulating inflammatory mediators, also referred to as low‐grade systemic inflammation, are implicated in the risk of extrapulmonary manifestations [5]. Indeed, many studies have reported systemic inflammation in COPD [20], and inflammatory cytokines have been proposed to play a pivotal role in the development of e.g. skeletal muscle dysfunction [21, 22], atherosclerosis [23] andosteoporosis[24].Knowingthesourceoflow‐gradesystemicinflammation isimportantasitmayguidetargetedfuturetherapeuticstrategies.Classicallyit is thought that enhanced levels of plasma cytokines in COPD originate from leakage from the pulmonary compartment [5]. However, to date no convincing evidence for this in stable disease has been published, suggesting that other sourcesofinflammationexist. Whereas the adipose organ was always considered a passive storage compartment for energy, it is now widely recognized as a highly potent production site of inflammation. Adipose tissue produces and secretes inflammatorymediators,whichhavebeentermedadipokinesoradipocytokines. Interleukin‐6, TNF‐α, leptin and adiponectin are some examples [25]. Adipocytokines act both locally (paracrine) as well as systemically (endocrine) andinfluenceinflammationandmetabolism.Obesity,alsointheabsenceofany otherchroniccondition,isassociatedwithlow‐gradesystemicinflammation.In thefieldofobesityresearch,majoradvanceshavebeenmadeinunderstanding the relation between excessive fat mass and low‐grade systemic inflammation. Adiposetissuehypoxiaresultingfromhypertrophyingadipocytesandimpaired neovascularisationhasbeensuggestedtotriggeradiposetissueinflammationin obesity. Therefore, it can be speculated that adipose tissue hypoxia, as a consequence of hypoxaemia (chronic or intermittent resulting from desaturations), also triggers adipose tissue inflammation in COPD. Moreover, overweight and obesity are common in COPD [26], particularly in those with mild‐to‐moderate airflow limitation [27]. Although several recent studies have suggestedapositiverelationbetweenBMIandlow‐gradesystemicinflammation [28, 29], the relations between (changes in) fat mass, body fat distribution, adipose tissue inflammation, and systemic inflammation remain poorly understoodinCOPD. 11 GENERALINTRODUCTION Lifestylefactors Exposure to cigarette smoke is not only the major risk factor for COPD development;ithasalsobeenassociatedwithlow‐gradesystemicinflammation intheabsenceofCOPD,suggestingthatsmokingaccountsforatleastpartofthe systemic manifestations in COPD. Also, smokers in the general population are usuallyleaner[30]andscoreworseonphysicalperformancetestscomparedto never‐smokers [31]. It remains unclear, however, to what extent smoking accountsforthechangesinbodycompositionandphysicalfunctioninginCOPD. COPD patients experience major difficulties in performing physical activity. Dyspnea upon exertion partially contributes to physical inactivity. Being physicallyinactiveisknowntohavedeconditioningeffectsonperipheralskeletal muscleswhich,inturn,furtheracceleratethisdownwardspiral.Althoughithas beenwell‐describedthatCOPDpatientsperformlesstotaldailyphysicalactivity, the quality of the activity has been scarcely investigated. In fact, regular moderate‐to‐vigorous physical exercise lasting at least 30 minutes per day has beenrecommendedinordertogainhealthbenefits[32].Itisunknownhowthe quality of physical activity in COPD relates to these recommendations, and to whatextentthisisassociatedwithmusculardeconditioningoradversebodyfat distribution. Western society is characterized by an ‘obesogenic’ environment in which poor dietary quality contributes to low health status. In fact, the European Respiratory Society has recently called for more research on whether diet influences the severity of respiratory diseases [33]. A ‘Western diet’ rich in refined grains, red meat, desserts and French fries has been associated with increased risk of COPD development, independent of smoking [34], and, conversely, a dietary pattern rich in fruit, vegetables, oily fish and wholemeal cerealsmayprotectagainstimpairedlungfunctionandCOPD[35].Toimprove nutritional recommendations in COPD, there is a need to examine the specific relations between dietary components and outcomes in COPD. In this context, dietary fiber and fatty acids are of particular interest given their potential to influenceinflammatoryprocesses. 12 CHAPTER1 Aimofthisthesis The general aim of this thesis is to study the reciprocal relation between body composition and low‐grade systemic inflammation in mild‐to‐moderate COPD, andtoexplorethepotentialinvolvementofanunhealthylifestyleinthisrelation (Figure1). Figure1.Schematicrepresentationofthegeneralaimofthisthesis. Theresearchquestionsthatareaddressedinthisthesisare: 1. Are changes in body composition in COPD different from the aging‐related naturalcourseofachangingbodycomposition? 2. Aremild‐to‐moderateCOPDpatientsatanearlymetabolicriskasreflectedin: a. impairedskeletalmusclephenotypeandmetabolism; b. adipose tissue inflammation contributing to low‐grade systemic inflammation; c. excessiveabdominalvisceralfatmass? 3. What is the influence of smoking, diet and physical activity on early metabolicriskinCOPDandonCOPDoutcomes? Outlineofthisthesis Chapter2presentsacombinedcross‐sectionaland7‐yearlongitudinalanalysis ofbodycomposition,musclestrengthandphysicalfunctioningofCOPDpatients and control persons with normal lung function stratified by smoking status (researchquestions1and3). Chapter3presentsacross‐sectionalcomparisonofquadricepsmuscleoxidative phenotype,quadricepsfatigueanddailyphysicalactivitylevelbetweenpatients withmild‐to‐moderateCOPDandmatchedhealthysubjects(researchquestions 2aand3). 13 GENERALINTRODUCTION Chapter 4 presents a cross‐sectional analysis of abdominal subcutaneous adipose tissue inflammatory status and its relation with circulating adipocytokine levels in patients with mild‐to‐moderate COPD and matched healthysubjects(researchquestion2b). Chapter 5 presents a comprehensive analysis of differences in abdominal fat distribution between COPD patients and matched controls, and assesses the associations between visceral fat mass and systemic inflammation and their predictive value for 9‐year mortality. This chapter also investigates differences in dietary composition and physical activity between these COPD patients and matchedcontrols(researchquestions2b,2cand3). Chapter 6 presents an experimental study in mice in which the inflammatory and metabolic changes in abdominal subcutaneous and visceral adipose tissue arecharacterizedafterexposuretochronichypoxia(researchquestion2b). Chapter7presentsasystematicliteraturereviewontheassociationsbetween dietaryintakeoffiberandspecificfattyacidsandCOPDetiologyandprogression (researchquestion3). In Chapter 8 the metabolic abnormalities and adverse lifestyle components in COPDpatientsidentifiedinthisthesisarediscussed. 14 CHAPTER1 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. World Health Organization. The global burden of disease: 2004 update. 2008; Available from http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf. Boezen HM, Postma DS, Smit HA. COPD samengevat. In: Volksgezondheid Toekomst Verkenning, Nationaal KompasVolksgezondheid.Bilthoven:RIVM.2008. SorianoJB,Rodriguez‐RoisinR.Chronicobstructivepulmonarydiseaseoverview:epidemiology,riskfactors, andclinicalpresentation.ProcAmThoracSoc.2011;8(4):363‐7. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Revised 2011. Available from http://www.goldcopd.org/uploads/users/files/GOLD_Report_2011_Feb21.pdf. BarnesPJ,CelliBR.SystemicmanifestationsandcomorbiditiesofCOPD.EurRespirJ.2009;33(5):1165‐85. ScholsAM,WoutersEF.Nutritionalconsiderationsinthetreatmentofchronicobstructivepulmonarydisease. ClinNutr.1995;14(2):64‐73. Schols AM, Slangen J, Volovics L, Wouters EF. Weight loss is a reversible factor in the prognosis of chronic obstructivepulmonarydisease.AmJRespirCritCareMed.1998;157(6Pt1):1791‐7. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249‐56. ScholsAM,SoetersPB,DingemansAM,MostertR,FrantzenPJ,WoutersEF.Prevalenceandcharacteristicsof nutritionaldepletion in patientswith stable COPD eligiblefor pulmonary rehabilitation. Am Rev Respir Dis. 1993;147(5):1151‐6. Schols AM, Broekhuizen R, Weling‐Scheepers CA, Wouters EF. Body composition and mortality in chronic obstructivepulmonarydisease.AmJClinNutr.2005;82(1):53‐9. VestboJ,PrescottE,AlmdalT,DahlM,NordestgaardBG,AndersenT,SorensenTI,LangeP.Bodymass,fat‐free bodymass,andprognosisinpatientswithchronicobstructivepulmonarydiseasefromarandompopulation sample:findingsfromtheCopenhagenCityHeartStudy.AmJRespirCritCareMed.2006;173(1):79‐83. AllaireJ,MaltaisF,DoyonJF,NoelM,LeBlancP,CarrierG,SimardC,JobinJ.Peripheralmuscleenduranceand theoxidativeprofileofthequadricepsinpatientswithCOPD.Thorax.2004;59(8):673‐8. GoskerHR,ZeegersMP,WoutersEF,ScholsAM.Musclefibretypeshiftinginthevastuslateralisofpatients with COPD is associated with disease severity: a systematic review and meta‐analysis. Thorax. 2007;62(11):944‐9. Sin DD, Man SF. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease.Circulation.2003;107(11):1514‐9. McGarveyLP,JohnM,AndersonJA,ZvarichM,WiseRA.Ascertainmentofcause‐specificmortalityinCOPD: operationsoftheTORCHClinicalEndpointCommittee.Thorax.2007;62(5):411‐5. Watz H, Waschki B, Kirsten A, Muller KC, Kretschmar G, Meyer T, Holz O, Magnussen H. The metabolic syndromeinpatientswithchronicbronchitisandCOPD:frequencyandassociatedconsequencesforsystemic inflammationandphysicalinactivity.Chest.2009;136(4):1039‐46. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.Diabetes.2002;51(10):2944‐50. KishidaK,FunahashiT,MatsuzawaY,ShimomuraI.Visceraladiposityasatargetforthemanagementofthe metabolicsyndrome.AnnMed.2012;44(3):233‐41. PatelAR,HurstJR.Extrapulmonarycomorbiditiesinchronicobstructivepulmonarydisease:stateoftheart. ExpertRevRespirMed.2011;5(5):647‐62. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemicinflammation:asystematicreviewandameta‐analysis.Thorax.2004;59(7):574‐80. RemelsAH,GoskerHR,SchrauwenP,HommelbergPP,SliwinskiP,PolkeyM,GaldizJ,WoutersEF,LangenRC, ScholsAM.TNF‐alphaimpairsregulationofmuscleoxidativephenotype:implicationsforcachexia?FASEBJ. 2010;24(12):5052‐62. LangenRC,ScholsAM,KeldersMC,vanderVeldenJL,WoutersEF,Janssen‐HeiningerYM.Musclewastingand impaired muscle regeneration in a murine model of chronic pulmonary inflammation. Am J Respir Cell Mol Biol.2006;35(6):689‐96. PaolettiR,GottoAM,Jr.,HajjarDP.Inflammationinatherosclerosisandimplicationsfortherapy.Circulation. 2004;109(23Suppl1):III20‐6. McLeanRR.Proinflammatorycytokinesandosteoporosis.CurrOsteoporosRep.2009;7(4):134‐9. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347‐55. Vozoris N, O'Donnell DE. Prevalence, risk factors, activity limitation and health care utilization of an obese, population‐basedsamplewithchronicobstructivepulmonarydisease.CanRespirJ.2012;19(3):e18‐24. Agusti A, Calverley PM, Celli B, Coxson HO, Edwards LD, Lomas DA, MacNee W, Miller BE, Rennard S, SilvermanEK,etal.CharacterisationofCOPDheterogeneityintheECLIPSEcohort.RespirRes.2010;11:122. Eagan TM, Ueland T, Wagner PD, Hardie JA, Mollnes TE, Damas JK, Aukrust P, Bakke PS. Systemic inflammatorymarkersinCOPD:resultsfromtheBergenCOPDCohortStudy.EurRespirJ.2010;35(3):540‐8. 15 GENERALINTRODUCTION 29. Agusti A, Edwards LD, Rennard SI, Macnee W, Tal‐Singer R, Miller BE, Vestbo J, Lomas DA, Calverley PM, Wouters E, et al. Persistent Systemic Inflammation is Associated with Poor Clinical Outcomes in COPD: A NovelPhenotype.PLoSOne.2012;7(5):e37483. 30. AkbartabartooriM,LeanME,HankeyCR.Relationshipsbetweencigarettesmoking,bodysizeandbodyshape. IntJObes(Lond).2005;29(2):236‐43. 31. Strand BH, Mishra G, Kuh D, Guralnik JM, Patel KV. Smoking history and physical performance in midlife: resultsfromtheBritish1946birthcohort.JGerontolABiolSciMedSci.2011;66(1):142‐9. 32. PateRR,PrattM,BlairSN,HaskellWL,MaceraCA,BouchardC,BuchnerD,EttingerW,HeathGW,KingAC,et al.Physicalactivityandpublichealth.ArecommendationfromtheCentersforDiseaseControlandPrevention andtheAmericanCollegeofSportsMedicine.JAMA.1995;273(5):402‐7. 33. European Respiratory roadmap‐ recommendations for the future of respiratory medicine. 2012; Available from:http://www.ersroadmap.org. 34. Varraso R, Fung TT, Hu FB, Willett W, Camargo CA. Prospective study of dietary patterns and chronic obstructivepulmonarydiseaseamongUSmen.Thorax.2007;62(9):786‐91. 35. ShaheenSO,JamesonKA,SyddallHE,SayerAA,DennisonEM,CooperC,RobinsonSM.Therelationofdietary patternswithadultlungfunctionandCOPD.EurRespirJ.2010;36(2):277‐84. 16 CHAPTER1 CHAPTER2 Is age‐related decline in lean mass and physical function accelerated by obstructivelungdiseaseorsmoking? BramvandenBorst,AnnemarieKoster,BinbingYu,HarryR.Gosker, Bernd Meibohm, DouglasC. Bauer, StephenB. Kritchevsky,Yongmei Liu,AnneB.Newman,TamaraB.Harris,AnnemieM.W.J.Schols FortheHealth,AgingandBodyComposition(HealthABC)Study Thorax2011;66(11):961‐9 17 SMOKING,SARCOPENIAANDCOPD Abstract Background and aims: Cross‐sectional studies suggest that obstructive lung disease (OLD) and smoking affect lean mass and mobility. We aimed to investigate whether OLD and smoking accelerate aging‐related decline in lean massandphysicalfunctioning. Methods: 260 persons with OLD (FEV1 63±18 % of predicted), 157 smoking controls (FEV1 95±16 % of predicted), 866 formerly smoking controls (FEV1 100±16 % of predicted) and 891 never‐smoking controls (FEV1 104±17 % of predicted)participatingintheHealth,AgingandBodyComposition(ABC)Study werestudied.Atbaseline,themeanagewas74±3yandparticipantsreportedno functional limitations. Baseline and seven‐year longitudinal data were investigatedofbodycomposition(bydual‐energyX‐rayabsorptiometry),muscle strength (by hand and leg dynamometry) and short physical performance battery(SPPB). Results: Compared to never‐smoking controls, OLD persons and smoking controlshadasignificantlylowerweight,fatmass,leanmassandbonemineral content(BMC)atbaseline(P<.05).Whilethelossofweight,fatmass,leanmass and strength was comparable between OLD persons and never‐smoking controls,theSPPBdeclined0.12points/yrfasterinOLDmen(P=.01)andBMC4 g/yrfasterinOLDwomen(P=.02).Insmokingcontrols,onlyleanmassdeclined 0.1 kg/yr faster in women (P=.03) and BMC 8 g/yr faster in men (P=.02) comparedtonever‐smokingcontrols. Conclusions:Initiallywell‐functioningolderadultswithmild‐to‐moderateOLD and smokers without OLD have a comparable compromised baseline profile of body composition and physical functioning, while seven‐year longitudinal trajectoriesaretoalargeextentcomparabletothoseobservedinnever‐smokers withoutOLD.Thissuggestsacommoninsultearlierinliferelatedtosmoking. 18 CHAPTER2 Introduction Chronic obstructive pulmonary disease (COPD) affects approximately 14% of olderadultsandisrelatedtoincreasedimmobility,hospitalizationsandresulting healthcarecosts[1].COPDischaracterizedbyirreversibleairflowlimitationand is associated with an abnormal inflammatory response of the lungs mainly to cigarette smoke [2]. It has been increasingly recognized as a disease with marked extrapulmonary manifestations such as muscle wasting and weakness, osteoporosis and cardiovascular disease [3], in which systemic inflammation is thought to play an important role [4, 5]. It remains unclear, however, if these systemicmanifestationsareco‐morbidconditionsrelatedtoacommonnoxious exposureorifthesearesystemicconsequencesofthediseaseitself. So far skeletal muscle weakness and wasting are the most studied and established extra‐pulmonary determinants of impaired mobility and increased mortalityinCOPD[6].Putativepathophysiologicalmechanismsofalteredbody composition and physical functioning in COPD have originated from cross‐ sectionalstudies[7‐10]andfromlongitudinalcasestudieswithoutappropriate control groups [11‐14]. However, since body composition changes and dysregulation of inflammation are also common with aging [15, 16] and since studied COPD populations often consist of older adults (60+), inclusion of matched non‐COPD control groups is crucial to unravel the effect of airflow obstructiononthepatternandprogressionofchangesinbodycompositionand physical function, as well as the potential modulating role of systemic inflammatory markers. To our best knowledge, such studies are currently lacking. Cross‐sectional studies in healthy smokers have suggested detrimental effectsofsmokingonskeletalmusclefunction[17,18].Increasedsystemiclevels ofpro‐inflammatorymarkerswereobservedinhealthysmokers[19],butalsoin formersmokers[20].Collectively,thesedatasuggestthatalsointheabsenceof chronic airflow limitation, smoking may enhance skeletal muscle wasting and accelerate the decline in physical functioning, and that systemic inflammation couldbeamodulator. Wehypothesizedthatolderadultswithobstructivelungdisease(OLD)and smokers with normal lung function have accelerated loss of lean mass and physical functioning compared to a never‐smoking population. Systemic inflammatory markers could contribute to the association with body composition and physical functioning. We therefore examined seven‐year longitudinal changes in body composition and physical functioning in older personswithOLDandinanon‐OLDpopulationstratifiedbysmokingstatus. 19 SMOKING,SARCOPENIAANDCOPD Methods Studypopulation ThisstudywasperformedinpersonsparticipatingintheHealth,AgingandBody Composition (Health ABC) study. This is a longitudinal study of 3075 well‐ functioning black and white men and women between the ages of 70‐79 years residinginandnearPittsburgh,PennsylvaniaandMemphis,Tennessee.Baseline data was obtained in 1997/1998 through in‐person interview and clinic based examination. Inclusion criteria were no reported difficulty walking a quarter mile,climbing10stepswithoutresting,orperformingmobility‐relatedactivities of daily living. Exclusion criteria were any life‐threatening condition, participation in any research study involving medications or modification of eatingorexercisehabits,planstomovefromthegeographicareawithin3years, and difficulty in communicating with the study personnel or cognitive impairment. The Health ABC study protocol was approved by the Institutional Review Boards of the clinical sites. Written informed consent was obtained for allparticipants.ThecurrentstudypresentsananalysisoftheHealthABCdataset using 7‐year follow‐up data from participants who met the criteria for obstructive lung disease (OLD) (n=260) and control participants with normal lungfunction(n=1914).Participantswithmissingbodycompositionmeasuresat baseline and those with no measures of systemic inflammatory markers were excluded(Figure1). Measures Lungfunction,smokingstatusandsmokinghistory Lung function was assessed according to international standards as previously reported [10]. OLD was defined at baseline as reduced (i.e. < lower limit of normal,LLN)forcedexpiratoryvolumein1s(FEV1)/forcedvitalcapacity(FVC) as determined by age, sex, and race‐normalized values [10, 21, 22]. Cigarette smokingstatus(smoker,formersmoker,never‐smoker)wasrecordedbasedon self‐report. At baseline, smokers, former smokers and never‐smokers without OLD (i.e. FEV1/FVC≥LLN) were designated as the smoking controls, formerly smoking controls and never‐smoking controls, respectively. Participants with restrictive lung disease (FEV1/FVC≥LLN but FVC<LLN) were excluded. At baseline,thenumberofpackyearssmoked(1packyear=20cigarettes/dayfor 1year)wasobtainedbasedonself‐report. Lung function was repeated in years 5 and 8. Participants with valid lung functionmeasuresbothatbaselineandinyear5and/or8wereincludedinthe analysis of lung function decline. Consequently, lung function decline could be analyzed in n=1658 participants over a mean (SD) period of 6.2 (1.3) years including2.6(0.5)validmeasurementsperparticipant. 20 CHAPTER2 Figure1.Flowchartofparticipantselectionatbaseline. Abbreviations:ATS,AmericanThoracicSociety;FEV1,forcedexpiratoryvolumein1s;FVC,forcedvital capacity;LLN,lowerlimitofnormal;OLD,obstructivelungdisease. Bodycomposition Height was measured using a wall mounted stadiometer. Body weight was assessed to the nearest 0.1 kg using a standard balance beam scale and body mass index (BMI) was calculated as weight/height2 (kg/m2). Weight was measuredinyears1to6and8.WholebodydualenergyX‐rayabsorptiometry (DXA, Hologic 4500A software version 8.21, Waltham, MA) was applied to retrieve whole body fat mass, lean mass, leg lean mass (left and right leg were summed)andbonemineralcontent(BMC).DXAmeasurementswereperformed inyears1to6and8. Musclefunctionandmobility In years 1, 2, 4, 6 and 8, maximal isokinetic strength of the quadriceps muscle was assessed by a Kin‐Com 125 AP Dynamometer (Chattanooga, TN, USA) at 60°/s. The right leg was tested unless there was a contraindication. The maximum torque was taken from three reproducible and acceptable trials. Participants with a systolic blood pressure ≥200 mmHg or a diastolic blood pressure≥110mmHgorwhoreportedahistoryofcerebralaneurysm,cerebral bleeding, bilateral total knee replacement, or severe bilateral knee pain were 21 SMOKING,SARCOPENIAANDCOPD excludedfromtesting(12.7%oforiginalcohort)[15].Asaconsequence,baseline measuresforquadricepsstrengthwereavailableforn=228OLDparticipantsand n=1730 controls. Hand grip strength was measured using a Jamar Hydraulic HandDynamometeratbaselineandinyears2,4,6and8.Themaximumvalues oftherightandthelefthandweresummedfromtwotrials.Inyears1,4and6, lower extremity function was assessed using the SPPB (Short Physical Performance Battery) [23, 24]. The battery consists of a test of gait speed, standingbalance,andtimetorisefromachairfivetimes.Eachitemwasscored using a five‐point scale (0 = inability to complete test, 4 = highest level of performance)leadingtoacombined0‐12‐pointsummaryscale. Inflammatorymarkers At baseline, measuresofthe cytokines interleukin (IL)‐6, tumor necrosis factor (TNF)‐αandC‐reactiveprotein(CRP)wereobtainedfromfrozenstoredplasma orserum(seeforfurtherdetails[25]). Covariates At baseline, clinic site, age, race (black/white), oral steroid use, calcium supplementation and vitamin D supplementation were based on self‐report. Prevalent health conditions (diabetes, cardiovascular disease and depression) wereassessedbasedonself‐reportandmedicationinventory.Physicalactivityin theprecedingsevendayswasassessedatbaselinebyquestionnaire[26,27]. Statisticalanalyses Differences in descriptive characteristics at baseline between OLD persons, smokingcontrols, formerly smoking controlsand never‐smoking controls were tested using ANOVA for continuous variables, χ2 for categorical variables and Kruskal‐Wallistestforcontinuousvariableswithskeweddistributions.Post‐hoc comparisons were performed applying Bonferroni correction for multiple testing. Change in lung function could be calculated from a maximum of three time pointsonly, hence per participantsimple linearregression was applied to examine the yearly change (slope) in lung function. Subsequently, the mean slopes were tested between the study groups using ANOVA. The longitudinal data on body composition and physical functioning were analyzed using multilevel regression models, allowing for the intercepts and slopes to vary between the four groups. This type of analysis takes into account the intra‐ individualcorrelationbetweenrepeatedmeasurementsandallowstheinclusion of participants with incomplete data at follow‐up. Therefore, no imputation of missing data was applied. The primary model included group (OLD, smoking controls, formerly smoking controls, never‐smoking controls), age, race, clinic 22 CHAPTER2 site,examinationyear(time),oralsteroiduse(yes/no),calciumsupplementation (yes/no),vitaminDsupplementation(yes/no),cardiovasculardisease(yes/no), diabetes(yes/no),depression(yes/no),physicalactivity,andaninteractionterm withtimeforallofthesevariables.Thereportedslopesarethecoefficientsofthe interactiontermgroup*timeinwhichthenever‐smokingcontrolsservedasthe reference group. In the second model further adjustment was made for IL‐6, TNF‐α and CRP and their interactions with time. There were no significant interaction effects between race and clinic site with the group variable on changes in body composition or physical functioning (P>.05). Sample size considerationsprecludedexaminationoftheeffectofsmokingstatuswithinthe OLD group. The current analyses were performed for men and women separately because the gender distribution across the study groups was significantly different (P<.001), which was most pronounced in the formerly smokingcontrolsandnever‐smokingcontrols. A small proportion of participants did not have measurements of body composition and physical functioning due to missing clinic visits while being alive. To examine the sensitivity of the results from the multilevel regression analyses to these missing observations, we used a joint model for the primary outcomes and missing probabilities [28]. Statistical analyses were performed usingPASWStatistics17.0(SPSSinc.Chicago,IL).Differencesweredeclaredto bestatisticallysignificantatP<.05. Results Baseline characteristics are presented in Tables 1 (men) and 2 (women). The degreeofairflowlimitationinOLDpersonswasmild(FEV1>70%ofpredicted), moderate (FEV1 50‐70% of predicted) and severe (FEV1<50% of predicted) in 32%, 38% and 30% of cases in men and in 36%, 41% and 23% of cases in women, respectively. The proportion of smokers, former smokers and never‐ smokersintheOLDpersonswas63%,28%and9%inmenand46%,27%and 27%inwomen,respectively.Comparedtonever‐smokingcontrols,thedeclinein FEV1 was lower in OLD men (‐38±6 vs. ‐57±3 mL/yr, P=.038) but not in OLD women (‐33±5 vs. ‐40±2 mL/yr, P=.45) (Supplemental Table 1). The formerly smokingcontrolshadabstainedfromsmokingfor25(14)years.Theprevalence of co‐morbid conditions was not different across the groups (P>.05). Persons withOLDandsmokingcontrolshadcomparablelevelsofphysicalactivityasthe never‐smokingcontrols(P>.05).Inmen,OLDpersonshadincreasedCRPandIL‐ 6, and smoking controls had increased IL‐6 compared with never‐smoking controls (P<.05). In women, smoking controls had increased IL‐6 compared to never‐smokingcontrols(P<.05). In both sexes, persons with OLD and smoking controls showed striking similarities regarding lower measures of body composition and physical functioning as compared to the never‐smoking controls (Figure 2). In general, 23 SMOKING,SARCOPENIAANDCOPD Table 1. Baseline characteristics of men in the Health ABC Study according to obstructivelungdisease(OLD)statusandsmokingstatus. OLD(n=150) Smoking controls (n=74) Formerly smoking controls (n=534) Never‐ smoking controls (n=301) A B C D 73.4(2.9) 73.0(2.5) 73.7(2.9) 74.0(2.8) .06 ‐ 52 35 70 65 <.001 AC,BC,BD 60 50 47 51 .013 AC,AD 72(39‐114) .68 ‐ P Significant post‐hoc comparisonsa Demographics Age,y Race,%white Site,%Memphis Physicalactivity, kcal/kg/wkb 68(37‐105) 59(35‐125) 67(40‐114) Co‐morbidity,steroiduse,calciumandvitaminDsupplementation Depression,% 7 1 8 5 .22 ‐ Cardiovascular disease,% 25 24 30 23 .10 ‐ Diabetes,% 13 15 16 15 .91 ‐ Oralsteroiduse,% 1 1 2 0 .49 ‐ Calcium supplementation,% 5 7 7 9 .35 ‐ VitaminD supplementation,% 3 1 3 4 .63 ‐ 61(17) 93(12) 100(14) 102(15) 1.68(0.50) 2.47(0.41) 2.77(0.50) 56(7) 73(5) 75(5) 77(5) <.001 AB,AC,AD,BC,BD, CD 48(26‐64) 48(27‐60) 25(10‐41) 0(0) <.001 AC,AD,BC,BD,CD Lungfunctionandsmoking FEV1,%predc FEV1,L FEV1/FVC,ratio Packyearsb <.001 AB,AC,AD,BC,BD, CD 2.78(0.49) <.001 AB,AC,AD,BC,BD Systemicinflammatorymarkers IL‐6,pg/mlb 2.2(1.6‐3.6) 2.5(1.6‐3.9) 1.7(1.2‐2.7) 1.7(1.2‐2.3) <.001 AC,AD,BD CRP,µg/ml 2.0(1.2‐3.5) 1.5(0.9‐3.3) 1.3(0.9‐2.4) 1.3(0.9‐2.2) <.001 AC,AD TNF‐α,pg/mlb 3.1(2.4‐4.3) 3.2(2.3‐4.4) 3.3(2.6‐4.3) 3.1(2.4‐4.0) b .23 ‐ Abbreviations:CRP,C‐reactiveprotein;IL,interleukin;FEV1,forcedexpiratoryvolumein1s;FVC,forced vital capacity; SPPB, short physical performance battery; TNF‐α, tumor necrosis factor‐α. Data are mean (SD) unless specified otherwise. aCorrected for multiple testing. bMedian (IQR). cFrom reference equations[21]. the adjusted intercepts from the multilevel models (Figures 3 and 4 and the corresponding Supplemental Tables 2 and 3) showed similar findings to the baseline comparisons in Figure 2. While at baseline large differences were observedinbodycompositionandphysicalfunctioning,theratesoflongitudinal change of weight, fat mass, lean mass and strength were comparable between OLD persons and never‐smoking controls (all P>.05), except for the change in SPPBinOLDmen(P=.01)andBMCinOLDwomen(P=.02).Insmokingcontrols, onlyleanmassdeclinedfasterinwomen(P=.03)andBMCfasterinmen(P=.02) 24 CHAPTER2 Table2.BaselinecharacteristicsofwomenintheHealthABCStudyaccordingto obstructivelungdisease(OLD)statusandsmokingstatus. OLD(n=110) Smoking controls (n=83) Formerly smoking controls (n=332) Never– smoking controls (n=590) A B C D 72.8(2.8) 73.7(3.0) 73.3(2.8) 73.5(2.9) .06 ‐ 62 37 56 59 .001 AB,BC,BD 51 .11 P Significant post‐hoc comparisonsa Demographics Age,y Race,%white Site,%Memphis 42 43 46 Physicalactivity, kcal/kg/wkb 67(36‐91) 66(36‐107) 65(40‐97) 74(45‐113) .006 ‐ CD Co‐morbidity,steroiduse,calciumandvitaminDsupplementation Depression,% 12 16 11 11 .70 ‐ Cardiovascular disease,% 18 27 22 17 .42 ‐ Diabetes,% 10 15 11 13 .63 ‐ Oralsteroiduse,% 9 2 3 2 .001 AD Calcium supplementation,% 27 24 29 32 .35 ‐ VitaminD supplementation,% 9 7 13 15 .10 ‐ Lungfunctionandsmoking FEV1,%predc FEV1,L FEV1/FVC,ratio Packyearsb 65(19) 97(19) 101(18) 1.24(0.38) 1.66(0.33) 1.87(0.38) 104(18) <.001 AB,AC,AD,BD,CD 1.95(0.36) <.001 AB,AC,AD,BC,BD, CD 58(7) 75(6) 76(5) 77(5) <.001 AB,AC,AD,BD,CD 20(0‐51) 29(19‐50) 15(5‐38) 0(0) <.001 AB,AD,BC,BD,CD Systemicinflammatorymarkers IL‐6,pg/mlb 1.9(1.3‐2.9) 1.9(1.3‐2.8) 1.7(1.2‐2.5) 1.6(1.1‐2.5) .021 BC CRP,µg/mlb 2.1(1.1‐3.7) 2.0(1.2‐4.0) 2.2(1.3‐3.8) 1.6(1.0‐3.1) <.001 CD TNF‐α,pg/mlb 2.9(2.2‐3.8) 3.1(2.2‐4.0) 3.0(2.4‐3.9) 3.1(2.3‐4.0) .63 ‐ Abbreviations:CRP,C‐reactiveprotein;IL,interleukin;FEV1,forcedexpiratoryvolumein1s;FVC,forced vital capacity; SPPB, short physical performance battery; TNF‐α, tumor necrosis factor‐α. Data are mean (SD) unless specified otherwise. aCorrected for multiple testing. bMedian (IQR). cFrom reference equations[21]. comparedtonever‐smokingcontrols,whilethedeclinesinweightandfatmass werecomparable(P>.05). Further adjustment for baseline systemic cytokines resulted in a modest attenuation of several outcome measures (Supplemental Tables 2 and 3). In particular,thelowerbaselineandfasterdeclineofBMCinsmokingcontrolmen (andtoalesserextentinwomen)wasexplainedbythecytokinesfor26%and 25%,respectively.ThelowerquadricepsstrengthinmenandwomenwithOLD wasexplainedfor12%and18%bythecytokines,respectively. 25 SMOKING,SARCOPENIAANDCOPD Figure2.Baselinecharacteristicsofbodycompositionandphysicalfunctioning inmenandwomen. 26 CHAPTER2 Figure2.continued. Abbreviations:OLD,obstructivelungdisease;SPPB,shortphysicalperformancebattery.Barsrepresent themeansanderrorbarsrepresenttheSE.*P<.05. In additional analyses, pack years were added to model 1, which did not result in any major differences. Compared to the never‐smoking controls, the formerly‐smoking controls, smoking controls, and OLD persons had slightly higher probabilities of being missing along the seven years of follow‐up. However, thetrajectoriesof the outcomes essentially remainedthe same when we adjusted for missingness (not tabulated). The percentages of participants being alive at the year‐8 visit were 62%, 66%, 77% and 85% for the OLD 27 SMOKING,SARCOPENIAANDCOPD Figure 3. Longitudinal course of body composition and physical functioning accordingtoobstructivelungdiseaseandsmokingstatusinmen.a persons, smoking controls, formerly smoking controls and never‐smoking controls,respectively. Discussion In the current study, we have shown striking similarities in body composition and physical functioning between older adult men and women with mild‐to‐ moderate OLD and smokers with normal lung function. These were characterized by a markedly lower body weight, lean mass, fat mass, BMC and quadricepsstrengthcomparedtonever‐smokingcontrols.Interestingly,because longitudinal trajectories in the 8th decade of life were to a large extent comparable to those of their never‐smoking controls, the large baseline differences persisted over a period of 7 years follow up. This suggests that a common insult related to smoking induced a divergent pattern earlier in life, whichmaynotuniformlypersistintoold‐age. 28 CHAPTER2 Figure3.continued.a Abbreviations: OLD, obstructive lung disease; SPPB, short physical performance battery. aLines representthemeanpredictedvaluesadjustedfortime,age,site,race,diabetes,cardiovasculardisease, depression, physical activity, oral steroid use, calcium supplementation, vitamin D supplementation, time2, age⨯time, race⨯time, site⨯time, diabetes⨯time, cardiovascular disease⨯time, depression⨯time and physical activity⨯time, oral steroid use⨯time, calcium supplementation⨯time and vitamin D supplementation⨯time. #Intercept significantly different from never‐smoking controls, P<.05. ¶Slope significantlydifferentfromnever‐smokingcontrols,P<.05. TheuniquedesignoftheHealthABCStudyenabledustoinvestigateforthe firsttimethelongitudinalpatternandprogressionofbodycompositionchanges andthedeclineinphysicalfunctioningsimultaneouslyinpersonswithOLDand smokerswithoutOLDincomparisontoagingeffectsinanever‐smokingcontrol groupwithoutOLD.Furthermore,bydesignoftheHealthABCStudy,noneofthe participants had functional limitations at baseline, and likely as a result of this selection, physical activity and prevalence of co‐morbidity were comparable between the study groups. The Health ABC Study was therefore particularly of interest to examine the effects of smoking and OLD on body composition and physicalfunctioningwithaging.Ourresultsmay,however,notbegeneralizedto allolderadultsnortoclinicalCOPDpatientssincestudyparticipantswere70‐79 years old and well‐functioning at baseline, and the OLD group was defined by lungfunctionratherthanaclinicalCOPDdiagnosis.Therefore,itcannotberuled 29 SMOKING,SARCOPENIAANDCOPD Figure 4. Longitudinal course of body composition and physical functioning accordingtoobstructivelungdiseaseandsmokingstatusinwomen.a out that our data might underestimate “real” changes. Another strength of our studyisthatwecarriedoutasensitivityanalysistoestimatethepotentialeffect of missingobservationson the observed trajectories.This effect was estimated to be small which, however, does not rule out that survival bias may have obscured our results. While we were unable to examine the effect of smoking statuswiththeOLDpersonsduetosamplesizeconsiderations,resultsbetween groupsremainedsimilarafterfurtheradjustmentforpackyears,suggestingthat theobserveddifferencesareindependentofthequantityofsmoking. WefoundthatthedeclineinFEV1waslowerinOLDmencomparedtotheir never‐smoking controls. Because this data was generated from a relatively low numberoffollow‐uplungfunctionmeasureswearecarefulinitsinterpretation, but it suggests that longitudinal body composition and physical functioning trajectories in OLD persons in our study are not related to a faster decline in FEV1. In OLD men, but not in OLD women, we found an accelerated decline in SPPB.Thisgenderdifferencemaybeexplainedbyagreaterrelativedifferencein leg lean mass and quadriceps strength between OLD persons and never‐ smoking controls in men than in women. This is in line with a previous report 30 CHAPTER2 Figure4.continued.a Abbreviations: OLD, obstructive lung disease; SPPB, short physical performance battery. aLines representthemeanpredictedvaluesadjustedfortime,age,site,race,diabetes,cardiovasculardisease, depression, physical activity, oral steroid use, calcium supplementation, vitamin D supplementation, time2, age⨯time, race⨯time, site⨯time, diabetes⨯time, cardiovascular disease⨯time, depression⨯time and physical activity⨯time, oral steroid use⨯time, calcium supplementation⨯time and vitamin D supplementation⨯time. #Intercept significantly different from never‐smoking controls, P<.05. ¶Slope significantlydifferentfromnever‐smokingcontrols,P<.05. showingthattherelationbetweenalowerfat‐freemassandphysicaldisability wasmorepronouncedinmenwithCOPD[29].AlowerSPPBhasbeenstrongly related to subsequent disability and mortality [24, 30], and may thus be of clinical importance in particularly in men with OLD. Notably, despite a similar pattern of daily physical activity, quadriceps strength was much better able to discriminate between OLD persons, smoking controls and never‐smoking controls than hand grip strength. Smoking control women had an accelerated decline in lean mass compared to never‐smoking controls, which confirms previous cross‐sectional data of a sarcopenic phenotype in older smoking women[31]. Systemic inflammation has been considered a key player in the extrapulmonary manifestations of COPD [5], and has been linked to muscle atrophy [32] and bone demineralization [33]. In the present study we indeed 31 SMOKING,SARCOPENIAANDCOPD confirmed the presence of mildly elevated circulating cytokines in particularly OLD men but also in smoking controls. After further adjustment for systemic inflammatory markers we found little attenuation for the majority of outcome measures, but systemic inflammatory markers did explain 11‐26% of the observedbaselinedifferencesinBMC,andexplained25%oftheacceleratedBMC declineinsmokingcontrolmen. The observation that smoking cessation is associated with weight gain is well‐known [34]. While this effect is mainly considered a relatively short‐term effect(months)[35],formersmokersinourstudy–whoabstainedfromsmoking for~25years–stillshowedatrendtowardshigherbaselineweight,whichwas mainly due to higher fat mass. Apart from fat mass, body composition and physical functioning in former smokers were comparable to that of never‐ smokers,suggestingahighrecoverypotentialfromsmoking‐inducedlosses.As higherbodyweightandleanmasshavebeenassociatedwithbettersurvivalin COPD [36], it needs to be determined whether this recovery potential is as functional in the state of COPD. We found higher CRP in formerly smoking women, and borderline significantly higher TNF‐α in formerly smoking men, which may be related to metabolic effects associated with fat abundance or alteredfatdistributioninobesity. Although it was not part of our analyses, our data raise the possibility that low body and muscle mass may increase the risk of COPD development. In support of this, recent data from a large group of never‐smokers from the Burden of Obstructive Lung Disease Study showed that the risk of COPD was significantlyincreasedinthosewithaBMI<20kg/m2,especiallyinwomen[37]. In the case of smoking‐induced COPD, however, it remains to be investigated whetheracompromisedbodycompositionrelatedtosmokingcontributestothe riskofCOPDdevelopment.Ourobservationthatwhileoursmokingcontrolshad comparable pack years smoked as OLD persons and had a similarly compromised body composition but no airflow obstruction, indicates that it is notsolelylowbodyweightthatwouldincreasestheriskofCOPDdevelopment, but suggests that other factors such as genetic susceptibility to for example emphysemaandassociatedwastingareimportant. In conclusion, our study shows that smoking is not only an important risk factorinOLDetiology,butalsoadverselyaffectsbodycompositionandphysical functioning. The individual contributions of impaired weight gain and accelerated weight loss and a potential role for cytokinaemic stress associated withsmokingremaintobestudiedincomparablefuturelongitudinalstudiesin middle‐agedpersons. 32 CHAPTER2 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. GooneratneNS,PatelNP,CorcoranA.ChronicObstructivePulmonaryDiseasediagnosisandmanagementin olderadults.JAmGeriatrSoc.2010;58:1153‐62. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERSpositionpaper.EurRespirJ.2004;23(6):932‐46. ChatilaWM,ThomashowBM,MinaiOA,CrinerGJ,MakeBJ.Comorbiditiesinchronicobstructivepulmonary disease.ProcAmThoracSoc.2008;5(4):549‐55. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemicinflammation:asystematicreviewandameta‐analysis.Thorax.2004;59(7):574‐80. WoutersEF,ReynaertNL,DentenerMA,VernooyJH.Systemicandlocalinflammationinasthmaandchronic obstructivepulmonarydisease:isthereaconnection?ProcAmThoracSoc.2009;6(8):638‐47. VestboJ,PrescottE,AlmdalT,DahlM,NordestgaardBG,AndersenT,SorensenTI,LangeP.Bodymass,fat‐free bodymass,andprognosisinpatientswithchronicobstructivepulmonarydiseasefromarandompopulation sample:findingsfromtheCopenhagenCityHeartStudy.AmJRespirCritCareMed.2006;173(1):79‐83. EisnerMD,IribarrenC,YelinEH,SidneyS,KatzPP,AckersonL,LathonP,TolstykhI,OmachiT,BylN,etal. Pulmonary function and the risk of functional limitation in chronic obstructive pulmonary disease. Am J Epidemiol.2008;167(9):1090‐101. GoskerHR,ZeegersMP,WoutersEF,ScholsAM.Musclefibretypeshiftinginthevastuslateralisofpatients with COPD is associated with disease severity: a systematic review and meta‐analysis. Thorax. 2007;62(11):944‐9. Graat‐VerboomL,WoutersEF,SmeenkFW,vandenBorneBE,LundeR,SpruitMA.Currentstatusofresearch onosteoporosisinCOPD:asystematicreview.EurRespirJ.2009;34(1):209‐18. YendeS,WatererGW,TolleyEA,NewmanAB,BauerDC,TaaffeDR,JensenR,CrapoR,RubinS,NevittM,etal. Inflammatorymarkersareassociatedwithventilatorylimitationandmuscledysfunctioninobstructivelung diseaseinwellfunctioningelderlysubjects.Thorax.2006;61(1):10‐6. Scanlon PD, Connett JE, Wise RA, Tashkin DP, Madhok T, Skeans M, Carpenter PC, Bailey WC, Buist AS, EichenhornM,etal.LossofbonedensitywithinhaledtriamcinoloneinLungHealthStudyII.AmJRespirCrit CareMed.2004;170(12):1302‐9. OgaT,NishimuraK,TsukinoM,SatoS,HajiroT,MishimaM.Exercisecapacitydeteriorationinpatientswith COPD:longitudinalevaluationover5years.Chest.2005;128(1):62‐9. OgaT,NishimuraK,TsukinoM,SatoS,HajiroT,MishimaM.Longitudinaldeteriorationsinpatientreported outcomesinpatientswithCOPD.RespirMed.2007;101(1):146‐53. HabrakenJM,vanderWalWM,TerRietG,WeersinkEJ,TobenF,BindelsPJ.Health‐relatedqualityoflifeand functionalstatusinend‐stageCOPD:alongitudinalstudy.EurRespirJ.2011;37(2):280‐8. KosterA,VisserM,SimonsickEM,YuB,AllisonDB,NewmanAB,vanEijkJT,SchwartzAV,SatterfieldS,Harris TB. Association between fitness and changes in body composition and muscle strength. J Am Geriatr Soc. 2010;58(2):219‐26. Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A, Pawelec G. Aging, frailty and age‐related diseases.Biogerontology.2010;11(5):547‐63. Montes de Oca M,Loeb E, Torres SH, De SanctisJ, Hernandez N, Talamo C. Peripheral muscle alterationsin non‐COPDsmokers.Chest.2008;133(1):13‐8. Wust RC, Morse CI, de Haan A, Rittweger J, Jones DA, Degens H. Skeletal muscle properties and fatigue resistanceinrelationtosmokinghistory.EurJApplPhysiol.2008;104(1):103‐10. Tanni SE, Pelegrino NR, Angeleli AY, Correa C, Godoy I. Smoking status and tumor necrosis factor‐alpha mediatedsystemicinflammationinCOPDpatients.JInflamm(Lond).2010;7:29. LevitzkyYS,GuoCY,RongJ,LarsonMG,WalterRE,KeaneyJF,Jr.,SutherlandPA,VasanA,LipinskaI,EvansJC, et al. Relation of smoking status to a panel of inflammatory markers: the framingham offspring. Atherosclerosis.2008;201(1):217‐24. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population.AmJRespirCritCareMed.1999;159(1):179‐87. MehrotraN,FreireAX,BauerDC,HarrisTB,NewmanAB,KritchevskySB,MeibohmB.Predictorsofmortality inelderlysubjectswithobstructiveairwaydisease:thePILEscore.AnnEpidemiol.2010;20(3):223‐32. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scher PA, Wallace RB. A short physicalperformancebatteryassessinglowerextremityfunction:associationwithself‐reporteddisabilityand predictionofmortalityandnursinghomeadmission.JGerontol.1994;49(2):M85‐94. GuralnikJM,FerrucciL,SimonsickEM,SaliveME,WallaceRB.Lower‐extremityfunctioninpersonsoverthe ageof70yearsasapredictorofsubsequentdisability.NEnglJMed.1995;332(9):556‐61. KosterA,StenholmS,AlleyDE,KimLJ,SimonsickEM,KanayaAM,VisserM,HoustonDK,NicklasBJ,Tylavsky FA, et al. Body Fat Distribution and Inflammation Among Obese Older Adults With and Without Metabolic Syndrome.Obesity(SilverSpring).2010;18(12):2354‐61. KosterA,PatelKV,VisserM,vanEijkJT,KanayaAM,deRekeneireN,NewmanAB,TylavskyFA,Kritchevsky SB,HarrisTB.Jointeffectsofadiposityandphysicalactivityonincidentmobilitylimitationinolderadults.J AmGeriatrSoc.2008;56(4):636‐43. AinsworthBE,HaskellWL,WhittMC,IrwinML,SwartzAM,StrathSJ,O'BrienWL,BassettDR,Jr.,SchmitzKH, Emplaincourt PO, et al. Compendium of physical activities: an update of activity codes and MET intensities. MedSciSportsExerc.2000;32(9Suppl):S498‐504. 33 SMOKING,SARCOPENIAANDCOPD 28. Ghosh P, Tu W. Assessing Sexual Attitudes and Behaviors of Young Women: A Joint Model with Nonlinear TimeEffects,TimeVaryingCovariates,andDropouts.JAmStatAssoc.2008;103(484):1496‐507. 29. Schols AM, Broekhuizen R, Weling‐Scheepers CA, Wouters EF. Body composition and mortality in chronic obstructivepulmonarydisease.AmJClinNutr.2005;82(1):53‐9. 30. MelzerD,LanTY,GuralnikJM.Thepredictivevalidityformortalityoftheindexofmobility‐relatedlimitation‐‐ resultsfromtheEPESEstudy.AgeAgeing.2003;32(6):619‐25. 31. CastilloEM,Goodman‐GruenD,Kritz‐SilversteinD,MortonDJ,WingardDL,Barrett‐ConnorE.Sarcopeniain elderlymenandwomen:theRanchoBernardostudy.AmJPrevMed.2003;25(3):226‐31. 32. LangenRC,ScholsAM,KeldersMC,vanderVeldenJL,WoutersEF,Janssen‐HeiningerYM.Musclewastingand impaired muscle regeneration in a murine model of chronic pulmonary inflammation. Am J Respir Cell Mol Biol.2006;35(6):689‐96. 33. McLeanRR.Proinflammatorycytokinesandosteoporosis.CurrOsteoporosRep.2009;7(4):134‐9. 34. Filozof C, Fernandez Pinilla MC, Fernandez‐Cruz A. Smoking cessation and weight gain. Obes Rev. 2004;5(2):95‐103. 35. CropseyKL,McClureLA,JacksonDO,VillalobosGC,WeaverMF,StitzerML.TheImpactofQuittingSmokingon Weight Among Women Prisoners Participating in a Smoking Cessation Intervention. Am J Public Health. 2010;100(8):1442‐8. 36. Schols AM, Slangen J, Volovics L, Wouters EF. Weight loss is a reversible factor in the prognosis of chronic obstructivepulmonarydisease.AmJRespirCritCareMed.1998;157(6Pt1):1791‐7. 37. LamprechtB,McBurnieMA,VollmerWM,GudmundssonG,WelteT,Nizankowska‐MogilnickaE,StudnickaM, BatemanE,AntoJM,BurneyP,etal.COPDinNeverSmokers:ResultsFromthePopulation‐BasedBurdenof ObstructiveLungDiseaseStudy.Chest.2011;139(4):752‐63. 34 CHAPTER2 Supplementalmaterial SupplementalTable1.Declineinlungfunctioninn=1658participantswithat leasttwovalidlungfunctionmeasurementsintime(mean[SD]follow‐upperiod of6.2[1.3]yearsincluding2.6[0.5]validmeasurementsperparticipant). OLD Smoking controls Formerly smoking controls Never‐ smoking controls P Significant post‐hoc comparisonsa A B C D 91 48 406 240 ‐38(6) ‐54(7) ‐55(3) ‐57(3) .039 AD Women 75 50 262 486 ‐33(5) ‐39(5) ‐40(2) ‐40(2) .45 ‐ Men n FEV1(mL/yr) n FEV1(mL/yr) Abbreviations:FEV1,forcedexpiratoryvolumein1s;OLD,obstructivelungdisease.Dataaremeans(SE). aCorrectedformultipletesting. 35 SMOKING,SARCOPENIAANDCOPD SupplementalTable2.Interceptsandslopesofbodycompositionandphysical functioninginmen. Model1 Weight(kg) Intercept P Model2 Slope P Intercept P Slope P Never‐smokingcontrols Ref Ref Ref Ref Formerlysmokingcontrols 1.66 .08 0.01 .88 1.19 .23 0.001 .92 Smokingcontrols ‐6.53 <.001 ‐0.14 .37 ‐6.34 .001 ‐0.18 .26 OLD ‐5.08 <.001 ‐0.07 .54 ‐5.31 <.001 ‐0.01 Fatmass(kg) .94 Never‐smokingcontrols Ref Ref Ref Ref Formerlysmokingcontrols 1.34 .011 ‐0.05 .36 1.12 .040 ‐0.06 .29 Smokingcontrols ‐3.11 .001 ‐0.08 .41 ‐3.05 .003 ‐0.11 .30 OLD ‐2.02 .006 ‐0.10 .19 ‐2.21 .005 ‐0.06 .43 Ref Ref Ref Ref Leanmass(kg) Never‐smokingcontrols Formerlysmokingcontrols 0.45 .37 ‐0.01 .88 0.22 .68 ‐0.00 .91 Smokingcontrols ‐3.15 .001 ‐0.01 .86 ‐3.01 .002 ‐0.03 .69 OLD ‐2.83 <.001 ‐0.07 .20 ‐2.85 <.001 ‐0.04 .46 Ref Ref Ref Ref Legleanmass(kg) Never‐smokingcontrols Formerlysmokingcontrols 0.02 .92 ‐0.01 .71 ‐0.04 .82 ‐0.00 .88 Smokingcontrols ‐1.27 <.001 ‐0.02 .56 ‐1.17 .001 ‐0.03 .36 OLD ‐1.30 <.001 0.00 .88 ‐1.26 <.001 0.01 .59 Ref Ref Ref 0.001 .20 Bonemineralcontent(kg) Never‐smokingcontrols Ref Formerlysmokingcontrols ‐0.007 .83 .27 ‐0.012 .70 0.002 Smokingcontrols ‐0.143 .010 ‐0.008 .017 ‐0.106 .07 ‐0.006 .08 OLD ‐0.176 <.001 0.002 ‐0.170 <.001 0.003 .32 Ref Ref Ref Ref Quadricepsstrength(Nm) Never‐smokingcontrols .82 Formerlysmokingcontrols 0.08 .98 ‐0.12 .74 0.33 .90 ‐0.04 .92 Smokingcontrols ‐7.18 .13 ‐0.42 .56 ‐4.43 .38 ‐0.77 .30 OLD ‐14.21 <.001 0.90 .12 ‐12.55 .001 0.76 .21 Abbreviations:OLD,obstructivelungdisease;Ref,reference.Theinterceptsdenotetheadjustedbaseline differenceswiththenever‐smokingcontrols.Theslopesdenotetheadjusteddifferencesinyearlychange with the never‐smoking controls. Model 1: adjusted for time, age, site, race, diabetes, cardiovascular disease, depression, physical activity, oral steroid use, calcium supplementation, vitamin D supplementation, time2,age⨯time, race⨯time,site⨯time,diabetes⨯time,cardiovascular disease⨯time, depression⨯time, physical activity⨯time, oral steroid use⨯time, calcium supplementation⨯time, vitamin D supplementation⨯time. Model 2: further adjustment for IL‐6, TNF‐α, CRP, IL‐6⨯time, TNF‐ α⨯timeandCRP⨯time. 36 CHAPTER2 SupplementalTable2.continued. Model1 Intercept Model2 P Slope P Intercept P Slope Ref Ref Ref Ref Formerlysmokingcontrols 1.68 .13 ‐0.07 .61 1.51 .19 ‐0.03 .82 Smokingcontrols ‐3.65 .07 0.09 .71 ‐3.42 .11 0.16 .54 OLD ‐0.57 .71 ‐0.13 .71 0.01 .99 ‐0.14 .51 Ref Ref Ref Ref Handgripstrength(kg) Never‐smokingcontrols SPPB(0‐12) Never‐smokingcontrols P Formerlysmokingcontrols ‐0.09 .43 ‐0.00 .94 ‐0.11 .33 0.01 .71 Smokingcontrols ‐0.26 .21 ‐0.04 .53 ‐0.27 .22 ‐0.01 .87 OLD ‐0.22 .16 ‐0.12 .01 ‐0.14 .40 ‐0.14 .01 Abbreviations:OLD,obstructivelungdisease;Ref,reference;SPPB,shortphysicalperformancebattery. The intercepts denote the adjusted baseline differences with the never‐smoking controls. The slopes denotetheadjusteddifferencesinyearlychangewiththenever‐smokingcontrols.Model1:adjustedfor time, age, site, race, diabetes, cardiovascular disease, depression, physical activity, oral steroid use, calcium supplementation, vitamin D supplementation, time2, age⨯time, race⨯time, site⨯time, diabetes⨯time, cardiovascular disease⨯time, depression⨯time, physical activity⨯time, oral steroid use⨯time, calcium supplementation⨯time, vitamin D supplementation⨯time. Model 2: further adjustmentforIL‐6,TNF‐α,CRP,IL‐6⨯time,TNF‐α⨯timeandCRP⨯time. 37 SMOKING,SARCOPENIAANDCOPD SupplementalTable3.Interceptsandslopesofbodycompositionandphysical functioninginwomen. Model1 Model2 Intercept P Slope P Intercept P Slope Ref Ref Ref Ref Weight(kg) Never‐smokingcontrols P Formerlysmokingcontrols 1.29 .17 ‐0.08 .25 1.55 .11 ‐0.04 .58 Smokingcontrols ‐4.93 .003 ‐0.14 .29 ‐5.56 .001 ‐0.07 .61 OLD ‐4.29 .003 ‐0.19 .09 ‐3.51 .019 ‐0.17 .15 Ref Ref Ref Ref Fatmass(kg) Never‐smokingcontrols Formerlysmokingcontrols 0.86 .17 ‐0.00 .99 0.89 .16 0.03 .51 Smokingcontrols ‐3.55 .001 0.03 .72 ‐4.13 <.001 0.09 .32 OLD ‐2.62 .006 ‐0.04 .57 ‐2.23 .023 ‐0.02 .81 Ref Ref Ref Ref ‐0.01 .55 ‐0.01 .59 Leanmass(kg) Never‐smokingcontrols Formerlysmokingcontrols 0.33 .39 0.55 .17 Smokingcontrols ‐1.38 .039 ‐0.10 .028 ‐1.43 .039 ‐0.10 .049 OLD ‐1.72 .003 ‐0.03 .40 ‐1.34 .030 ‐0.02 Ref Ref Ref Ref ‐0.02 .07 ‐0.02 .09 Legleanmass(kg) Never‐smokingcontrols .56 Formerlysmokingcontrols 0.12 .42 0.21 .19 Smokingcontrols ‐0.62 .018 ‐0.07 .001 ‐0.66 .016 ‐0.06 .002 OLD ‐0.71 .002 ‐0.01 .72 ‐0.58 .017 ‐0.00 Ref Ref Ref .93 .79 0.001 .48 Bonemineralcontent(kg) Never‐smokingcontrols Ref .94 Formerlysmokingcontrols 0.002 0.002 .19 0.006 Smokingcontrols ‐0.121 .003 ‐0.001 .68 ‐0.108 .010 ‐0.002 .32 OLD ‐0.093 .008 ‐0.004 .024 ‐0.083 .027 ‐0.005 .017 Quadricepsstrength(Nm) Never‐smokingcontrols Ref Ref Ref Ref .77 Formerlysmokingcontrols ‐0.66 .69 0.13 .70 ‐0.42 .82 0.11 Smokingcontrols ‐6.05 .048 0.09 .87 ‐5.27 .10 ‐0.09 .89 OLD ‐7.57 .003 0.12 .82 ‐6.21 .025 0.06 .92 Abbreviations:OLD,obstructivelungdisease;Ref,reference.Theinterceptsdenotetheadjustedbaseline differenceswiththenever‐smokingcontrols.Theslopesdenotetheadjusteddifferencesinyearlychange with the never‐smoking controls. Model 1: adjusted for time, age, site, race, diabetes, cardiovascular disease, depression, physical activity, oral steroid use, calcium supplementation, vitamin D supplementation, time2,age⨯time, race⨯time,site⨯time,diabetes⨯time,cardiovascular disease⨯time, depression⨯time, physical activity⨯time, oral steroid use⨯time, calcium supplementation⨯time, vitamin D supplementation⨯time. Model 2: further adjustment for IL‐6, TNF‐α, CRP, IL‐6⨯time, TNF‐ α⨯timeandCRP⨯time. 38 CHAPTER2 SupplementalTable3.continued. Model1 Intercept Model2 P Slope P Intercept P Slope Ref Ref Ref Ref Formerlysmokingcontrols 0.77 .29 ‐0.06 .55 0.42 .58 ‐0.04 .71 Smokingcontrols ‐1.53 .24 0.02 .93 ‐1.35 .31 0.06 .78 OLD ‐1.64 .14 0.12 .44 ‐1.57 .19 0.14 .42 Ref Ref Ref Ref Handgripstrength(kg) Never‐smokingcontrols SPPB(0‐12) Never‐smokingcontrols P Formerlysmokingcontrols 0.00 .99 ‐0.02 .61 ‐0.01 .96 ‐0.04 .29 Smokingcontrols ‐0.20 .33 0.03 .61 ‐0.24 .26 0.03 .65 OLD ‐0.33 .06 ‐0.04 .40 ‐0.34 .07 ‐0.09 .10 Abbreviations:OLD,obstructivelungdisease;Ref,reference;SPPB,shortphysicalperformancebattery. The intercepts denote the adjusted baseline differences with the never‐smoking controls. The slopes denotetheadjusteddifferencesinyearlychangewiththenever‐smokingcontrols.Model1:adjustedfor time, age, site, race, diabetes, cardiovascular disease, depression, physical activity, oral steroid use, calcium supplementation, vitamin D supplementation, time2, age⨯time, race⨯time, site⨯time, diabetes⨯time, cardiovascular disease⨯time, depression⨯time, physical activity⨯time, oral steroid use⨯time, calcium supplementation⨯time, vitamin D supplementation⨯time. Model 2: further adjustmentforIL‐6,TNF‐α,CRP,IL‐6⨯time,TNF‐α⨯timeandCRP⨯time. 39 CHAPTER3 Loss of quadriceps muscle oxidative phenotypeanddecreasedendurancein patientswithmild‐to‐moderateCOPD BramvandenBorst,IlseG.M.Slot,ValéryA.C.V.Hellwig,BettineA.H. Vosse, Marco C.J.M. Kelders, Esther Barreiro, Annemie M.W.J. Schols, HarryR.Gosker JournalofAppliedPhysiology2012Jul19(Epubaheadofprint) 41 SKELETALMUSCLEFATIGUEINEARLYCOPD Abstract Background:Beingwell‐establishedinadvancedchronicobstructivepulmonary disease (COPD), skeletal muscle dysfunction and its underlying pathology have been scarcely investigated in patients with mild‐to‐moderate airflow obstruction. We hypothesized that a loss of oxidative phenotype (oxphen), associated with decreased endurance, is already present in skeletal muscle of mild‐to‐moderateCOPDpatients. Methods: In quadriceps muscle biopsies from n=29 COPD patients (forced expiratory volume in 1s [FEV1] 58±16 %pred, body mass index [BMI] 26±4 kg/m2)andn=15controls(BMI25±3kg/m2)weassessedfibertypedistribution, fiber cross‐sectional areas (CSA), oxidative and glycolytic gene expression, OXPHOSproteinlevels,metabolicenzymeactivity,andlevelsofoxidativestress markers. Quadriceps function was assessed by isokinetic dynamometry, body composition by dual‐energy X‐ray absorptiometry, exercise capacity by an incrementalloadtest,andphysicalactivitylevelbyaccelerometry. Results: Compared to controls, patients had comparable fat‐free mass index (FFMI), quadriceps strength and fiber CSA, but quadriceps endurance was decreasedby29%(P=.002).Patientshadaclearlossofmuscleoxphen:afiber typeI‐to‐IIshift,decreasedlevelsofOXPHOScomplexesIVandVsubunits(47% and 31% respectively, P<.05), a decreased ratio of 3‐hydroxyacyl‐CoA dehydrogenase/phosphofructokinase(PFK)enzymeactivities(38%,P<.05),and decreased peroxisome proliferator‐activated receptor‐γ coactivator‐1α (40%; P<.001)versusincreasedPFK(67%;P<.001)geneexpressionlevels.Withinthe patients, markers of oxphen were significantly positively correlated with quadricepsenduranceandinverselywiththeincreaseinplasmalactaterelative to work rate during the incremental test. Levels of protein carbonylation, tyrosine nitration and malondialdehyde protein adducts were comparable betweenpatientsandcontrols.However,amongpatientsoxidativestresslevels significantly correlated inversely with markers of oxphen and quadriceps endurance. Conclusion: Reduced muscle endurance associated with underlying loss of muscle oxphen is already present in patients with mild‐to‐moderate COPD withoutmusclewasting. 42 CHAPTER3 Introduction Skeletal muscle dysfunction is a hallmark of advanced chronic obstructive pulmonary disease (COPD) and significantly contributes to decreased exercise capacityandpoorqualityoflife[1,2].Peripheralskeletalmusclewastinganda loss of oxidative phenotype (oxphen) are the two major myopathological findingsrecognizedinadvancedCOPDpatients,beingassociatedwithdecreased muscle strength [3] and endurance [4], respectively. Important to note is that studiesinvestigatingskeletalmuscledysfunctionanditsunderlyingpathologyin COPDhavebeenperformedalmostexclusivelyinpatientswithGOLDstages3‐4 withsignificantmusclewasting.IntheInterdisciplinaryCommunity‐basedCOPD managementtrial,VanWeteringetal.[5]haverecentlyshownthatpatientswith onaveragemild‐to‐moderateCOPD(meanforcedexpiratoryvolumein1s[FEV1] 60%ofpredicted)respondedwelltoalifestyleinterventionprogramintermsof improvementincycleendurancecapacityandhealthstatus.Musclestrengthand muscle mass of that study group were within the normal range, but no informationwasavailableregardingperipheralmuscleenduranceandmarkers ofskeletalmuscleoxphen. LossofperipheralmuscleoxpheninadvancedCOPDincludesafibertypeI‐ to‐II shift and reduced activities of enzymes involved in oxidative energy metabolism [4, 6, 7]. In addition, Remels et al. [8] previously showed that key oxphenregulators(peroxisomeproliferator‐activatedreceptors[PPARs],PPAR‐ γ coactivator‐1α [PGC‐1α], mitochondrial transcription factor A [TFAM]) were reduced in muscles of patients with advanced COPD. Moreover, loss of muscle oxphen may render the muscle more susceptible to oxidative stress [9‐11]. Oxidativestressisthoughttobeanimportantplayerinskeletalmusclewasting and dysfunction in COPD [12, 13]. However, data on muscle oxphen and oxidativestressinCOPDpatientswithmilderdegreesofairflowobstructionare scarce. In the current study we compared markers of oxphen measured in quadriceps muscle biopsies from patients with on average mild‐to‐moderate COPD and age‐, sex‐, and body mass index (BMI)‐matched healthy controls. In addition, we explored associations between muscle metabolic profile and quadricepsfunction,exercisecapacity,physicalactivitylevelandskeletalmuscle oxidative stress. We hypothesized that a loss of oxphen, associated with decreasedendurance,isalreadypresentinskeletalmuscleofmild‐to‐moderate COPDpatients. 43 SKELETALMUSCLEFATIGUEINEARLYCOPD Methods Subjectsandstudydesign The study population comprised n=29 clinically stable mild‐to‐moderate COPD patientsandn=15healthycontrols.Patientswererecruitedfromtheoutpatient clinic of the Maastricht University Medical Center+ (MUMC+, Maastricht, The Netherlands) and via advertisements in local newspapers. Patients were excluded in case of long‐term oxygen therapy, oral prednisolone use, acute exacerbationwithhospitaladmissioninthepasteightweeksandrehabilitation inthepastsixmonths.Patientswithknownco‐morbiditypotentiallyinterfering with study outcome parameters were carefully excluded. These included diabetes,recentcardiovascularevents,inflammatoryboweldisease,obstructive sleep apnea, thyroid disease, and cancer. Healthy controls were recruited via advertising in local newspapers. The absence of these diseases in the healthy subjects was verified through history‐taking by a physician, and pulmonary function tests verified absence of airflow limitation in these subjects. Care was taken to select a group of healthy controls with similar age, BMI and sex distributionastheCOPDpatients,regardlessoftheirdailyphysicalactivitylevel. Writteninformedconsentwasobtainedfromallsubjectsandtheethicalreview boardoftheMUMC+approvedthestudy(08‐2‐059).Thetrialwasregisteredat www.trialregister.nlasNTR1402. On day 1, body composition and quadriceps function were assessed as described below, and subjects started wearing an accelerometer for 6 days in ordertoobjectivelyquantifyphysicalactivitylevel.Onday7,theaccelerometry data was retrieved, quadriceps tissue samples were obtained, pulmonary functionwasassessed,andanincrementalloadtestwasperformed. Pulmonaryfunction,smokingstatusandexercisecapacity Pulmonary function testing included forced spirometry and single breath diffusion capacity measurement (Masterlab, Jaeger, Würzburg, Germany). Instrumentswerecalibratedtwiceaday.Allvaluesobtainedwereexpressedasa percentageofreferencevalues[14].Smokingstatuswasbasedonself‐reportand those who had smoked or were current smokers were designated as ever‐ smokers. All subjects performed an incremental load cycling test to determine peakoxygenuptake(VO2peak)andpeakload(Wpeak)aspreviouslydescribed [15]. Arterial punctures of the radial artery at rest and at VO2 peak were availablefromn=19COPDpatientsandn=11healthysubjects.Arterialbloodgas analyses and lactate concentrations were determined (Blood gas analyzer 865, ChironDiagnostics,Emeryville,CA). 44 CHAPTER3 Anthropometryandbodycomposition Heightinmetersandweightinkilogramswereassessedonastandardscale.BMI wascalculatedasweight/height2.Whole‐bodydual‐energyX‐rayabsorptiometry was performed to assess body composition as described [16]. Fat‐free mass index(FFMI)wascalculatedasfat‐freemass/height2.Theprevalenceofmuscle depletionwasexploredbyapplyingthecriteriafromScholsetal.[17](FFMI<16 kg/m2formenandFFMI<15kg/m2forwomen). Quadricepsenduranceandstrength Isokinetic muscle endurance and strength of the dominant knee extensor (quadriceps muscle) were measured using a dynamometer (Biodex System, Biodex Corporation, Shirley, New York, USA). Subjects were seated upright on thechairofthedynamometerwithsupportoftheback.Atthelevelofthechest, pelvisandthigh,subjectsweresecuredwithstraps.Thehipjointwasatanangle between90‐100°offlexionduringtesting.Thetestconsistedofthirtysequential volitionalmaximalcontractionsatanangularvelocityof90°/s,duringwhichthe subjectwasstronglyencouraged.Maximalisokineticstrengthwasdefinedasthe highest peak torque (in N·m) in this series of thirty. To determine isokinetic quadricepsendurance,theproportionaldeclineinpeaktorques(relativetothe highest peak torque) per repetition (%N·m/rep) was used as determined by linearregression,asdescribedpreviously[18].Weusedthisslopeasameasure of quadriceps endurance (i.e., a slope closer to zero indicates a better endurance). Valid quadriceps endurance measures were available for n=24 COPDpatientsandn=13healthycontrols. Dailyphysicalactivity Physical activity (PA) was measured using a dual‐axis GT1M accelerometer (ActiGraph™,LLC,FortWaltonBeach,FL,USA)forsixconsecutivedays(4week daysand2weekenddays).Subjectswereinstructedtoweartheaccelerometer during the time they were not asleep, except when showering or bathing [19]. Theaccelerometerwasfirmlyattachedtoanelasticbeltwornatthewaist.The accelerometer registers PA in ‘counts’, which are the summation of the accelerationsmeasuredduringaspecifiedtimeinterval(epoch),whichwasset atoneminute.Countsrepresenttheintensityofactivityinthatepoch.Non‐wear timewasdefinedas60consecutivecountsof0,inwhichuptotwoepochs<100 countswereallowed[20].Onlydayswith≥10hoursofweartimewereaccepted as valid days [20]. The total amount of PA was expressed as the total counts divided by the total wear time (counts/min). Cut‐off points for sedentary, lifestyle and combined moderate‐to‐vigorous PA (MVPA) intensity levels were defined as <100, 100‐759, ≥760 counts/min, respectively [20, 21]. The time 45 SKELETALMUSCLEFATIGUEINEARLYCOPD spentineachcategoryofintensitywaspresentedasapercentageoftotalwear time. Furthermore, we analyzed the number, duration and intensity of MVPA bouts(≥10consecutiveminutesspentinMVPA)[22].TheclassificationofMVPA bouts was motivated by the PA recommendations of the Centers for Disease Control and Prevention and the American College of Sports Medicine [23] and theBritishAssociationofSportandExerciseSciences[24],whichcallforMVPA to be accumulated in bouts of ≥10 min to achieve health benefits. Moreover, these recommendations call for at least 150 min/week of bouted MVPA. We investigated whether the participants in our study complied with these recommendations,accountingforthenumberofvalidaccelerometrydays. Skeletalmusclebiopsy Biopsiesofthequadricepsmuscle(vastuslateralis)fromthedominantlegwere obtained using the needle biopsy technique [25]. Muscle tissue was frozen in melting isopentane precooled in liquid nitrogen and stored at −80°C for histologicalpurposes.Anotherspecimenwassnap‐frozeninliquidnitrogenand storedat−80°Cforgeneandproteinexpressionanalysesandforenzymeactivity assays. Fibersizeandcompositionanalysis 5 μm serial cryosections with fibers in transverse orientation were cut from OCT‐embeddedmusclebiopsiesonacryostatmicrotome(LeicaCM1900,Meyer Instruments, USA) at −20°C and mounted on SuperFrost microscope slides (Menzel‐Gläser, Braunschweig, Germany) to be stored at −80°C until further analyses. For immunohistochemistry, sections were incubated with primary anti‐myosin heavy chain (MyHC) I (Developmental Studies Hybridoma Bank [DSHB],UniversityofIowa,USA),anti‐MyHCIIa(DSHB,UniversityofIowa,USA) and anti‐laminin (Sigma, Zwijndrecht, the Netherlands) followed by secondary antibodies labeled with Alexa Fluor 555, Alexa Fluor 488 and Alexa Fluor 350 (Invitrogen,Breda,theNetherlands).Fibertypingwasaidedbymeansofmyosin ATPase‐activity staining with acidic pre‐incubation at pH 4.40 [26]. Immunofluorescence‐stainedandATPase‐stainedsectionsweremicroscopically photographed at 10× magnification. In a blinded fashion, fibers were classified primarily based on immunofluorescence, with ATPase‐stained sections used to confirmtypeI/IIaandtypeIIa/IIxhybridfibertypes.Fibercross‐sectionalarea was measured with Lucia 4.82 software (Laboratory Imaging, Czech Republic) basedonlamininstainingofthebasementmembrane[27]. 46 CHAPTER3 RNAextractionandRT‐qPCRanalysis 10–30 mg muscle tissue was homogenized in Denaturation Solution (ToTALLY RNA™ Kit; Ambion Ltd., Foster City, CA, USA) using a Polytron PT 1600 E (Kinematica AG, Littau/Luzern, Germany) and RNA extracted according to the supplier’s protocol, followed by genomic DNA removal and clean‐up with the RNeasyMiniKitwithRNase‐freeDNase(Qiagen,Venlo,TheNetherlands).After elution, RNA concentration was determined using a spectrophotometer (NanoDrop ND‐1000, Isogen Lifescience, IJsselstein, The Netherlands) and integrity verified for a selection of samples by gel electrophoresis and on a Bioanalyzer (Agilent Technologies, Amstelveen, The Netherlands). 400 ng RNA wasreversetranscribedtocDNAwithanchoredoligo(dT)primersaccordingto the supplier’s protocol (Transcriptor First Strand cDNA Synthesis kit, Roche Diagnostics,Woerden,TheNetherlands).RT‐qPCRprimersweredesignedbased on Ensembl transcript sequences or selected from literature [28, 29] and ordered from Sigma Genosys (Zwijndrecht, the Netherlands). The genes encodingPGC‐1α,PGC‐1β,PGCrelatedcoactivator(PRC),PPAR‐α,Tfam,Nuclear Respiratory Factor (NRF)‐1, NRF‐2α, Myosin Heavy Chain (MHC) I, muscle phosphofructokinase (PFKM), MHCIIa and MYHCIIx were the target genes. RT‐ qPCRreactionscontainedSensiMixSYBRHi‐ROXKit(Quantace‐Bioline,London, UK)with300nMprimersandwererunin384‐wellMicroAmpOptical384‐Well Reaction Plate (Applied Biosystems, Nieuwerkerk a/d IJssel, The Netherlands) ona7900HTFastReal‐TimePCRSystem(AppliedBiosystems).Standardcurves, preparedfrompooledcDNA,andmeltcurveswereanalyzedtoverifyefficiency and specificity of amplification. Twelve reference genes (ALAS1, ACTB, B2M, PPIA,GAPDH,GUSB,HMBS,HPRT1,RPL13A,RPLP0,UBC,YWHAZ)weremeasured and stability of expression was assessed by visual inspection of expression differencesbetweenthestudygroupsandastabilityassessmentbygeNorm[29]. Eventually,ninereferencegenes(allexceptACTB,GAPDHandUBC)wereusedto calculateageNormfactor,whichwasusedtonormalizeexpressionlevelsofthe targetgenes. ImmunoblottingofOXPHOSsubunitsandoxidativestressmarkers 10–20 mg tissue was crushed in liquid nitrogen and homogenized in 400 μl IP lysisbuffer(50mMTris,150mMNaCl,10%glycerol,0.5%NonidetP40,1mM EDTA, 1 mM Na3VO4, 5 mM NaF, 10 mM β‐glycerophosphate, 1 mM Na4O7P2, 1 mMdithiothreitol,10μg/mlleupeptin,1%aprotenin,1mMPMSF,pH7.4)witha Polytron PT 1600 E (Kinematica). After homogenization, samples were incubatedfor15minutesonarotatingwheelat4°Candspunfor30minutesat maximum speed (20817×g) in a centrifuge cooled to 4°C. Supernatant was aliquoted,snap‐frozenandstoredwithoutsamplebufferat−80°Cuntilanalysis. 47 SKELETALMUSCLEFATIGUEINEARLYCOPD Proteinconcentrationinlysateswasdeterminedusingthebicinchoninicacid assay (Pierce, Thermo Fisher Scientific, Breda, The Netherlands). For western blotanalysis,aliquotsweresupplementedwith4×samplebuffer(250mMTris‐ HCl pH 6.8, 8% (w/v) sodium dodecyl sulfate, 40% (v/v) glycerol, 0.4 M dithiothreitol,0.02%(w/v)bromophenolblue)andkeptonice.Persample,5μg unboiled protein was separated on gel (4‐12% Bis‐Tris XT gel, Criterion, Bio‐ Rad)withXTMOPSrunningbuffer(Bio‐Rad).Onesamplewasloadedonallgels to facilitate gel–gel comparisons. Proteins were transferred to a 0.45 μm nitrocellulosemembrane(Protran,SchleicherandSchuell,‘s‐Hertogenbosch,The Netherlands) in transfer buffer (25 mM Tris, 192 mM glycine, 20% (v/v) methanol) by electrophoresis. After transfer, membranes were blocked from nonspecific protein binding with blocking solution, which contains 5% (w/v) non‐fatdrymilk(Campina,Eindhoven,TheNetherlands)inTris‐bufferedsaline with Tween20 (TBST; 25 mM Tris, 137 mM NaCl, 2.7 mM KCl, 0.05% (v/v) Tween20,pH7.4),foronehouratroomtemperature,followedbyincubationin primary antibody solution overnight at 4°C (mouse anti‐Total OXPHOS Rodent WB Antibody Cocktail (MS604‐300, Abcam, Cambridge, UK) diluted 1:1000 in blocking solution or rabbit anti‐GAPDH (#2118, Cell Signaling Technology, Leiden, The Netherlands) diluted 1:5000 in TBST). Membranes were incubated insecondaryantibodysolution(peroxidase‐labeledhorseanti‐mouseIgGorgoat anti‐rabbit IgG (PI‐2000 and PI‐1000, respectively; Vector Laboratories, Burlingame,CA,USA)diluted1:5000inblockingsolution)foronehouratroom temperature before incubation with enhanced chemiluminescence substrate (Pierce SuperSignal West PICO Chemiluminescent Substrate; Thermo Fisher Scientific). Protein bands were detected using Super RX films (Fujifilm, Düsseldorf, Germany)andscanned onaGS‐800 densitometer (Bio‐Rad). Bands were quantified using Quantity One software (v4.6.2, Bio‐Rad), with GAPDH as loading control (GAPDH levels were not different between COPD patients and controls). Protein content of oxidative stress markers were identified using specific primary antibodies for protein carbonylation (anti‐2,4‐dinitrophenylhydrazone [DNP]moietyantibody,Oxyblotkit,ChemiconInternationalInc.,Temecula,CA), total protein nitration (anti‐3‐nitrotyrosine antibody, Invitrogen, Eugene, Oregon),andtotalmalondialdehyde(MDA)‐proteinadducts(anti‐MDAantibody, AcademyBio‐ Medical Company, Inc. Houston). For protein carbonylation, carbonyl groups in the protein side chains were first derivatized to 2,4‐DNP usingtheOxyblotkit(ChemiconInternationalInc.,Temecula,CA,USA)according to the manufacturer’s instructions. Briefly, 15 g of protein were used per derivatization reaction. Proteins were then denatured by addition of 12% SDS. The samples were subsequently derivatized by adding 10 l of 1X 2,4‐DNP solutionand incubated for 20 minutes. Finally, 7.5 l of neutralization solution and2‐mercaptoethanolwereaddedtothesamplemixture.Immunoblottingwas similar as described above with some minor differences: polyvinylidene 48 CHAPTER3 difluoride (PVDF) membranes were used, which were scanned with the Molecular Imager Chemidoc XRS System (Bio–Rad Laboratories, Hercules, CA, USA)andbandswerequantifiedusingthesoftwareImageLabversion2.0.1(Bio‐ Rad Laboratories). Values of total reactive carbonyl groups, total protein tyrosine nitration, and total MDA‐protein adducts in a given sample were calculatedbyadditionofopticaldensities(arbitraryunits)ofindividualprotein bands in each case. Final optical densities obtained in each specific group of subjects corresponded to the mean values of the different samples (lanes) of each of theantigens studied. Actin (anti‐alpha‐sarcomeric actin antibody, clone 5C5,Sigma‐Aldrich,St.Louis,MO,USA)wasusedastheloadingcontrolforallthe oxidativestressmarkers[12,30]. Enzymeactivityassays 15‐30mgtissuewascrushedinliquidnitrogenandhomogenizedin350μlSET buffer (250 mM sucrose, 2 mM EDTA, 10 mM Tris, pH 7.4) with a Polytron PT 1600 E (Kinematica). After homogenization, samples were incubated for 10 minutes on a rotating wheel at 4°C and spun for 5 minutes at maximum speed (20817×g)inacentrifugecooledto4°C.Analiquotofsupernatantwasstoredfor proteindetermination.Totheremainingsupernatant,5×aqueousBSAsolution wasaddedtoafinalBSAconcentrationof1%(v/v)andsampleswerealiquoted, snap‐frozen and stored at −80°C until analysis. Protein concentration in SET lysate aliquots without BSA was determined using the bicinchoninic acid assay (Pierce). Citrate synthase (CS, EC 2.3.3.1), 3‐hydroxyacyl‐CoA dehydrogenase (HADH,EC1.1.1.35)andphosphofructokinase(PFK,EC2.7.1.11)activitieswere assayed spectrophotometrically (Multiskan Spectrum; Thermo Labsystems, Breda, The Netherlands) as previously described [31‐33]. Absolute CS, HADH andPFKactivitieswerenormalizedtototalprotein. Statisticalanalysis Differences between COPD patients and controls were tested using Student’s t‐ test, Mann‐Whitney‐U tests or χ2 tests as appropriate. Correlationswere tested usingPearson’scorrelationcoefficientorSpearman’sρincaseofnon‐normally distributeddata.AnalyseswereperformedusingPASWStatistics17.0(SPSSinc. Chicago,IL,USA).AP‐value<.05wasdeclaredtobestatisticallysignificant. Results ThecontrolsubjectswerematchedtotheCOPDpatientsbasedonage,sexand BMI(Table1).FEV1wasbetween30‐50%ofpredictedinn=13patients(45%), between50‐70%ofpredictedinn=11patients(38%)and>70%ofpredictedin n=5 patients (17%). VO2 peak and W peak were significantly decreased in the 49 SKELETALMUSCLEFATIGUEINEARLYCOPD COPDpatients(Table1).FEV1(%ofpredicted)wasstronglycorrelatedwithVO2 peak(%ofpredicted)inthetotalpopulation(r=0.83,P<.001),withintheCOPD patients(r=0.78,P<.001),andwithinthecontrols(r=0.53,P=.044). Table1.MaincharacteristicsofhealthycontrolsandCOPDpatients. Controls(n=15) COPD(n=29) Demographics Age,y 65(6) 65(6) Sex,%men 60 55 Eversmoker,% 53 100a BMI,kg/m2 24.9(3.3) 25.5(3.6) Pulmonaryfunction FEV1,%pred 113(15) 58(16)a FVC,%pred 120(17) 104(22)b FEV1/FVC,% 74(5) 45(11)a DLCO,%pred 95(19) 53(18)a Incrementalloadtest PeakVO2,%pred 123(8) 72(4)a PeakWR,%pred 133(7) 61(4)a ΔBorgdyspneascore 3.4(0.8) 3.6(0.4) ΔBorglegfatiguescore 2.7(0.6) 2.3(0.4) ΔPaO2,kPa 1.04(0.53) ‐0.38(0.31)b ΔLactate/WR(mmol/L/W) 0.039(0.003) 0.035(0.003) Abbreviations:BMI,bodymassindex;DLCO,diffusioncapacityofthelungsforcarbonmonoxide;FEV1, forcedexpiratoryvolumein1s;FVC,forcedvitalcapacity;WR,workrate.aP<.001,bP<.05. Quadricepsmuscleenduranceandmarkersofoxidativephenotype Quadriceps muscle endurance was significantly lower in the COPD patients (Figure 1A). The mean decline in peak torque per repetition was ‐1.67±0.09 %N·m/rep in the COPD patients versus ‐1.18±0.10 %N·m/rep in the controls (P=.002). Patients had a lower proportion of type I fibers and a higher proportionoftypeIIa,typeIIa/IIxandIIxfiberscomparedtocontrols,indicative of a fiber type I‐to‐II shift (Figures 1B‐D, and Figure 2). The mean mRNA expressionlevelsofthekeyregulatorofoxidativemetabolismPGC‐1αandofthe structuralmarkerofoxidativefibersMyHCIweresignificantlydecreasedinthe COPD patients compared to controls, and reached borderline significance for Tfam (Figure 1E). Other (co‐) transcription factors implicated in 50 CHAPTER3 Figure1.Quadricepsmuscleendurance,fibertypedistribution,geneexpression, OXPHOSproteinexpressionandenzymeactivity. A) Quadriceps endurance as assessed by isokinetic dynamometry. The P value denotes the statistical significance of the difference in slopes between COPD patients and healthy controls. B) Quadriceps musclefibertypedistributionasdeterminedbyfluorescentimmunohistochemistryandATPasestaining. C) Boxplot of fiber type IIa/IIx proportion. Boxes represent 25th and 75th percentiles, and whiskers represent10thand90thpercentiles.D)BoxplotoffibertypeIIxproportion.Boxesrepresent25thand75th percentiles,andwhiskersrepresent10thand90thpercentiles.E)QuadricepsmusclemRNAexpressionof peroxisome proliferator‐activated receptor (PPAR)‐γ coactivator‐1α (PGC‐1α), myosin heavy chain 51 SKELETALMUSCLEFATIGUEINEARLYCOPD (MyHC) I, IIa and IIx, mitochondrial transcription factor (Tfam), PPAR‐α, PGC‐1β, nuclear respiratory factor (NRF)‐1, NRF‐2α, PGC related coactivator (PRC), and phosphofructokinase muscle (PFKM) as determined by RT‐qPCR. F) Representative Western Blot of the five OXPHOS protein subunits and GAPDHfromthreehealthycontrolsandthreeCOPDpatients.Allbandsarefromthesameblotandwere reorganized for illustrative purposes as patients and controls were randomized over the blot and to respect the ascending order of the five subunits. G) Levels of the five OXPHOS protein subunits as determined by Western Blot. H) 3‐hydroxyacyl‐CoA dehydrogenase (HADH), citrate synthase (CS) and phosphofructokinase (PFK) enzyme activities. I) Ratios between HADH/PFK and CS/PFK. *P<.05. **P<.01.***P<.001. drivingoxidative gene expression (PPAR‐α, PGC‐1β,PRC, NRF‐1, NRF‐2α) were not differentially expressed between patients and controls. Gene expression levels of the key glycolytic enzyme PFKM and of the structural markers of glycolyticfibers,i.e.MyHCIIaandMyHCIIx,weresignificantlyhigherintheCOPD patients(Figure1F).Congruently,meanOXPHOSsubunitproteinlevelswereall lowerintheCOPDpatientscomparedtocontrols,reachingstatisticalsignificance forthoseofcomplexesIVandV(Figures1F‐G).ThemeandifferencesinHADH, CSandPFKenzymeactivitywerenotstatisticallysignificant(Figure1H),yetthe ratioHADH/PFKwassignificantlylowerintheCOPDpatients.TheratioCS/PFK reachedborderlinesignificance(Figure1I). Figure 2. Peripheral muscle fiber type I‐to‐II shift, as an example of loss of oxidativephenotypeinCOPD. Representative myosin heavy chain ATPase stainings of quadriceps muscle biopsies from a healthy person(A)andaCOPDpatient(FEV167%ofpredicted)(B)matchedforage,sexandbodymassindex (25kg/m2).Blackfibers indicatetypeIfibersanddarkandlight grey fiberscorrespond withtypeIIX andtypeIIAfibers,respectively. Quadricepsstrength,musclemassandfibercross‐sectionalarea FFMInorquadricepspeaktorqueweresignificantlydifferentbetweentheCOPD patients and the controls (Figures 3A‐B). In line, the prevalence of muscle wasting was not different between the COPD patients and the controls (20.7% versus 13.3%, respectively, P=.70). Congruently, there were no differences in musclefiberCSA(Figure3C). 52 CHAPTER3 Figure 3. Fat‐free mass index, quadriceps strength and fiber cross‐sectional area. A) Fat‐free mass index as determined by whole‐body dual‐energy X‐ray absorptiometry, P>.05. B) Quadriceps peak torque as determined by isokinetic dynamometry, P>.05. C) Quadriceps muscle fiber cross‐sectionalareaspresentedfortotalfibersandperfibertype,allP>.05. Dailylivingphysicalactivitylevel From all the subjects, 5.5±0.9 valid accelerometry days were available with a mean of 14±1 hours of wear time per day. Total PA was significantly lower in COPD patients compared with controls, and patients spent more time in sedentary behavior and less time in MVPA (Table 2). Also, patients had fewer MVPA bouts, which were shorter and less intense compared with the MVPA boutsofcontrols(Table2).TotalPA(counts/min)waspositivelycorrelatedwith FEV1 (% of predicted) in the entire study population (r=0.58, P<.001) and also within the COPD patients (r=0.55, P=.002) but not in the controls (r=‐0.06, P=.82). Within the COPD patients, FEV1 (% of predicted) was negatively correlatedwithtimespentinsedentaryPA(r=‐0.54,P=.002)andpositivelywith time spent in MVPA (r=0.61, P<.001), number of MVPA bouts per day (r=0.46, P=.013),andwithtimespentinMVPAbouts(r=0.41, P=.039).Only31%ofthe patientsfulfilledthecriteriaof150min/wkofboutedMVPAtimeversus80%of thecontrols(P=.004).Withinthepatients,thosewhofulfilledthesecriteriahada significantly higher FEV1 compared to the patients who did not (67±5 versus 54±3%ofpredicted,P=.049). AssociationswithquadricepsoxpheninCOPDpatients In the COPD patients, quadriceps endurance was significantly positively correlated with myosin heavy chain I gene expression and PGC‐1α gene expression,andshowedatrendtowardsapositivecorrelationwithtypeIfiber proportion (Figures 4A‐C). In line, type IIx fiber proportion was negatively correlatedwithquadricepsendurance(ρ=‐0.43,P=.038).Moreover,typeIfiber 53 SKELETALMUSCLEFATIGUEINEARLYCOPD Table2.AccelerometrydatafromCOPDpatientsandcontrols. Controls(n=15) COPD(n=29) Totalactivity,counts/min TimespentinsedentaryPA,%ofwear time TimespentinlifestylePA,%ofweartime TimespentinMVPA,%ofweartime TotalnumberofMVPAboutsd NumberofMVPAbouts perdayd TimespentinMVPAbouts,mind MeanMVPAboutduration,min MeanintensityofMVPAbouts,countse CompliancewithMVPArecommendation,%f 360(134) 60.5(6.6) 25.5(4.6) 13.8(5.3) 12(8‐18) 2.0(1.3‐2.0) 267(108‐494) 22.1(9.4) 2700(605) 80 220(101)a 67.4(9.4)b 24.3(6.5) 8.6(5.3)b 5(3‐11)b 1.0(0.6‐2.2)c 68(38‐204)b 14.7(3.7)b 1913(498)a 3b Abbreviations: MVPA, moderate‐to‐vigorous physical activity; PA, physical activity. aP<.001. bP<.01. cP<.05. dMedian (IQR). eWeighted for individual MVPA bout duration. fAt least 150 min/wk of bouted MVPAtime. proportion was negatively correlated with the increase in lactate relative to workrate(Figure4D). No significant correlations were found between markers of oxphen and quadriceps peak torque, pulmonary function, exercise capacity, total PA, time spentinsedentaryPAorMVPA,oranyoftheMVPAbout‐relatedvariables(data notshown). Skeletalmuscleoxidativestress Thelevelsofproteincarbonylation,tyrosinenitrationandMDA‐proteinadducts werenotdifferentbetweenpatientsandcontrols(Figure5).Amongthepatients, we found inverse correlations between protein carbonylation and type I fiber proportion, myosin heavy chain I gene expression and quadriceps endurance, andapositivecorrelationbetweenproteincarbonylationlevelandmyosinheavy chain IIa expression (Figure 6). In line, protein carbonylation was positively correlatedwithtypeIIxfiberproportion(ρ=0.43,P=.023).Additionally,tyrosine nitrationwasinverselycorrelatedwithquadricepsendurance(r=‐0.42,P=.040), and MDA‐protein adductswere inversely associatedwith myosinheavy chain I gene expression (r=‐0.38, P=.044). Markers of oxidative stress were not correlated with FFMI or fiber CSA among patients, and no correlations were found between oxidative stress markers and markers of oxphen in the healthy subjects(datanotshown). 54 CHAPTER3 Figure4.CorrelationsamongCOPDpatientsbetweenmarkersofskeletalmuscle oxidative phenotype and quadriceps endurance and the rise in blood lactate relativetoworkrateduringanincrementalcyclingtest. A)CorrelationbetweentheproportiontypeIfibersandquadricepsendurance.B)Correlationbetween myosin heavy chain I mRNA expression and quadriceps endurance. C) Correlation between PGC‐1α mRNA expression and quadriceps endurance. D) Correlation between the proportion type I fibers and theriseinbloodlactaterelativetoworkrateduringanincrementalcyclingtest. Discussion Whereas previous studies have clearly shown skeletal muscle dysfunction in advancedCOPD,themainnoveltyofthecurrentstudyisthatweidentifiedaloss of quadriceps oxphen and decreased quadriceps endurance in patients with mild‐to‐moderate COPD. Interestingly, these abnormalities existed even in the absence of significant muscle wasting. Also we found consistent inverse correlations between markers of oxphen and oxidative stress among the patients.Itshouldbepointedoutthatourstudyisofcross‐sectionalnature,and does not allow for longitudinal inferences. However, linking the various cross‐ 55 SKELETALMUSCLEFATIGUEINEARLYCOPD Figure5.Levelsofskeletalmuscleoxidativestress. Thelevelsofproteincarbonylation,tyrosinenitrationandMDA‐protein adducts were not different between COPD patients and controls, all P>.05. sectionalstudiesacrossCOPDseveritystages,theavailabledatasuggestthatthe loss of skeletal muscle endurance and skeletal muscle oxphen occur already in patientswithmild‐to‐moderateCOPDandprogresswithdeclininglungfunction, andsuggestpotentialinvolvementofoxidativestress. Weassessedalargepanelofmarkersofskeletalmuscleoxphen,andfound that many were significantly decreased in our mild‐to‐moderate COPD patients comparedtowell‐matchedcontrols.Morespecifically,thelossofoxpheninour COPD patients was characterized by a decreased proportion of type I fibers, decreasedgeneexpressionofPGC‐1αandMyHCI,decreasedproteinexpression of subunits of OXPHOS complexes IV and V, and decreased HADH/PFK enzyme activity.ThemeandifferencesinproportionsoftypeI,IIaandIIxfibersbetween our mild‐to‐moderate COPD patients and matched healthy controls were 20%, 15% and 4%, respectively. For comparison, pooled analyses from a meta‐ analysisinadvancedCOPDpatientsshowedthesedifferencestobe22%,7%and 13%, respectively [7]. These combined data suggest that a decrease in slow‐ oxidativetypeIfiberproportionoccursalreadyinearlyCOPD,andthatafurther shift from fast‐oxidative type IIa to fast‐glycolytic type IIx fibers continues in advanced COPD towards even more dependence on glycolytic metabolism. It should be acknowledged that decreased expression of subunits of the key respiratorychaincomplexesdoesnotnecessarilyindicatedecreasedcytochrome coxidase(COX)activityoroveralllowermitochondrialrespiration.Severalother studies have assessed COX activity in muscle biopsies of COPD patients, and showed contrasting results. For example, reduced skeletal muscle COX activity has been reported in moderate COPD patients by some authors [34‐ 56 CHAPTER3 Figure6.CorrelationsamongCOPDpatientsbetweenmarkersofskeletalmuscle oxidative phenotype, quadriceps endurance and the level of protein carbonylation. Correlations between the level of protein carbonylation and proportion type I fibers (A), quadriceps endurance(B),myosinheavychainmRNAexpression(C),andmyosinheavychainIIamRNAexpression(D). 36], whereas others reported even higher COX activity in moderate‐to‐severe COPD patients [37, 38]. Between‐study differences remain unexplained. Therefore, these data provide further indication for studying mitochondrial respiration in more detail in different COPD disease stages, including the early stages. Wefoundthatmarkersofoxidativephenotypeweresignificantlycorrelated with quadriceps endurance, implying that the magnitude of loss of oxidative phenotype reached the level of clinical importance in terms of quadriceps endurance. Similar findings were previously reported in a population of advancedCOPDpatientswithsignificantmusclewasting[4].Ourdatashowthat these abnormalities are already present in early COPD even in the absence of muscle wasting. In a recent study by Saey et al. [39] Δlactate/WR during a constantworkratetestwassignificantlyhigherinmuscle‐wastedCOPDpatients (mean FEV1 45% of predicted) compared with controls. This coincided with a decreased proportion of type I fibers and increased type IIa fibers and a wide 57 SKELETALMUSCLEFATIGUEINEARLYCOPD array of increased glycolytic markers. The authors argued that increased glycolysis underlies the increased Δlactate/WR. Although this seems plausible, nocorrelationsbetweenΔlactate/WRandmetabolicmarkerswerepresentedby Saey et al. [39]. We however did find that the proportion of type I fibers was associated with increased Δlactate/WRduring an incremental load test in non‐ musclewastedCOPDpatients. PGC‐1α is considered the major regulator of skeletal muscle oxidative metabolism. Indeed, its expression is known to be significantly induced upon aerobic exercise, which subsequently orchestratesoxidativegene expression in ordertopreparethemuscleforanextboutofexercise[40].Puente‐Maestuetal. [41] have recently shown that moderate‐intensity exercise increased skeletal musclePGC‐1αgeneexpressioninCOPDpatients(FEV150%ofpredicted)with normalFFMI.AswefoundthatPGC‐1αgeneexpressionwasdecreasedby40% inourpatients,thiswouldsuggestthatthemuscleoxidativemachineryfails,at leastinpart,attheregulatorylevel.PGC‐1α’sdownstreamtargetTfamtendedto be decreased expressed as well. Expression levels of other (co‐) transcription factorsimplicatedintheregulationofTfamexpression(PGC‐1β,PRC,NRF‐1,and NRF‐2α)werenotdifferentiallyexpressedbetweenpatientsandcontrols. Physical inactivity, or deconditioning, has been proposed to contribute to skeletalmuscledysfunctioninCOPD[42].Weusedaccelerometrytoassessboth quantitative and qualitative daily living physical activity, and studied the relationswithmuscleoxphen.Wedidnotspecificallyselectthehealthysubjects based on sedentary behavior, so the finding that our COPD patients were on average 39% less physically active compared with the controls was not surprising.Inaddition,wefoundthatourpatientsengagedin lessMVPAbouts andtheseboutswereshorterandlessintensecomparedtothoseofourcontrols. The level and intensity of physical activity was positively correlated with FEV1 within the COPD patients, which is consistent with previous reports [43‐45]. Interestingly, however, we could not identify any relation between markers of oxphenandtotalphysicalactivitylevelnoritsintensityinourpatients.Although we did not select our healthy controls on sedentary behavior, our data do not supportthepresumptionthatphysicalinactivityistheprincipledeterminantof impairedskeletalmuscleoxpheninmild‐to‐moderateCOPD.Still,thefactthatno association between loss of oxphen and physical inactivity was found does not exclude the possibility that physical activity plays a role in the multifactorial pathwaysinvolvedinlossofoxphen. Whereas basal levels of skeletal muscle oxidative stress were comparable between our patients and controls, we found that markers of muscle oxidative stressweresignificantlyassociatedwiththelossinmuscleoxphenamongCOPD patients, but were not related to muscle mass. Oxidative stress has been suggested to render the muscle susceptible to atrophy as damaged (oxidized) proteins are prone to be degraded. However, this concept has recently been challengedasnodifferencesinbasalskeletalmuscleoxidativestresslevelswere 58 CHAPTER3 foundbetweenadvancedCOPDpatientswithandwithoutmusclewasting[12]. Enhanced mitochondrial production of reactive oxygen species (ROS) has been observedinpatientswhichmoderate‐to‐severeCOPD,whichhasbeenproposed to be linked to the proportional increase in type II fibers [46]. Recently, it has also been demonstrated that OXPHOS complex III is the main site of ROS production within peripheral muscles of COPD patients, who exhibited similar clinicalfeaturesasthoserecruitedinthecurrentinvestigation[9].Furthermore, compared to type I fiber mitochondria, type II fiber mitochondria exhibit enhanced ROS production, as was shown in rats [47]. Taken together, the associationsencounteredbetweenproteinoxidationlevelsandtheslow‐to‐fast phenotypeshiftamongmild‐to‐moderateCOPDpatientsmaybepartlyexplained bymitochondrialdysfunctionandenhancedROSproduction. Inperipheralskeletalmuscleofemphysematoushamsters,decreasedcitrate synthase activity and increased lipid peroxidation have been reported, which were not related to decreased body weight, muscle mass or physical activity level[10,11].Inline,inaratmodelofemphysema,Zhangetal.[48]reportedno change in muscle mass but showed increased skeletal muscle lipofuscin inclusions(amarkerofoxidativestress)whichwerecorrelatedwithdecreased muscle endurance. Collectively, the available data suggest a relation between oxidative stress and the loss of oxidative capacity in COPD‐related muscle dysfunction and it can be speculated that loss of oxphen, through enhanced oxidativestress,mayeventuallyaugmentmusclewastingaswell. In conclusion, this study shows evidence for a loss of muscle oxphen and decreased quadriceps endurance in patients with mild‐to‐moderate COPD withoutovertlossofmusclemass.Ourresultsindicatethattimelyintervention strategies aimed at improving muscle oxphen in early COPD may improve or preventafurtherlossinquadricepsendurance. 59 SKELETALMUSCLEFATIGUEINEARLYCOPD References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 60 BarnesPJ,CelliBR.SystemicmanifestationsandcomorbiditiesofCOPD.EurRespirJ.2009;33(5):1165‐85. Skeletalmuscledysfunctioninchronicobstructivepulmonarydisease.AstatementoftheAmericanThoracic SocietyandEuropeanRespiratorySociety.AmJRespirCritCareMed.1999;159(4Pt2):S1‐40. Bernard S, LeBlanc P, Whittom F, Carrier G, Jobin J, Belleau R, Maltais F. Peripheral muscle weakness in patientswithchronicobstructivepulmonarydisease.AmJRespirCritCareMed.1998;158(2):629‐34. AllaireJ,MaltaisF,DoyonJF,NoelM,LeBlancP,CarrierG,SimardC,JobinJ.Peripheralmuscleenduranceand theoxidativeprofileofthequadricepsinpatientswithCOPD.Thorax.2004;59(8):673‐8. vanWeteringCR,HoogendoornM,MolSJ,Rutten‐vanMolkenMP,ScholsAM.Short‐andlong‐termefficacyof a community‐based COPD management programme in less advanced COPD: a randomised controlled trial. Thorax.2010;65(1):7‐13. ScholsAM,GoskerHR.Thepathophysiologyofcachexiainchronicobstructivepulmonarydisease.CurrOpin SupportPalliatCare.2009;3(4):282‐7. GoskerHR,ZeegersMP,WoutersEF,ScholsAM.Musclefibretypeshiftinginthevastuslateralisofpatients with COPD is associated with disease severity: a systematic review and meta‐analysis. Thorax. 2007;62(11):944‐9. Remels AH, Schrauwen P, Broekhuizen R, Willems J, Kersten S, Gosker HR, Schols AM. Peroxisome proliferator‐activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30(2):245‐52. Puente‐MaestuL,TejedorA,LazaroA,deMiguelJ,Alvarez‐SalaL,Gonzalez‐AragonesesF,SimonC,AgustiA. SiteofMitochondrialROSProductioninSkeletalMuscleofCOPDanditsRelationshipwithExerciseOxidative Stress.AmJRespirCellMolBiol.2012;47(3):358‐62. MattsonJP,PooleDC.Pulmonaryemphysemadecreaseshamsterskeletalmuscleoxidativeenzymecapacity.J ApplPhysiol.1998;85(1):210‐4. Mattson JP, Sun J, Murray DM, Poole DC. Lipid peroxidation in the skeletal muscle of hamsters with emphysema.Pathophysiology.2002;8(3):215‐21. Fermoselle C, Rabinovich R, Ausin P, Puig‐Vilanova E, Coronell C, Sanchez F, Roca J, Gea J, Barreiro E. Does oxidativestressmodulatelimbmuscleatrophyinseverecopdpatients?EurRespirJ.2012Mar9[Epubahead ofprint]. BarreiroE,GeaJ,CorominasJM,HussainSN.Nitricoxidesynthasesandproteinoxidationinthequadriceps femorisofpatientswithchronicobstructivepulmonarydisease.AmJRespirCellMolBiol.2003;29(6):771‐8. QuanjerPH,TammelingGJ,CotesJE,PedersenOF,PeslinR,YernaultJC.Lungvolumesandforcedventilatory flows.ReportWorkingPartyStandardizationofLungFunctionTests,EuropeanCommunityforSteelandCoal. OfficialStatementoftheEuropeanRespiratorySociety.EurRespirJSuppl.1993;16:5‐40. FranssenFM,SauerweinHP,AckermansMT,RuttenEP,WoutersEF,ScholsAM.Increasedpostabsorptiveand exercise‐induced whole‐body glucose production in patients with chronic obstructive pulmonary disease. Metabolism.2011;60(7):957‐64. van den Borst B, Gosker HR, Wesseling G, de Jager W, Hellwig VA, Snepvangers FJ, Schols AM. Low‐grade adiposetissueinflammationinpatientswithmild‐to‐moderatechronicobstructivepulmonarydisease.AmJ ClinNutr.2011;94(6):1504‐12. ScholsAM,SoetersPB,DingemansAM,MostertR,FrantzenPJ,WoutersEF.Prevalenceandcharacteristicsof nutritionaldepletion in patientswith stable COPD eligiblefor pulmonary rehabilitation. Am Rev Respir Dis. 1993;147(5):1151‐6. FranssenFM,BroekhuizenR,JanssenPP,WoutersEF,ScholsAM.LimbmuscledysfunctioninCOPD:effectsof musclewastingandexercisetraining.MedSciSportsExerc.2005;37(1):2‐9. WagenmakersR,vandenAkker‐ScheekI,GroothoffJW,ZijlstraW,BulstraSK,KootstraJW,Wendel‐VosGC, vanRaaijJJ,StevensM.Reliabilityandvalidityoftheshortquestionnairetoassesshealth‐enhancingphysical activity(SQUASH)inpatientsaftertotalhiparthroplasty.BMCMusculoskeletDisord.2008;9:141. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measuredbyaccelerometer.MedSciSportsExerc.2008;40(1):181‐8. MatthewCE.Calibrationofaccelerometeroutputforadults.MedSciSportsExerc.2005;37(11Suppl):S512‐22. Masse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, Treuth M. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37(11Suppl):S544‐54. PateRR,PrattM,BlairSN,HaskellWL,MaceraCA,BouchardC,BuchnerD,EttingerW,HeathGW,KingAC,et al.Physicalactivityandpublichealth.ArecommendationfromtheCentersforDiseaseControlandPrevention andtheAmericanCollegeofSportsMedicine.JAMA.1995;273(5):402‐7. O'DonovanG,BlazevichAJ,BorehamC,CooperAR,CrankH,EkelundU,FoxKR,GatelyP,Giles‐CortiB,GillJM, etal.TheABCofPhysicalActivityforHealth:aconsensusstatementfromtheBritishAssociationofSportand ExerciseSciences.JSportsSci.2010;28(6):573‐91. Bergstrom L. Muscle electrolytes in man. Determination by neutron activation analysis on needle biopsy specimens.Astudyonnormalsubjects,kidneypatients,andpatientswithchronicdiarrhea.ScandJClinLab Invest.1962;68:1–110. OgilvieRW,FeebackDL.Ametachromaticdye‐ATPasemethodforthesimultaneousidentificationofskeletal musclefibertypesI,IIA,IIBandIIC.StainTechnol.1990;65(5):231‐41. CHAPTER3 27. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ. Satellite cell content is specifically reducedintypeIIskeletalmusclefibersintheelderly.AmJPhysiolEndocrinolMetab.2007;292(1):E151‐7. 28. AllenD,WintersE,KennaPF,HumphriesP,FarrarGJ.Referencegeneselectionforreal‐timertPCRinhuman epidermalkeratinocytes.JDermatolSci.2008;49(3):217‐25. 29. VandesompeleJ,DePreterK,PattynF,PoppeB,VanRoyN,DePaepeA,SpelemanF.Accuratenormalization ofreal‐timequantitativeRT‐PCRdatabygeometricaveragingofmultipleinternalcontrolgenes.GenomeBiol. 2002;3(7):RESEARCH0034. 30. RodriguezDA,KalkoS,Puig‐VilanovaE,Perez‐OlabarriaM,FalcianiF,GeaJ,CascanteM,BarreiroE,RocaJ. Muscle and blood redox status after exercise training in severe COPD patients. Free Radic Biol Med. 2012;52(1):88‐94. 31. BergmeyerHU,GawehnK,GrasslM.3‐Hydroxyacyl‐CoAdehydrogenase.In:BergmeyerHU,editor.Methodsof enzymaticanalysis.Weinheim;Germany:VerlagChemieGmbH;1974.p.474. 32. Ling KH, Paetkau V, Marcus F, Lardy HA. Phosphofructokinase: I. Skeletal Muscle. Methods in Enzymology: AcademicPress;1966.p.425‐9. 33. ShepherdD,GarlandPB.Citratesynthasefromratliver.MethodsinEnzymology:AcademicPress;1969.p.11‐6. 34. GoskerHR,vanMamerenH,vanDijkPJ,EngelenMPKJ,vanderVusseGJ,WoutersEFM,ScholsAMWJ.Skeletal musclefibretypeshiftingandmetabolicprofileinpatientswithCOPD.EurRespirJ.2002;19:617‐26. 35. NaimiAI,BourbeauJ,PerraultH,BarilJ,Wright‐ParadisC,RossiA,TaivassaloT,SheelAW,RabolR,DelaF,et al.AlteredmitochondrialregulationinquadricepsmusclesofpatientswithCOPD.ClinPhysiolFunctImaging. 2011;31(2):124‐31. 36. GreenHJ,BombardierE,BurnettM,IqbalS,D'ArsignyCL,O'DonnellDE,OuyangJ,WebbKA.Organizationof metabolicpathwaysinvastuslateralisofpatientswithchronicobstructivepulmonarydisease.AmJPhysiol RegulIntegrCompPhysiol.2008;295(3):R935‐41. 37. Sauleda J, Garcia‐Palmer F, Wiesner RJ,Tarraga S, Harting I, Tomas P, Gomez C, Saus C, Palou A, Agusti AG. Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructivepulmonarydisease.AmJRespirCritCareMed.1998;157(5Pt1):1413‐7. 38. Puente‐MaestuL,Perez‐ParraJ,GodoyR,MorenoN,TejedorA,Gonzalez‐AragonesesF,BravoJL,AlvarezFV, CamanoS,AgustiA.AbnormalmitochondrialfunctioninlocomotorandrespiratorymusclesofCOPDpatients. EurRespirJ.2009;33(5):1045‐52. 39. Saey D, Lemire BB, Gagnon P, Bombardier E, Tupling AR, Debigare R, Cote CH, Maltais F. Quadriceps metabolism during constant workrate cycling exercise in chronic obstructive pulmonary disease. J Appl Physiol.2011;110(1):116‐24. 40. PilegaardH,SaltinB,NeuferPD.ExerciseinducestransienttranscriptionalactivationofthePGC‐1alphagene inhumanskeletalmuscle.JPhysiol.2003;546(Pt3):851‐8. 41. Puente‐Maestu L, Lazaro A, Tejedor A, Camano S, Fuentes M, Cuervo M, Navarro BO, Agusti A. Effects of exerciseonmitochondrialDNAcontentinskeletalmuscleofpatientswithCOPD.Thorax.2011;66(2):121‐7. 42. Wagner PD. Skeletal muscles in chronic obstructive pulmonary disease: deconditioning, or myopathy? Respirology.2006;11(6):681‐6. 43. Steele BG, Holt L, Belza B, Ferris S, Lakshminaryan S, Buchner DM. Quantitating physical activity in COPD usingatriaxialaccelerometer.Chest.2000;117(5):1359‐67. 44. Jehn M, Schmidt‐Trucksass A, Meyer A, Schindler C, Tamm M, Stolz D. Association of daily physical activity volumeandintensitywithCOPDseverity.RespirMed.2011;105(12):1846‐52. 45. Garcia‐RioF,LoresV,MedianoO,RojoB,HernanzA,Lopez‐CollazoE,Alvarez‐SalaR.Dailyphysicalactivityin patientswithchronicobstructivepulmonarydiseaseismainlyassociatedwithdynamichyperinflation.AmJ RespirCritCareMed.2009;180(6):506‐12. 46. Picard M, Godin R, Sinnreich M, Baril J, Bourbeau J, Perrault H, Taivassalo T, Burelle Y. The mitochondrial phenotypeofperipheralmuscleinchronicobstructivepulmonarydisease:disuseordysfunction?AmJRespir CritCareMed.2008;178(10):1040‐7. 47. AndersonEJ,NeuferPD.TypeIIskeletalmyofiberspossessuniquepropertiesthatpotentiatemitochondrial H(2)O(2)generation.AmJPhysiolCellPhysiol.2006;290(3):C844‐51. 48. ZhangXL,PangBS,HouXL,WangJ,WangC.Oxidativestressandperipheralskeletalmuscledysfunctionin ratswithemphysema.ChinMedJ(Engl).2010;123(1):40‐4. 61 CHAPTER4 CHAPTER4 Low‐grade adipose tissue inflammation inpatientswithmild‐to‐moderateCOPD Bram van den Borst, Harry R. Gosker, Geertjan Wesseling, Wilco de Jager, Valéry A.C.V. Hellwig, Frank J. Snepvangers, Annemie M.W.J. Schols AmericanJournalofClinicalNutrition2011;94(6):1504‐12 63 ADIPOSETISSUEINFLAMMATIONINCOPD Abstract Background: Low‐grade systemic inflammation is common in chronic obstructivepulmonarydisease(COPD),butitssourceremainsunclear.Adipose tissue is a potent producer of inflammatory mediators and may contribute to systemicinflammationinCOPD,possiblyviahypoxia. Objective: To study the influence of COPD and exercise‐induced oxygen desaturation on adipose tissue inflammation (ATI) and its contribution to systemicinflammation. Design:Subcutaneousadiposetissuebiopsieswereinvestigatedof28clinically stable COPD patients (FEV1 58±16 % of predicted, body mass index [BMI] 24.9±2.9kg/m2)and15matchedhealthycontrols.Fatmasswasmeasuredwith dual‐energy X‐ray absorptiometry. Patients were pre‐stratified by oxygen desaturation assessed by incremental cycle ergometry. Adipocyte size and adipose tissue expression of 19 inflammatory and hypoxia‐related genes were measured and adipose tissue macrophages (ATMs) were histologically quantified. Systemic inflammatory markers included CRP and a panel of 20 adipokines. Results:COPDpatientshadcomparablefatmassbuthigherCRPandHOMA‐IR indexcomparedtocontrols.COPDpatientsandcontrolshadcomparableadipose tissuegene expression, adipocytesize, ATM infiltration and systemicadipokine levels.DesaturatingCOPDpatientshadnodifferentATIstatuscomparedtonon‐ desaturating patients. COPD patients with high CRP had significantly greater ATMinfiltrationcomparedtopatientswithlowCRP,whichwasindependentof BMIandfatmass. Conclusions: We identified a possible role of ATMs in the low‐grade systemic inflammation in COPD. ATI and systemic adipokine levels were comparable to controlsandpartlyrelatedtofatmass.Oxygendesaturationwasnotassociated withATI. 64 CHAPTER4 Introduction Chronic obstructive pulmonary disease (COPD) is characterized by low‐grade systemic inflammation which has been associated with insulin resistance (IR) [1]. Classically, systemically elevated cytokine levels are hypothesized to result from a ‘spill‐over’ of the pulmonary compartment. However, there is no convincing evidence to support this theory in clinically stable disease. Alternatively, adipose tissue has been proposed to contribute to systemic inflammationinobeseCOPDpatients[2].Inadditiontostoringenergy,adipose tissueisanactiveproducerofmediatorsinvolvedininflammation;theso‐called adipokinesofwhichleptinandadiponectinareexamples[2]. Several mechanisms have been proposed to induce or relate to adipose tissueinflammation(ATI),thatwehypothesizedcouldbeinvolvedinCOPDand resultinenhancedsystemicinflammation.First,largeadipocytesproducemore pro‐inflammatory adipokines than small adipocytes [3], indicative of adipocyte size as a marker of ATI. Most patients with COPD receive chronic β2‐agonists that could contribute to the blunted β‐adrenoreceptor mediated lipolysis and thermogenesis resulting in maintenance or relative expansion of fat tissue in COPD[4].Second,amajorreductionofoxygensupplymayleadtoATIandmay potentially be aggravated via a disbalance between adipocyte size and (neo‐) vascularisation leading to local hypoxic areas and/or intra‐adipocytic hypoxia [5].Itisunknown,however,whethermildhypoxaemiaaspresentinearlystages of COPD or intermittent desaturations in some COPD phenotypes could also triggerATIinCOPD.Chronichypoxaemiacanoccurduringadvanceddiseasebut recurrent desaturations also occur in moderate disease during daily physical activities [6]. Third, IR has been linked to both systemic inflammation [7] and ATI [8]. Finally, although adipose tissue macrophages (ATMs) have been put forwardastheorchestratorsofATI[9]theyhaveneverbeenquantifiedinCOPD. Recently, Tkacova et al. [10] showed higher pro‐inflammatory gene expression in adipose tissue of underweight GOLD IV patients compared to overweightGOLDI‐IIIpatients.Interestingly,groupswerealsodifferentinPaO2 (7.7vs9.4kPa,respectively)suggestingthathypoxaemiamayplayaroleinATI. Moreover,thisstudysuggeststhatATImaynotberestrictedtotheobesestate. Subsequently, the same authors showed that with increasing body mass index (BMI) (range 18‐36 kg/m2), a higher prevalence of IR was present in COPD patients which was associated with higher adipose tissue expression of pro‐ inflammatory genes [11]. BMI and fat mass are, however, known correlates of ATI[8,12,13].Thus,toanswerthequestionifCOPDperseischaracterizedby ATI and to study its relation with systemic inflammation, we studied COPD patients and BMI‐ and fat mass‐matched healthy controls. Additionally, we investigated a potential role of exercise‐induced desaturation in COPD on ATI andsystemicinflammation. 65 ADIPOSETISSUEINFLAMMATIONINCOPD Methods Adetailedmethodologycanbefoundinthesupplementalmaterial. Subjects,pulmonaryfunctionandincrementalexercisetest This study included 28 clinically stable COPD patients without overt co‐ morbidity and 15 healthy controls. Pulmonary medication is listed in Supplemental Table 1. Pulmonary function testing included forced spirometry andsinglebreathdiffusioncapacitymeasurement(Masterlab,Jaeger,Würzburg, Germany).Allsubjectsperformedanincrementalcycleergometrytestaccording to international standards to determine exercise‐induced desaturation defined as a fall in oxygen saturation (SaO2, by pulse oximetry) of ≥4% [14]. Twelve COPDpatientsdesaturated(COPDD,mean±SDΔSaO2‐8.5±2.2%)and16didnot (COPDND,ΔSaO2‐2.1±1.7%).Arterialbloodgasanalysis(Bloodgasanalyzer865, ChironDiagnostics,Emeryville,CA)wasperformedatrestandatVO2maxfroma radialarterypuncture.Writteninformedconsentwasobtainedfromallsubjects andtheethicalreviewboardoftheMaastrichtUMC+approvedthestudy(MEC 08‐2‐059).Thisstudyisregisteredonwww.trialregister.nl(NTR1402). Anthropometricsandbodycomposition Height was measured using a wall‐mounted stadiometer. Body weight was assessed to the nearest 0.1 kg using a standard balance beam scale. BMI was calculated as weight/height2 (kg/m2). Whole‐body dual energy X‐ray absorptiometry (DXA, Hologic Discovery, Hologic, or Lunar Prodigy, GE Healthcare)wasappliedtoretrievewholebodyfatmass(FM)andfat‐freemass (FFM). Comparison of Lunar and Hologic retrieved measures was enabled through applying cross‐calibration equations (kindly provided by Dr. Shepherd at the University of California, San Francisco, CA, USA, unpublished). Fat‐free massindex(FFMI)andfatmassindex(FMI)werecalculatedasFFM/height2and FM/height2,respectively. Adiposetissuebiopsy Subcutaneous adipose tissue (SAT) was obtained para‐umbilically after an overnight fast through needle biopsy. One specimen was snap‐frozen in liquid nitrogen and stored at ‐80°C until further analysis and another specimen was processedin4%formalinforparaffinembedding. 66 CHAPTER4 Real‐timequantitativepolymerasechainreaction(RT‐qPCR) Total RNA from SAT was extracted with the RNeasy® Lipid Tissue Mini Kit (Qiagen, Venlo, The Netherlands) and reverse‐transcribed into cDNA using the TranscriptorcDNAsynthesiskit(RocheAppliedSciences,Mannheim,Germany). cDNAwasamplifiedusingSYBRGreenFluoresceinMix(Westburg,Leusden,The Netherlands) on a quantitative PCR machine (Bio‐Rad laboratories B.V., Veenendaal, The Netherlands). We measured a panel of genes consisting of adipokines (leptin, adiponectin, plasminogen activator inhibitor‐1 [PAI‐1], chemerin, osteoprotegerin, adrenomedullin and visfatin), markers of hypoxia and (neo)vascularisation (glucose transporter‐1 [GLUT1], hypoxia inducible factor‐1α [HIF‐1α], vascular endothelial growth factor‐A [VEGF‐A] and CD34), markers of macrophages (CD68, CD163, CD206, CD11b and monocyte chemotactic protein‐1 [MCP‐1]), markers of inflammation (IL‐8 and IL‐10) and peroxisomeproliferator‐activatedreceptor‐γ(PPAR‐γ)asamarkerofadipocyte differentiation. GeNorm software (Primerdesign, Southampton, USA) was applied to calculate a normalization factor based on the expression levels of threehousekeepinggenes[15].PrimersequencesareprovidedinSupplemental Table2.Geneexpressionwasquantifiedandexpressedasarbitraryunits(AU). Adipocytesize Adipocytesizewasdeterminedonhaematoxylin‐eosinstainedparaffinsections byquantifyingtheactualareaof≥400uniqueadipocytesperindividualthrough computerimageanalysissoftware(LuciaGF,Version4.81). Quantificationofadiposetissuemacrophages(ATMs) ATMs were quantified on adipose tissue paraffin sections that were incubated with anti‐CD68, visualized by the EnVision™ FLEX/FLEX+ System (DakoCytomation, Glostrup, Denmark) and counter‐stained with haematoxylin. Through direct microscopy at 400x magnification, two blinded raters systematicallyquantifiedthenumberofsolitaryATMsandcrown‐likestructures (CLS)(Figure1)andtheirdensitieswereexpressedasnumberofsolitaryATMs andCLSpermm2ofanalyzedtissue. Cardiometabolicandsystemicinflammatoryprofile Fasting plasma concentrations of 19 adipocytokines were analyzed with a multipleximmunoassayasdescribedindetailelsewhere[16].Thelowerlimitsof detection(LLOD)arepresentedinTableE3.FurthermeasurementsincludedC‐ reactive protein (CRP), N‐terminal pro‐Brain Natriuretic Peptide (NT‐proBNP), glucoseandinsulin.Seeonlinesupplementformoredetails.Homeostaticmodel 67 ADIPOSETISSUEINFLAMMATIONINCOPD assessment (HOMA) was applied to estimate IR by HOMA‐IR=(Insulin * Glucose)/22,5[17]. Figure1.CD68‐stainingofadiposetissuemacrophages(ATMs). A) Solitary ATM, B) Crown‐like structure (CLS): a well‐organized collection of macrophages surroundinganadipocyte,whichisamarkerofadipocytedeath[34].CD68isalysosomalglycoprotein that is implicated in endocytosis and lysosomal migration of macrophages. Note the difference in macrophagesizeandgranulomatousaspectbetweenasolitaryATMandATMsformingaCLS. Statisticalanalyses Differences in descriptive characteristics between COPD patients and healthy controlsweretestedusingindependent‐samplest‐testforcontinuousvariables and χ2 for categorical variables. In case of a significantly skewed distribution according to the Shapiro‐Wilk test, natural logarithmic transformation was applied and for these variables the geometrical mean and 95% confidence intervals (CI) are presented. Analyses of adipose tissue mRNA expression and systemicadipocytokineswerecorrectedformultiplecomparisonsbyusingfalse discovery rate method [18]. Correlations were tested using Pearson’s r and Spearman’s ρ. Analyses were performed in PASW Statistics 17.0 (SPSS inc., Chicago,IL).DifferencesweredeclaredtobestatisticallysignificantatP<.05. Results COPDpatienthadmild‐to‐moderateairflowobstruction(Table1).FFMIandFMI were not different between COPD patientsand healthy controls.COPD patients had slightly higher fasting plasma glucose, insulin and HOMA‐IR scores 68 CHAPTER4 Table1.Maincharacteristicsofthestudypopulation. Healthy TotalCOPD Desaturating Non‐ controls group COPDpatients desaturating (n=15) (n=28) (n=12) COPDpatients (n=16) Demographics Sex,m/f 9/6 17/11 7/5 10/6 Age,y 65(6) 65(7) 65(6) 66(7) Smokingstatus Current,n(%) 1(6.7) 10(36) 2(20) 8(50) Former,n(%) 7(46.7) 18(64)a 10(80) 8(50) Never,n(%) 7(46.7) 0(0) 0(0) 0(0) Pulmonaryfunction FEV1,%pred 113(15) 58(16)a 57(19) 59(15) FVC,%pred 120(17) 105(22)c 114(21) 98(17) a f FEV1/FVC,% 74(5) 45(12) 39(9) 49(12) DLCO,%pred 95(19) 51(16)a 48(16) 54(17) a SaO2 atrest,% 99(1) 96(2) 96(2) 97(1) a d SaO2atVO2,max,% 98(1) 91(4) 87(3) 94(2) PaO2atrest,kPa 12.1(1.1) 9.4(1.0)a 9.2(1.2) 9.6(0.8) PaO2atVO2,max,kPag 13.1(1.3) 9.1(1.4)a 7.9(1.2)d 9.8(1.0) Bodycomposition 2 e BMI,kg/m 24.9(3.3) 24.9(2.9) 23.2(2.2) 26.1(2.7) 2 FFMI,kg/m 18.0(1.9) 17.6(1.7) 17.1(1.4) 17.9(1.9) FMI,kg/m2 7.0(3.3) 7.2(2.6) 6.0(2.1)f 8.1(2.7) Totalbodyfat,% 28.1(10.3) 29.2(8.2) 26.5(7.6) 31.3(8.1) h,i Cardiometabolicprofile Glucose,mmol/L 5.3(5.1‐5.6) 5.9(5.6‐6.1)b 5.7 (5.3‐6.1) 6.0(5.7‐6.3) Insulin,pmol/L 29(23‐37) 48(36‐64)c 30 (23‐37)d 70(46‐106) HOMA‐IR 0.8 (0.5‐1.1) 1.5(1.0‐2.3)c 0.8(0.5‐1.3)d 2.6(1.6‐4.2) NT‐proBNP,pmol/L 6.6(4.4‐9.8) 9.6(6.8‐13.5) 15.2(10.4‐22.2)f 6.6(4.1‐10.8) Systemicinflammationh,i CRP,mg/L 0.95(0.57‐1.59)2.05(1.31‐3.21)c 1.62(0.95‐2.76) 2.48(1.19‐5.15) Abbreviations:BMI,bodymassindex;DLCO,diffusioncapacityofthelungsforcarbonmonoxide;FEV1, forced expiratory volume in 1s; FFMI, fat‐free mass index; FMI, fat mass index; FVC, forced vital capacity; HOMA‐IR, homeostatic model assessment insulin resistance. Data are mean (SD) unless indicated otherwise. aP<.001, bP<.01, cP<.05 compared to healthy controls. dP≤.001, eP<.01, fP<.05 comparedtoCOPDNDpatients. gAvailablefor7COPDD,13COPDNDand11healthycontrols. hNoplasma availableforn=1COPDpatient.iGeometricmean(95%confidenceinterval). 69 ADIPOSETISSUEINFLAMMATIONINCOPD than healthy controls (P≤.021) and CRP was also modestly but significantly higherinCOPDpatients(P=.031)reflectingalow‐gradesystemicinflammatory state.CRPandHOMA‐IRwerepositivelycorrelated(Figure2). Figure2.CorrelationbetweenCRPandHOMA‐IR. Closed circles represent COPD patients, open circles represent healthycontrols(Spearman’sρ=0.36,P=.018,n=44). ComparisonsbetweenhealthycontrolsandthetotalCOPDgroup Adipocytesizeandthecorrelationbetweenfatmassandadipocytesizewerenot different between the two groups (Figure 3). None of the measured gene expression levels were significantly different between COPD patients and healthy controls after adjustment for multiple testing (Table 2). The solitary ATM density in COPD patients was not different from healthy controls (30.4 [23.9‐38.6] vs. 23.7 [18.0‐31.3] ATMs/mm2, P=.19). CLS were found in n=12 COPDpatients(43%)andn=5healthycontrols(33%)(P=.75).Inthissubset,the CLSdensitywasnotdifferentbetweenCOPDpatientsandhealthycontrols(0.15 [0.08‐0.28] vs. 0.09 [0.04‐0.19] CLS/mm2, P=.27). CLS density was positively correlatedwithCD68geneexpression(r=0.66,P=.003),whileATMdensitywas not(SupplementalFigure1). Noneofthemeasuredsystemicadipokinelevelsweresignificantlydifferent betweenCOPDpatientsandhealthycontrols(Table3).SystemicIL‐6levelswere near detection limit in bothCOPD patients and healthy controls and no differenceswerefoundbetweenthesetwogroups.MeasuresabovetheLLODof systemicIL‐1β,IL‐8,IL‐10,IFN‐γandTNF‐αwerefoundinonlyn=1,n=24,n=4, n=15 and n=2 subjects, respectively, without clear differences between COPD 70 CHAPTER4 Figure3.AdipocytesizeinCOPDpatientsandhealthycontrols. A)ComparisonofadipocytesizebetweenCOPDpatients(n=28,blackbars)andhealthycontrols(n=15, gray bars). Data are means±SE. No differences were observed (all P>.05). B) Similar correlations between fat mass and median adipocyte size in COPD patients (closed circles, solid line, Pearson’s r=0.41,P=.031,n=28)andhealthycontrols(opencircles,dashedline,Pearson’sr=0.63,P=.012,n=15).C) Haematoxylin‐eosinstainedadiposetissuesectionsat200×magnificationillustratingthesimilarityin adipocytesizebetweenCOPDpatientsandhealthycontrols. patientsandhealthycontrols.Becauseoftheselownumbers,wedidnotinclude theseinouranalyses.Fatmass,circulatingleptinandadiponectin,andadipose tissueleptinandadiponectingeneexpressioncorrelatedinasimilarfashionin 71 ADIPOSETISSUEINFLAMMATIONINCOPD Table 2. Comparison of adipose tissue mRNA levels (arbitrary units) between COPDpatientsandhealthycontrols. Healthy TotalCOPD controls(n=15) group(n=28) Desaturating Non‐ COPDpatients desaturating (n=12) COPDpatients (n=16) GLUT1 0.17(0.12‐0.23) 0.17(0.14‐0.20) 0.17(0.13‐0.23) 0.17(0.13‐0.22) HIF1α 0.18(0.16‐0.20) 0.19(0.18‐0.20) 0.19(0.17‐0.20) 0.19(0.17‐0.21) VEGF‐A 0.16(0.11‐0.22) 0.15(0.13‐0.19) 0.18(0.12‐0.26) 0.14(0.11‐0.18) CD34 0.14(0.07‐0.27) 0.16(0.13‐0.20) 0.17(0.13‐0.22) 0.15(0.11‐0.22) PAI‐1 0.14(0.11‐0.18) 0.18(0.14‐0.24) 0.14(0.09‐0.22) 0.22(0.16‐0.30) Adrenomedullin 0.16(0.10‐0.26) 0.23(0.19‐0.27) 0.22(0.17‐0.29) 0.23(0.18‐0.29) Visfatin 0.19(0.09‐0.37) 0.22(0.17‐0.28) 0.21(0.14‐0.30) 0.23(0.16‐0.32) Osteoprotegerin 0.16(0.09‐0.29) 0.23(0.19‐0.28) 0.19(0.14‐0.27) 0.26(0.20‐0.33) IL‐8 0.14(0.08‐0.26) 0.15(0.11‐0.22) 0.11(0.06‐0.21) 0.19(0.12‐0.31) MCP‐1 0.11(0.08‐0.14) 0.16(0.13‐0.20) 0.16(0.12‐0.22) 0.16(0.11‐0.22) CD68 0.15(0.11‐0.19) 0.18(0.15‐0.22) 0.16(0.12‐0.22) 0.20(0.16‐0.25) CD163 0.11(0.05‐0.21) 0.17(0.12‐0.23) 0.14(0.08‐0.26) 0.20(0.14‐0.28) CD206 0.13(0.09‐0.21) 0.21(0.16‐0.27) 0.17(0.10‐0.28) 0.24(0.19‐0.31) CD11b 0.16(0.10‐0.26) 0.18(0.12‐0.27) 0.20(0.13‐0.30) 0.16(0.08‐0.34) Leptina 0.16(0.11) 0.17(0.08) 0.16(0.10) 0.19(0.05) Adiponectina 0.19(0.08) 0.18(0.07) 0.19(0.09) 0.17(0.05) PPAR‐γa 0.19(0.09) 0.16(0.06) 0.17(0.07) 0.15(0.05) Chemerina 0.20(0.10) 0.19(0.08) 0.20(0.08) 0.18(0.08) IL‐10a 0.30(0.11) 0.28(0.08) 0.29(0.07) 0.28(0.08) Abbreviations:GLUT1,glucosetransporter1;HIF1α,hypoxiainduciblefactor1α;IL,interleukin;MCP‐ 1, monocyte chemotactic protein‐1; PAI‐1, plasminogen activator inhibitor‐1; PPAR‐γ, peroxisome proliferator‐activated receptor‐γ; VEGF‐A, vascular endothelial growth factor‐A. Data are geometric meansand95%confidenceintervals,exceptindicatedotherwise.Independent‐samplest‐testswereused toanalyzethedata,andPvalueswereinterpretedapplyingfalsediscoveryratecorrectionformultiple testing.Noneofthecomparisonswerestatisticallysignificant.aMean(SD). both COPD patients and healthy controls (Figure 4). Positive correlations betweenfatmassandATMmarkerswerealsohighlycomparablebetweenCOPD patientsandhealthycontrols(Figure5).NeitherinCOPDpatientsnorinhealthy controls any significant correlations were found between fat mass and the remainingsystemicadipokines(allP>.05,datanotshown). 72 CHAPTER4 Comparisonsbetweendesaturatingandnon‐desaturatingCOPDpatients BMI (P=.007) and FMI (P=.040) were significantly lower in desaturating COPD patients (COPDD). Non‐desaturating COPD patients (COPDND) had higher FEV1/FVC (P=.028), higher HOMA‐IR (P≤.001) and lower NT‐proBNP (P=.010). NomarkeddifferencesinadipocytesizewerenotedbetweenCOPDDandCOPDND patients (data not shown). We found nosignificantdifferences between COPDD and COPDND patients for all of the measured SAT gene expressions (Table 2), systemicadipokinelevels(Table3),ATMdensity(30.6[21.3‐43.8]vs.30.2[21.2‐ 43.2] ATMs/mm2, P=.96) and CLS density (0.10 [0.05‐0.20] vs. 0.20 [0.07‐0.56] CLS/mm2,P=.22). Based onthemedian CRP level in COPD patients, weperformedapost‐hoc comparisonbetweenpatientswithhighCRP(n=14,CRP4.38[2.33‐8.24]mg/L) and low CRP (n=13, CRP 0.90 [0.75‐1.08] mg/L) (Supplemental Tables 3‐5) showing that high CRP patients had higher ATM density (P=.021, Figure 6). Linear regression analysis further revealed that ATM density (ln transformed) was significantly predicted by CRP status (low CRP=1, high CRP=2, β=0.61, SE=0.23, P=.013) independent of BMI (β=‐0.04, SE=0.04, P=.29). In a separate model CRP status (β=0.63, SE=0.22, P=.008) also predicted ATM density independentoffatmass(β=‐0.03,SE=0.02,P=.07). Discussion We investigated whether ATI is enhanced in stable mild‐to‐moderate COPD independent of age, sex, BMI and body composition. The second aim was to investigate whether ATI was more pronounced in COPD patients with a desaturation phenotype. Knowledge of potential adipose tissue dysfunction in COPD may increase our understanding of the origin of enhanced systemic inflammation in COPD and contribute to tailoring interventions. COPD patients werecharacterizedbyaslightlyhigherCRPandhigherHOMA‐IRthatcouldbe interrelated (as supported by a positive correlation). COPD patients tended to havehigheradiposetissuegeneexpressionoftwomacrophagemarkers(MCP‐1 and CD206). We found that COPD patients with high CRP had greater ATM infiltration and tended to have higher CD206 expression compared to low‐CRP patients. Other markers of ATI were, however, not different between COPD patients and healthy controls, and neither was the desaturation phenotype of influenceonanyofthesemarkers. As larger adipocytes have been shown to be more pro‐inflammatory than smalleradipocytes[3],weexploredwhetherCOPDpatientswouldhaveenlarged adipocytes, for which we did not find any evidence. In mild‐to‐moderate COPD patients,Skybaetal.reportedapositiveassociationbetweenadipocytesizeand BMI which was not associated with different gene expression of apoptosis markers, suggesting that fat wasting is not associated with 73 ADIPOSETISSUEINFLAMMATIONINCOPD Table3.ComparisonofsystemicadipokinelevelsbetweenCOPDpatientsaand healthycontrols. IL‐6,pg/ml Leptin,ng/ml Adiponectin,μg/ml PAI‐1,μg/ml Chemerin,μg/ml Adipsin,μg/ml Resistin,μg/ml SAA‐1,μg/ml CXCL10,ng/ml MIF,ng/ml MIP‐1α,pg/mlb MCP‐1,ng/mlc OPG,ng/mlc Healthy TotalCOPD controls(n=15) group(n=28) 3.73(2.52‐5.52) 3.92(2.32‐6.63) 25.6(19.9‐32.9) 1.60(1.25‐2.05) 0.33(0.28‐0.39) 1.25(1.04‐1.51) 3.16(2.54‐3.93) 8.04(6.88‐9.39) 1.55(1.22‐1.96) 2.51(1.92‐3.28) 37.5(20.3‐69.1) 0.95(0.48) 1.18(0.45) 5.04(3.12‐8.15) 5.19(3.73‐7.22) 19.7(15.5‐25.1) 1.72(1.24‐2.39) 0.33(0.28‐0.39) 1.18(0.96‐1.46) 2.86(2.40‐3.41) 7.55(6.67‐8.54) 1.73(1.36‐2.20) 2.30(1.71‐3.09) 55.4(41.2‐74.4) 1.05(0.39) 1.10(0.27) Non‐ Desaturating COPDpatients desaturating COPDpatients (n=12) (n=16) 5.63(1.86‐17.1) 4.03(2.40‐6.77) 23.9(14.5‐39.3) 2.36(1.17‐4.73) 0.38(0.28‐0.53) 1.23(0.87‐1.74) 3.12(2.22‐4.39) 8.06(6.27‐10.4) 2.06(1.32‐3.23) 2.35(1.87‐2.95) 45.0(23.7‐85.3) 1.03(0.41) 1.05(0.25) 4.62(3.38‐6.30) 6.36(4.05‐9.99) 16.9(13.6‐20.9) 1.34(1.05‐1.71) 0.29(0.25‐0.34) 1.14(0.84‐1.54) 2.68(2.19‐3.28) 7.17(6.31‐8.14) 1.51(1.15‐1.98) 2.26(1.33‐3.86) 64.0(47.0‐87.0) 1.06(0.38) 1.15(0.28) Abbreviations: CXCL10, C‐X‐C motif chemokine 10; IL‐1RA, interleukin‐1 receptor antagonist; IL‐6, interleukin‐6; MCP‐1, monocyte chemotactic protein‐1; MIF, macrophage migration inhibiting factor; MIP‐1α, macrophage inflammatory protein‐1α; OPG, osteoprotegerin; PAI‐1, plasminogen activator inhibitor‐1;SAA‐1,serumamyloidA1.Dataaregeometricmeansand95%confidenceintervals,except indicatedotherwise. aNoplasmaavailableforn=1COPDpatient. bValidmeasuresabovethelowerlimit of detection available for n=22 COPD patients and n=13 healthy controls. cMean (SD). None of the comparisonswerestatisticallysignificant. adipocyte death but rather with adipocyte atrophy [11]. In line, we report a positive relation between fat mass and adipocyte size in COPD, which was similarinhealthycontrols.Thissuggeststhatthebehaviorofadipocyteatrophy andhypertrophywithchangingfatmassfollowsaphysiologicalpatterninCOPD patients. ATMsarebelievedtobemediatorsofATI,soaquantificationofATMswould provideanindicationofATI.WhereaswefoundnodifferencesinATMinfiltration between COPD patients and healthy controls, ATM infiltration was higher in high‐CRP COPD patients compared to low‐CRP patients, suggesting a relation betweenlow‐gradesystemicinflammationandATI.Interestingly,wefoundthat CD68mRNAlevelswerenotcorrelatedwiththedensityofsolitaryATMsbuta correlation was found with the density of CLS. As CD68 is a lysosomal glycoprotein that is implicated in endocytosis and lysosomal migration of macrophages, our findings suggest that ATMs involved in a CLS express considerablymoreCD68comparedtoresiding/restingsolitaryATMs(Figure1). Inlinewithpreviouspublications[11,19],wefoundthatfatmasswaspositively 74 CHAPTER4 Figure 4. Correlations between fat mass, adipose tissue mRNA and systemic concentrations of leptin and adiponectin in COPD patients (closed circles) and healthycontrols(opencircles). A)Correlationbetweenfatmassandsystemicleptinconcentration,COPDpatients:Spearman’sρ=0.62, P=.001,n=27,healthycontrols:Spearman’sρ=0.58,P=.029,n=14,B)Correlationbetweenadiposetissue leptinmRNAexpressionandsystemicleptinconcentration,COPDpatients:Spearman’sρ=0.50,P=.009, n=27,healthycontrols:Spearman’sρ=0.63,P=.016,n=14,C)Correlationbetweenfatmassandsystemic adiponectin concentration, COPD patients: Spearman’s ρ=‐0.05, P=.80, n=27, healthy controls: Spearman’sρ=‐0.14,P=.63,n=15,D)CorrelationbetweenadiposetissueadiponectinmRNAexpression and systemic adiponectin concentration, COPD patients: Spearman’s ρ=0.41, P=.033, n=27, healthy controls:Spearman’sρ=0.68,P=.005,n=15. correlatedwithmarkersofATMs,whichwashighlycomparablebetweenCOPD patientsandhealthycontrols.Thishasbeenwell‐acceptedtobeacharacteristic ofobesityandhasbeenlinkedtothedevelopmentofIRviaATI[19]. Interestingly, despite the absence of greater ATM density, COPD patients were characterized by a higher HOMA‐IR compared to the healthy controls, suggesting that IR in COPD patients is not necessarily associated with greater ATMinfiltration.Likewise,COPDNDpatientshadconsiderablyhigherinsulinand HOMA‐IRcomparedtoCOPDDpatients,butnodifferencesinATMinfiltrationwere found. It must, however, be mentioned that we did not perform a hyperinsulinemiceuglycemicclamptoverifyIR. 75 ADIPOSETISSUEINFLAMMATIONINCOPD Figure 5. Correlations between fat mass and markers of adipose tissue macrophages in COPD patients (closed circles) and healthy controls (open circles). A) Correlation between fat mass and adipose tissue CD163 mRNA expression, COPD patients: Spearman’s ρ=0.36, P=.060, n=28, healthy controls: Spearman’s ρ=0.66, P=.007, n=15, B) Correlation betweenfatmassandadiposetissueCD68mRNAexpression,COPDpatients:Spearman’sρ=0.42,P=.025, n=28,healthycontrols:Spearman’sρ=0.66,P=.007,n=15,C)Correlationbetweenfatmassandadipose tissue CD206 mRNA expression, COPD patients: Spearman’s ρ=0.60, P=.001, n=28, healthy controls: Spearman’s ρ=0.64, P=.010, n=15, D) Correlation between fat mass and adipose tissue MCP‐1 mRNA expression, COPD patients: Spearman’s ρ=0.41, P=.033, n=28, healthy controls: Spearman’s ρ=0.30, P=.28,n=15. Animal and in vitro studies indicate that hypoxia may lead to ATI. For example, hypoxia increased the activity of the pro‐inflammatory transcription factor Nuclear Factor‐ĸB and the TNF‐α gene promoter in murine adipocytes [20],anditderegulatestheproductionofadiponectinandPAI‐1[21].Inobesity, ithasbeenpostulatedthatadipocytehypertrophycombinedwithimpairedneo‐ vascularisation may ultimately lead to an unbridgeable diffusion distance for oxygenbothonthetissuelevelaswellasonthecellularlevel[5].Indeed,obese mice had hypoxic patches in the adipose tissue which was associated with ATI [20, 22]. However, human data on adipose tissue hypoxia as underlying ATI is scarce.Recently,Goossensetal.challengedtheconceptofadiposetissuehypoxia in humans by showing that obese insulin resistant men were characterized by 76 CHAPTER4 adiposetissuehyperoxiaratherthanhypoxia[23].Wefoundthatinthepresence ofamildhypoxaemiaintheCOPDpatientsrelativetothehealthycontrols(i.e.,a meandifferenceinPaO2of2.7kPa),nocleardifferencescouldbeobservedwith regard to markers of adipose tissue hypoxia or ATI. Assuming that COPDD patientswouldalsodesaturateduringdailylivingactivities[6],weshowthatthe desaturating COPD phenotype is not associated with either of these outcomes. Additionally, adipocyte size and (neo‐) vascularisation markers were comparableacrossthecurrentstudygroups.Collectively,ourdatasuggestthat neithermildhypoxaemianoradesaturationphenotypeisassociatedwithATIin COPDpatients. Figure6.AdiposetissuemacrophagesinCOPD patientswithlowversushighCRP. Datapointsaregeometricalmeans,errorbarsrepresentthe 95% confidence interval. Data were tested using independent‐samplest‐test. Several authors have claimed disturbances in systemic adipokine levels in COPD patients [24‐29]. Takabatake et al. [28] showed lower systemic leptin levels in underweight COPD patients compared to normal‐weight non‐COPD controlsandEkeretal.[30]foundlowersystemicleptinlevelsinCOPDpatients withdecreasedFFMcomparedtoBMI‐andsex‐matchedhealthycontrols.Inour study, none of the measured systemic adipokines (including leptin and 77 ADIPOSETISSUEINFLAMMATIONINCOPD adiponectin) revealed different levels between COPD patients and matched healthycontrols,indicatingtheimportanceofadjustingforfatmass.Indeed,we found a strong positive correlation between fat mass and circulating leptin levels,whichwasfoundtobesimilarinCOPDpatientsandhealthycontrols.In addition, adipose tissue expression of leptin and adiponectin were positively correlated with systemic leptin and adiponectin levels, respectively, also in a similarfashioninCOPDpatientsasinhealthycontrols. Recently, important distinct functions and characteristics of SAT versus visceral adipose tissue (VAT) have been reported. For example, the relative contribution of SAT compared to VAT to systemic adipokine levels may be limited[31]anddifferencesexistinneovascularisationwithexpandingfatmass whichmayexertdifferentmetaboliceffectsinSATandVAT[32].Also,expanding VAT is generally associated with increased cardiovascular risk whereas expanding SAT may even lower cardiovascular risk especially in women [33]. Therefore, it would be interesting to explore a potential VAT dysfunction in COPD patients in future studies and compare it to SAT function. In addition, studyingpotentialadiposetissuedysfunctioninmoresevereCOPDpatientsand during acute exacerbations may add to optimizing nutritional and lifestyle interventions. In conclusion, markers of ATI and systemic adipokine levels in clinically stable mild‐to‐moderate COPD patients who are characterized by low‐grade systemic inflammation, higher HOMA‐IR and mild relative hypoxaemia, were comparabletoage‐,sex‐,BMI‐andbodycomposition‐matchedhealthycontrols. OurstudyprovidesafirstindicationforapossibleroleofATMsinthesystemic inflammatoryresponseinCOPDthatwarrantsfurtherinvestigation. 78 CHAPTER4 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. BarnesPJ,CelliBR.SystemicmanifestationsandcomorbiditiesofCOPD.EurRespirJ.2009;33(5):1165‐85. MancusoP.Obesityandlunginflammation.JApplPhysiol.2010;108(3):722‐8. SkurkT,Alberti‐HuberC,HerderC,HaunerH.Relationshipbetweenadipocytesizeandadipokineexpression andsecretion.JClinEndocrinolMetab.2007;92(3):1023‐33. SchiffelersSL,BlaakEE,BaarendsEM,VanBaakMA,SarisWH,WoutersEF,ScholsAM.beta‐Adrenoceptor‐ mediatedthermogenesis and lipolysisin patientswith chronic obstructive pulmonary disease.Am J Physiol EndocrinolMetab.2001;280(2):E357‐64. Trayhurn P, WangB, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?BrJNutr.2008;100(2):227‐35. Soguel Schenkel N, Burdet L, de Muralt B, Fitting JW. Oxygen saturation during daily activities in chronic obstructivepulmonarydisease.EurRespirJ.1996;9(12):2584‐9. BoltonCE,EvansM,IonescuAA,EdwardsSM,MorrisRH,DunseathG,LuzioSD,OwensDR,ShaleDJ.Insulin resistanceandinflammation‐AfurthersystemiccomplicationofCOPD.Copd.2007;4(2):121‐6. Torres‐LealFL,Fonseca‐AlanizMH,RogeroMM,TirapeguiJ.Theroleofinflamedadiposetissueintheinsulin resistance.CellBiochemFunct.2011;28(8):623‐31. MorrisDL,SingerK,LumengCN.Adiposetissuemacrophages:phenotypicplasticityanddiversityinleanand obesestates.CurrOpinClinNutrMetabCare.2011;14(4):341‐6. TkacovaR,UkropecJ,SkybaP,UkropcovaB,PobehaP,KurdiovaT,JoppaP,KlimesI,TkacI,GasperikovaD. Increased adipose tissue expression of proinflammatory CD40, MKK4 and JNK in patients with very severe chronicobstructivepulmonarydisease.Respiration.2011;81(5):386‐93. SkybaP,UkropecJ,PobehaP,UkropcovaB,JoppaP,KurdiovaT,StroffekovaK,BrusikM,KlimesI,TkacI,etal. Metabolic phenotype and adipose tissue inflammation in patients with chronic obstructive pulmonary disease.MediatorsInflamm.2010;2010:173498. FuldaS,LinseisenJ,WolframG,HimmerichS,GedrichK,PollmacherT,HimmerichH.Leptinplasmalevelsin the general population: influence of age, gender, body weight and medical history. Protein Pept Lett. 2010;17(11):1436‐40. Boyne MS, Bennett NR, Cooper RS, Royal‐Thomas TY, Bennett FI, Luke A, Wilks RJ, Forrester TE. Sex‐ differences in adiponectin levels and body fat distribution: longitudinal observations in Afro‐Jamaicans. DiabetesResClinPract.2010;90(2):e33‐6. ATS/ACCPStatementoncardiopulmonaryexercisetesting.AmJRespirCritCareMed.2003;167(2):211‐77. VandesompeleJ,DePreterK,PattynF,PoppeB,VanRoyN,DePaepeA,SpelemanF.Accuratenormalization ofreal‐timequantitativeRT‐PCRdatabygeometricaveragingofmultipleinternalcontrolgenes.GenomeBiol. 2002;3(7):RESEARCH0034. SchipperHS,deJagerW,vanDijkME,MeerdingJ,ZelissenPM,AdanRA,PrakkenBJ,KalkhovenE.Amultiplex immunoassayforhumanadipokineprofiling.ClinChem.2010;56(8):1320‐8. WallaceTM,LevyJC,MatthewsDR.UseandabuseofHOMAmodeling.DiabetesCare.2004;27(6):1487‐95. BenjaminiY,HochbergY.Controllingthefalsediscoveryrate:apracticalandpowerfulapproachtomultiple testing.JournaloftheRoyalStatisticalSociety.1995;57(1):289‐300. Red Eagle A, Chawla A. In obesity and weight loss, all roads lead to the mighty macrophage. J Clin Invest. 2010;120(10):3437‐40. YeJ,GaoZ,YinJ,HeQ.Hypoxiaisapotentialriskfactorforchronicinflammationandadiponectinreductionin adiposetissueofob/obanddietaryobesemice.AmJPhysiolEndocrinolMetab.2007;293(4):E1118‐28. Chen B, Lam KS, Wang Y, Wu D, Lam MC, Shen J, Wong L, Hoo RL, Zhang J, Xu A. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor‐1 independent of reactive oxygen species in adipocytes.BiochemBiophysResCommun.2006;341(2):549‐56. HosogaiN,FukuharaA,OshimaK,MiyataY,TanakaS,SegawaK,FurukawaS,TochinoY,KomuroR,Matsuda M, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56(4):901‐11. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JW, Cajlakovic M, RibitschV, ClementK,etal.Increasedadiposetissueoxygentensioninobesecomparedwithleanmenisaccompaniedby insulinresistance,impairedadiposetissuecapillarization,andinflammation.Circulation.2011;124(1):67‐76. BreyerMK,RuttenEP,VernooyJH,SpruitMA,DentenerMA,vanderKallenC,VangreevenbroekMM,Wouters EF.Genderdifferencesintheadiposesecretomesysteminchronicobstructivepulmonarydisease(COPD):A pivotalroleofleptin.RespirMed.2011;105(7):1046‐53. Wang QY, Zhang H, Yan X, Kang J, Yu RJ. [Serum resistin and leptin in patients with chronic obstructive pulmonary disease and their relationship to nutritional state]. Zhonghua Jie He He Hu Xi Za Zhi. 2005;28(7):445‐7. Poulain M, Doucet M, Drapeau V, Fournier G, Tremblay A, Poirier P, Maltais F. Metabolic and inflammatory profileinobesepatientswithchronicobstructivepulmonarydisease.ChronRespirDis.2008;5(1):35‐41. Tomoda K, Yoshikawa M, Itoh T, Tamaki S, Fukuoka A, Komeda K, Kimura H. Elevated circulating plasma adiponectininunderweightpatientswithCOPD.Chest.2007;132(1):135‐40. TakabatakeN,NakamuraH,AbeS,HinoT,SaitoH,YukiH,KatoS,TomoikeH.Circulatingleptininpatients withchronicobstructivepulmonarydisease.AmJRespirCritCareMed.1999;159(4Pt1):1215‐9. Yuan Y, Wang Z, Liu C. [Preliminary investigation of effect of serum leptin on nutritional state of COPD patients].ZhonghuaJieHeHeHuXiZaZhi.2000;23(5):292‐5. 79 ADIPOSETISSUEINFLAMMATIONINCOPD 30. EkerS,AyazL,TamerL,UlubasB.Leptin,visfatin,insulinresistance,andbodycompositionchangeinchronic obstructivepulmonarydisease.ScandJClinLabInvest.2010;70(1):40‐4. 31. HockingSL,WuLE,GuilhausM,ChisholmDJ,JamesDE.Intrinsicdepot‐specificdifferencesinthesecretomeof adipose tissue, preadipocytes, and adipose tissue‐derived microvascular endothelial cells. Diabetes. 2010;59(12):3008‐16. 32. GealekmanO,GusevaN,HartiganC,ApothekerS,GorgoglioneM,GuravK,TranKV,StraubhaarJ,NicoloroS, Czech MP, et al. Depot‐specific differences and insufficient subcutaneous adipose tissue angiogenesis in humanobesity.Circulation.2011;123(2):186‐94. 33. ZafonC.Fatandaging:ataleoftwotissues.CurrAgingSci.2009;2(2):83‐94. 34. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocytedeathdefinesmacrophagelocalizationandfunctioninadiposetissueofobesemiceandhumans.J LipidRes.2005;46(11):2347‐55. 35. QuanjerPH,TammelingGJ,CotesJE,PedersenOF,PeslinR,YernaultJC.Lungvolumesandforcedventilatory flows.ReportWorkingPartyStandardizationofLungFunctionTests,EuropeanCommunityforSteelandCoal. OfficialStatementoftheEuropeanRespiratorySociety.EurRespirJSuppl.1993;16:5‐40. 80 CHAPTER4 Supplementalmaterial Detailedmethodology Clinically stable COPD patients were recruited from the outpatient clinic of the Maastricht University Medical Centre (MUMC+, Maastricht, The Netherlands) andusingadvertisementsinlocalnewspapers.Patientswereexcludedincaseof long‐term oxygen therapy, acute exacerbation with hospital admission in the past eight weeks, oral steroid use, rehabilitation in the past six months, scheduled rehabilitation and α1‐antitrypsin deficiency. COPD patients with known chronic heart failure, cancer treatment in the past three years, sarcoidosis,pulmonaryembolism,obstructiveorcentralsleepapneasyndrome, diabetes mellitus, hepatic or renal failure, rheumatoid arthritis, M. Bechterew and inflammatory bowel disease were excluded from this study. Subjects performed an incremental exercise test (see below for methodology) to determine exercise‐induced desaturation defined as a fall in oxygen saturation (SaO2) of ≥4% [14]. This study included 28 COPD patients of whom 12 desaturated(COPDD,mean±SDΔSaO2‐8.5±2.2%)and16didnot(COPDND,ΔSaO2 ‐2.1±1.7%). Fifteen healthy controls were recruited via advertising in local newspapers. The absence of co‐morbidities in the healthy controls (including asthma and COPD) was ascertained based on a physician’s diagnosis, lung function,self‐reportedhistoryand/ortreatment.Writteninformedconsentwas obtainedfromallsubjectsandtheethicalreviewboardoftheMUMC+approved thestudy(MEC08‐2‐059). Pulmonaryfunctionandincrementalexercisetest Pulmonary function testing included forced spirometry and single breath diffusion capacity measurement (Masterlab, Jaeger, Würzburg, Germany). Instrumentswerecalibratedtwiceaday.Allvaluesobtainedwereexpressedasa percentageofreferencevalues[35].Allsubjectsperformedanincrementalcycle ergometrytestaccordingtointernationalstandards[14].Afterthreeminutesof unloadedcycling,workloadwasincreasedby10Watteveryminuteinpatients. Incontrolsubjects,theloadwasincreasedwith15‐25Watt·min‐1,dependingon relativefitnessofthesubject,soastoleadtofatiguein10‐12minutes.Subjects were encouraged to cycle at 60 rpm until exhaustion. SaO2 during the test was monitored by pulse oximetery. Arterial blood gas analysis (Blood gas analyzer 865, Chiron Diagnostics, Emeryville, CA, USA) was performed at rest and at VO2maxfromaradialarterypuncture. 81 ADIPOSETISSUEINFLAMMATIONINCOPD Cardiometabolicandsystemicinflammatoryprofile Afteranovernightfast,venousbloodwasdrawninthemorningandplasmaand serum were stored at ‐80°C until further analysis. Plasma concentrations of 19 adipo(cyto)kines were analyzed with a multiplex immunoassay as described in detail elsewhere [16]. The lower limits of detection (LLOD) are presented in Table E3. For IL‐6, 28% (n=7 COPD patients and n=5 healthy controls) of the data set was below the last linear point of the standard curve (3.6 pg/ml) but above the LLOD and therefore extrapolated data was used. Serum C‐reactive protein (CRP) was determined with the CardioPhase® high‐sensitive CRP kit (Siemens Healthcare Diagnostics Inc., Newark, NJ) (LLOD 0.18 mg/L). Glucose was measured on a SensoStar GL 30 (DiaSys Diagnostics Systems GmbH, Holzheim, Germany) and insulin was measured by the AutoDELFIA® time‐ resolvedfluoroimmunoassay(PerkinElmer,Turku,Finland).Homeostaticmodel assessment (HOMA) wasapplied to estimate IR by HOMA‐IR=(Fasting insulin * Fastingglucose)/22,5[17].SerumN‐terminalpro‐BrainNatriureticPeptide(NT‐ proBNP) was measured using an electrochemiluminescence immunoassay (RocheDiagnostics,Woerden,TheNetherlands). SupplementalTable1.PulmonarymedicationinCOPDpatients(n=28). 82 Pulmonarymedication n % Long‐actingβ2agonist(LABA) Short‐actingβ2agonist Long‐actinganticholinergic Short‐actinganticholinergic Inhaledcorticosteroids(ICS) LABA+ICS Anyβ2agonist 4 10 18 4 4 13 20 14 36 64 14 14 46 71 CHAPTER4 SupplementalTable2.PrimersequencesusedforRT‐qPCR. Forward5’‐3’ Reverse5’‐3’ Targetgenes Leptin CGGAGAGTACAGTGAGCCAAGA CGGAATCTCGCTCTGTCATCA Adiponectin CCCAAAGAGGAGAGAGGAAGCT GCCAGAGCAATGAGATGCAA Chemerin AAGTCAGGCCCAATGGGAGG CCAACCGGCCCAGAACTTTGT PAI‐1 GAAAGTGAAGATCGAGGTGAACGAGA CATGCGGGCTGAGACTATGACA Adrenomedullin ACTTGGCAGATCACTCTCTTAGCA TCAGGGCGACGGAAACC CD163 GCAAGAATTCATCTCCCGGTATTG AGACAGAGACAGCGGCTTGCA CD206 TCTGGAATGTCTTCGAATGGGTTC GGCTCAACCCGATATGACAGAAAA CD11b ACACGGGATCGGCTAAGAGAAGGA CGGGAATGTGGGCGGC Visfatin GGAAACCCTCTTGACACTGTGTTAAAGG AAGATAAGGTGGCAGCAACTTGTAACC Osteoprotegerin TTGGAGTGGTGCAAGCTGGAA ACCCATCTGGACATCTTTTGCAAA PPAR‐γ CGGGCCCTGGCAAAAC AAGATCGCCCTCGCCTTT IL‐8 CACTGCGCCAACACAGAAAT GAGCTCTCTTCCATCAGAAAGC IL‐10 ATGGTGGCGCGCACCTG CCTGGGTTCAAGCAATTCTCTTGC VEGF‐A CCAGGCCCTCGTCATTG AAGGAGGAGGGCAGAATCAT CD34 TAACGCCCTCCGCCTTTGG GCGCCTCTCCTTGGCTGCTA MCP1 AGCAGCAAGTGTCCCAAAGAAGCT CCTTGGCCACAATGGTCTTGAA CD68 GGACATTCTCGGCTCAGAAT GCCTGGTAGGCGATGGGCG GLUT‐1 TCTGGGCTGCCGGGTTCTAG TTTGCAGGCTCCCACAGGC HIF‐1α TGAACATAAAGTCTGCAACATGGA TGAGGTTGGTTACTGTTGGTATCATATA Housekeepinggenes GAPDH GCACCACCAACTGCTTAGCA TGGCAGTGATGGCATGGA β2‐microglobulin TGACTTTGTCACAGCCCAAGATA AATGCGGCATCTTCAAACCT RPL13A TTGAGGACCTCTGTGTATTTGTCAA CCTGGAGGAGAAGAGGAAAGAGA Abbreviations: GAPDH, glyceraldehydes 3‐phosphate dehydrogenase; GLUT‐1, glucose transporter‐1; HIF‐1α, hypoxia inducible factor‐1α; MCP‐1, monocyte chemotactic protein‐1; PAI‐1, plasminogen activatorinhibitor‐1;PPAR‐γ,peroxisomeproliferator‐activatedreceptor‐γ;RPL13A,Ribosomalprotein 13A;VEGF‐A,vascularendothelialgrowthfactor‐A. 83 ADIPOSETISSUEINFLAMMATIONINCOPD Supplemental Table 3. Lower limits of detection (LLOD) of plasma adipo(cyto)kines. Adipo(cyto)kines IL‐1RA IL‐1β IL‐6 IL‐10 TNF‐α IFN‐γ MIF CCL2(MCP‐1) CCL3(MIP1α) CXCL8(IL‐8) CXCL10(IP10) Leptin OPG Chemerin Adipsin(ComplFactorD) Resistin SAA‐I PAI‐I Adiponectin LLOD(pg/ml) 0.7 0.5 0.8 0.8 0.4 1.4 1.4 0.4 3.1 1.8 0.3 0.3 0.7 31.7 0.4 12.8 832 88.2 36.4 Abbreviations: CCL, C‐C motif ligand; CXCL, C‐X‐C motif ligand; IL, interleukin; MCP‐1, monocyte chemotactic protein‐1; MIF, macrophage migration inhibiting factor; MIP‐1α, macrophage inflammatoryprotein‐1α;OPG,osteoprotegerin;PAI‐1,plasminogenactivatorinhibitor‐1;SAA‐1,serum amyloidA1. 84 CHAPTER4 SupplementalTable4.ComparisonbetweenCOPDpatientswithlowCRP(i.e. CRP<median)versushighCRP(i.e.CRP≥median). Demographics Sex,m/f Age,y Smokingstatus Current,n(%) Former,n(%) Never,n(%) Pulmonaryfunction FEV1,%pred FVC,%pred FEV1/FVC,% DLCO,%pred SaO2atrest,% SaO2atVO2,max,% PaO2atrest,kPa PaO2atVO2,max,kPaa Bodycomposition BMI,kg/m2 FFMI,kg/m2 FMI,kg/m2 Totalbodyfat,% Cardiometabolicprofileb,c Glucose,mmol/L Insulin,pmol/L HOMA‐IR NT‐proBNP,pmol/L Systemicinflammationb,c CRP,mg/L LowCRPCOPD patients(n=13) HighCRPCOPDpatients (n=14) 8/5 66(7) 8/6 65(7) 6(46) 7(54) 0(0) 3(21) 11(79) 0(0) 57(18) 110(19) 42(13) 48(15) 97(2) 92(5) 9. 6(1.1) 9.4(1.9) 60(16) 100(24) 47(11) 54(18) 96(1) 91(4) 9.4 (1.0) 8.9 (1.1) 24.0(2.7) 17.1(1.6) 6.8(3.0) 28(10) 25.5(3.1) 17.9(1.9) 7.7(2.4) 31(7) 5.7(5.4‐6.0) 47(28‐78) 1.38(0.68‐2.78) 9.0(5.9‐13.8) 6.0(5.7‐6.4) 48(33‐71) 1.68(1.02‐2.77) 10.2(5.7‐18.2) 0.90(0.75‐1.08) 4.38(2.33‐8.24)d Abbreviations:BMI,bodymassindex;DLCO,diffusioncapacityofthelungsforcarbonmonoxide;FEV1, forced expiratory volume in 1s; FFMI, fat‐free mass index; FMI, fat mass index; FVC, forced vital capacity; HOMA‐IR, homeostatic model assessment insulin resistance. Data are mean (SD) unless indicatedotherwise.Continuousvariablesweretestedusingindependent‐samplest‐testandcategorical variables were tested using the χ2‐test. aAvailable for 20 patients. bNo plasma available for n=1 COPD patient.cGeometricmean(95%confidenceinterval).dP<.001. 85 ADIPOSETISSUEINFLAMMATIONINCOPD Supplemental Table 5. Comparison of adipose tissue mRNA levels (arbitrary units)betweenlowandhighCRPCOPDpatients. GLUT1 HIF1α VEGF‐A CD34 PAI‐1 Adrenomedullin Visfatin Osteoprotegerin IL‐8 MCP‐1 CD68 CD163 CD206 CD11b Leptina Adiponectina PPAR‐γa Chemerina IL‐10a LowCRPCOPDpatients (n=13) HighCRPCOPDpatients (n=14) 0.17(0.13‐0.23) 0.19(0.17‐0.20) 0.18(0.14‐0.24) 0.19(0.12‐0.28) 0.16(0.10‐0.25) 0.22(0.17‐0.28) 0.19(0.13‐0.28) 0.19(0.14‐0.26) 0.14(0.07‐0.26) 0.14(0.09‐0.20) 0.16(0.12‐0.20) 0.15(0.09‐0.25) 0.16(0.11‐0.24) 0.13(0.05‐0.30) 0.17(0.09) 0.20(0.06) 0.18(0.05) 0.21(0.07) 0.29(0.08) 0.16(0.12‐0.21) 0.19(0.17‐0.21) 0.14(0.11‐0.19) 0.14(0.11‐0.17) 0.20(0.14‐0.30) 0.24(0.18‐0.31) 0.23(0.16‐0.33) 0.26(0.20‐0.35) 0.16(0.10‐0.25) 0.18(0.14‐0.23) 0.20(0.16‐0.25) 0.19(0.12‐0.30) 0.26(0.19‐0.37) 0.23(0.16‐0.32) 0.19(0.06) 0.16(0.07) 0.15(0.06) 0.17(0.08) 0.28(0.07) Abbreviations: GLUT1, glucose transporter 1; HIF1α, hypoxia inducible factor 1α; VEGF‐A, vascular endothelial growth factor‐A; PAI‐1, plasminogen activator inhibitor‐1; MCP‐1, monocyte chemotactic protein‐1, PPAR‐γ, peroxisome proliferator‐activated receptor‐γ. Data are geometric means and 95% confidenceintervals,exceptindicatedotherwise.Independent‐samplest‐testswereusedtoanalyzethe data,andPvalueswereinterpretedapplyingfalsediscoveryratecorrectionformultipletesting.aMean (SD). 86 CHAPTER4 Supplemental Table 6. Comparison of systemic adipokine levels between low andhighCRPCOPDpatients. IL‐6,pg/ml Leptin,ng/ml Adiponectin,μg/ml PAI‐1,μg/ml Chemerin,μg/ml Adipsin,μg/ml Resistin,μg/ml SAA‐1,μg/ml CXCL10,ng/ml IL‐1RA,ng/ml MIF,ng/ml MIP‐1α,pg/mla,b MCP‐1,ng/mlb OPG,ng/mlb LowCRPCOPDpatients (n=13) 4.34(3.03‐6.22) 4.98(2.89‐8.59) 22.2(17.6‐28.2) 1.90(0.95‐3.77) 0.35(0.26‐0.47) 1.17(0.79‐1.74) 2.59(1.95‐3.44) 7.73(6.27‐9.53) 1.89(1.40‐2.56) 1.66(1.19‐2.32) 2.60(1.70‐3.98) 73(50) 1.17(0.38) 1.10(0.27) HighCRPCOPDpatients (n=14) 5.79(2.29‐14.6) 5.39(3.40‐8.55) 17.6(11.3‐27.2) 1.57(1.22‐2.01) 0.31(0.26‐0.37) 1.19(0.93‐1.51) 3.10(2.43‐3.96) 7.39(6.26‐8.72) 1.60(1.07‐2.39) 1.40(1.30‐1.50) 2.05(1.30‐3.23) 59(25) 0.93(0.36) 1.10(0.27) Abbreviations:IL‐6,interleukin‐6;PAI‐1,plasminogenactivatorinhibitor‐1;OPG,osteoprotegerin;MCP‐ 1,monocytechemotacticprotein‐1;MIF,macrophagemigrationinhibitingfactor;MIP‐1α,macrophage inflammatoryprotein‐1α,IL‐1RA,interleukin‐1receptorantagonist;SAA‐1,serumamyloidA1;CXCL10, C‐X‐C motif chemokine 10; OPG, osteoprotegerin. Data are geometric means and 95% confidence intervals,exceptindicatedotherwise.Independent‐samplest‐testswereusedtoanalyzethedata,andP values were interpreted applying false discovery rate correction for multiple testing. aValid measures abovethelowerlimitofdetectionavailableforn=22patients.bMean(SD).Noneofthecomparisonswere statisticallysignificant. 87 ADIPOSETISSUEINFLAMMATIONINCOPD Supplemental Figure 1. Correlation between adipose tissue macrophages quantifiedfrom CD68‐stained paraffin sections andadipose tissue CD68 mRNA expression. Abbreviations: ATM, adipose tissue macrophage; CLS, crown‐like structure. A) Correlation between solitary ATMsandadiposetissueCD68 mRNAexpressioninCOPDpatients(blackcircles)andhealthy controls (open circles). These correlations were not statistically significant (P>.05). B) Correlation betweenCLSdensityandadiposetissueCD68mRNAexpressioninsubjectsinwhomweencountered≥1 CLS. The CLS density was significantly correlated with adipose tissue CD68 mRNA expression (correlationforentiregroupbecauseofthesmallsamplesize:Spearman’sρ=0.53,P=.024,n=17).This positive correlation remained significant after excluding the outlier at CLS density=1.7 (Spearman’s ρ=0.50,P=.047,n=16). 88 CHAPTER5 The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructive lung disease BramvandenBorst,HarryR.Gosker,AnnemarieKoster,BinbingYu, Stephen B. Kritchevsky, Yongmei Liu, Bernd Meibohm, Thomas B. Rice, Michael Shlipak, Sachin Yende, Tamara B. Harris, Annemie M.W.J.Schols FortheHealth,AgingandBodyComposition(HealthABC)Study AmericanJournalofClinicalNutrition2012;96(3):516‐26 89 EXCESSIVEABDOMINALVISCERALFATINCOPD Abstract Background: Low‐grade systemic inflammation, particularly elevated IL‐6, predicts mortality in chronic obstructive pulmonary disease (COPD). Although alteredbodycomposition,especiallyincreasedvisceralfat(VF)mass,couldbea significant contributor to low‐grade systemic inflammation, this remains unexploredinCOPD. Objective: To investigate COPD‐specific effects on VF, plasma adipocytokines andtheirpredictivevalueformortality. Design:WithintheHealth,AgingandBodyCompositionStudy,anobservational studyofcommunity‐dwellingolderpersons,weusedpropensityscorestomatch n=729 persons with normal lung function to n=243 persons with obstructive lung disease (OLD, defined as FEV1/FVC<LLN). Matching was based on age, gender,race,clinicsite,bodymassindexandsmoking.Withinthiswell‐balanced match, we compared CT‐acquired VF area (VFA) and plasma adipocytokines, analyzed independent associations of VFA and OLD status on plasma adipocytokines,andstudiedtheirpredictivevaluefor9.4‐yearmortality. Results: Whereas whole‐body fat mass was comparable between the groups, OLD persons had increased VFA and higher plasma IL‐6, adiponectin and plasminogen activator inhibitor (PAI)‐1. Both OLD status and VFA were independently positively associated with IL‐6. Adiponectin was positively associated with OLD status, but negatively with VFA. PAI‐1 was no longer associatedwithOLDstatusafteraccountingforVFA.OLDpersonshadincreased risk of all‐cause, respiratory and cardiovascular mortality, of which IL‐6 was identifiedasanindependentpredictor. Conclusions:Ourdatasuggestthatexcessiveabdominalvisceralfatcontributes toincreasedplasmaIL‐6which,inturn,isstronglyassociatedwithall‐causeand cause‐specificmortalityofolderpersonswithOLD. 90 CHAPTER5 Introduction Inolderadults,theprevalenceofchronicobstructivepulmonarydisease(COPD) is 14% and as a consequence of general aging in the population and improved medical intervention, this prevalence is projected to increase even further [1]. COPD is characterized by altered body composition towards a relative or absolute increase in fat mass, low‐grade systemic inflammation and high mortality[2].Classically,low‐gradesystemicinflammationinthesepatientshas beenconsideredtobetheresultofa‘spill‐over’ofinflammatorymediatorsfrom the inflamed pulmonary compartment. For this, however, there has been no convincing evidence during clinically stable disease. The possibility of extra‐ pulmonarytissuescontributingtolow‐gradesystemicinflammationinCOPDhas beenrelativelyunexplored. Adipose tissue has emerged as a potent producer of mediators of inflammation and energy homeostasis, termed adipocytokines [3], including interleukin (IL)‐6, plasminogen activator inhibitor (PAI)‐1, leptin and adiponectin. Notably, in diseases associated with excessive fat mass, such as obesityandtype2diabetes,adiposetissuehasbeensuggestedtobethesource oflow‐gradesystemicinflammation[4].Inarecentclinicalstudy,weexamined adipocytokine gene expression and macrophage markers in biopsies from the abdominal subcutaneous fat (SF) compartment from COPD patients and fat mass‐matched healthy subjects [5]. We foundpositive associationsbetween fat massandadiposetissueinflammation,whichwerehighlycomparablebetween COPDpatientsandcontrols.ThesedatasuggestedthattheSFcompartmentmay not be the primary fat compartment contributing to low‐grade systemic inflammation in COPD. Importantly, studies consistently indicate that the inflammatory capacity of abdominal visceral fat (VF) is considerably greater in comparison with other fat depots including SF [6, 7]. Thus, VF may be a more plausiblesourceofsystemicinflammationthanSF.Interestingly,arecentstudy in normal‐weight mild‐to‐moderate COPD patients and healthy subjects used abdominalCT‐scanningandfoundincreasedVFarea(VFA)inCOPDpatients[8]. However, these patients also had increased whole‐body fat mass, and it is unclearwhethertheincreasedVFwasareflectionofthehigherwhole‐bodyfat mass. Also, associations between VF and circulating adipocytokines were not assessed. Whole‐body fat mass increases with aging, and consistent data has shown thatinthisprocess,theexpansionrateofVFexceedsthatofSF[9,10].Recently, inareviewofinflammatorymarkersinpopulationstudiesofaging,ithasbeen proposed that aging‐related mortality is associated with VF accumulation and ‘inflammaging’ [11]. Collectively, these studies stress the need for investigating the role of VF in low‐grade systemic inflammation and mortality in COPD, accountingforimportantconfoundersincludingageandbodymassindex(BMI). The current study provides a comprehensive comparison of VF mass, plasma 91 EXCESSIVEABDOMINALVISCERALFATINCOPD adipocytokines andtheir relation with 9.4‐year mortality of COPD patients and propensity‐score matched persons with normal lung function who participated in the Health, Aging and Body Composition (ABC) Study. Additionally, we exploreddietaryintakeandphysicalactivityasimportantlifestyledeterminants inthesesubjects. Methods Studypopulation The observational Health ABC Study included 3075 community‐dwelling black andwhitemenandwomenbetweentheagesof70‐79yearsresidinginandnear Pittsburgh,PennsylvaniaandMemphis,Tennessee.Baselinedatawereobtained in 1997/1998 through in‐person interview and clinic based examination. Inclusion criteria were no self‐reported difficulty walking a quarter mile, climbing 10 steps without resting, or performing mobility‐related activities of dailyliving.Exclusioncriteriawereanylife‐threateningcondition,participation inanyresearchstudyinvolvingmedicationsormodificationofeatingorexercise habits,planstomovefromthegeographicareawithin3years,anddifficultyin communicating with the study personnel or cognitive impairment. The study was approved by the Institutional Review Boards of the participating centers University of Tennessee Health Science Center, Memphis (#95‐05531‐FB) and the University of Pittsburgh (#960212), and of the coordinating center at the University of California, San Francisco (#10‐03322). Written informed consent was obtained for all participants. Clinic site, age and race (black/white) were based on self‐report. In the current study we retrospectively analyzed baseline phenotypicaldataand9.4‐yearmortalitydata. Lungfunctionandsmokinghistory Pre‐bronchodilator lung function was assessed according to international standards as previously reported [12]. Since post‐bronchodilator lung function was lacking, participants with a ratio between forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) below the age, sex, and race‐normalized lower limit of normal (LLN) [12‐14] were regarded as having obstructive lung disease (OLD). This method is exactly the same as applied in previous publications from the Health ABC Study [12, 15]. Participants with restrictive lung disease (FEV1/FVC≥LLN but FVC<LLN) were excluded (Figure 1). Normal lung function was defined as FEV1/FVC≥LLN and FVC≥LLN. Participants with missing lung function and those with non‐interpretable lung function measurements according to international criteria were excluded. Cigarette smoking status (current/former/never) and the number of pack years smoked (1packyear=20cigarettes/dayfor1year)wereobtainedbasedonself‐report. 92 CHAPTER5 Figure1.Flowdiagramofselectionofstudyparticipants. Abbreviations:ATS,AmericanThoracicSociety;FEV1,forcedexpiratoryvolumein1s;FVC,forcedvital capacity;LLN,lowerlimitofnormal;OLD,obstructivelungdisease. Anthropometryandbodycomposition Height was measured using a wall mounted stadiometer. Body weight was assessedtothenearest0.1kgusingastandardbalancebeamscaleandBMIwas calculatedasweight/height2(kg/m2).WholebodyDXA(Hologic4500Asoftware version8.21,Waltham,MA,USA)wasusedtoassesstotalfatandfatfreemasses. Abdominalcomputerizedtomography(CT) At120kVpand200‐250 mAa10mmCT‐scanoftheabdomenwasacquiredat the L4‐L5 level. Subjects were placed in the supine position with their arms above their head and legs elevated with a cushion to reduce the curve in the back. In Memphis the scan was acquired using a Somatom Plus 4 (Siemens, Erlangen,Germany)oraPickerPQ2000S(MarconiMedicalSystems,Cleveland, Oh, USA), and in Pittsburgh using a 9800 Advantage (General Electric, Milwaukee,WI,USA).VisceralFatArea(VFA)wasmanuallydistinguishedfrom subcutaneous fat area (SFA) by tracing along the fascial plane defining the internal abdominal wall. Areas were calculated by multiplying the number of pixelsofagiventissuebythepixelarea(seeforfurtherdetails[16]). 93 EXCESSIVEABDOMINALVISCERALFATINCOPD Circulatingadipocytokines Interleukin(IL)‐6,plasminogenactivatorinhibitor(PAI)‐1,tumornecrosisfactor (TNF)‐α, C‐reactive protein (CRP), leptin and adiponectin were obtained from frozenstoredplasmaorserumobtainedfromavenipunctureafteranovernight fast (a detailed description on measurement techniques was previously published[17]). Insulinresistance The Homeostatic Model Assessment was used to estimate insulin resistance (HOMA‐IR)from(fastingplasmaglucose*fastingplasmainsulin)/22,5[18]. Prevalentdiseases Themetabolicsyndromewasdefinedaccordingtointernationalguidelines[19] asmeeting at leastthree of thefollowing criteria: 1) waist circumference ≥102 cminmenand≥88cminwomen,2)diastolicbloodpressure≥85mmHgand/or systolic blood pressure ≥130 mmHg or using antihypertensive medications, 3) fasting glucose level ≥100 mg/dl or using antidiabetic medication, 4) high‐ densitylipoproteincholesterol(HDL)level<40mg/dlinmenand<50mg/dlin women or currently on treatment for low HDL cholesterol, and 5) serum triglyceride level ≥150 mg/dl or currently on drug treatment for high triglycerides.Diabeteswasdefinedbyself‐reportoruseofdiabetesmedication. Cardiovascular disease was defined by self‐report or by medical records of coronaryheartdiseaseand/orstroke.Twoseatedrestingbloodpressureswere taken and were averaged. Physiological hypertension was defined by systolic bloodpressure>140mmHgand/ordiastolicbloodpressure>90mmHgoruseof hypertensionmedication. Survivaltimeandcauseofdeath Surveillance for survival was conducted by in‐person visit alternating with telephone interview every 6 months. The dateofdeath was determined on the basisofhospitalrecords,deathcertificatesorinformantinterviews.Thirty‐eight persons(3%)werelostduringfollow‐up,andtheirsurvivaltimewascensored on the basis of their date of last contact. Deaths were adjudicated by a central committee for immediate and underlying causes of death using established criteria, including review of death certificate, all recent hospital records, and interview with the next of kin. Respiratory mortality was defined as mortality from COPD, pneumonia and respiratory failure. We defined cardiovascular mortalityasmortalityfromatheroscleroticcardiovasculardisease(definitefatal myocardial infarction or definite or possible fatal coronary heart disease), 94 CHAPTER5 stroke,atheroscleroticdiseaseotherthancoronaryorcardiovascular,andother cardiovasculardisease. Dietaryintakeandphysicalactivitylevel Usualnutrientandfoodgroupintakewasestimatedbyadministeringamodified Blockfoodfrequencyquestionnairebyatraineddietaryintervieweratthefirst annualfollow‐upexamination(detailspublishedin[20]).AHealthyEatingIndex (HEI) was calculated to measure the amount of variety in the diet and compliance with specific dietary guidelines [20]. HEI scores ranged from 0 to 100 with higher scores indicating bettercompliance with recommended intake rangeoramount.Physicalactivitylevelwasassessedatbaselinebymeansofa validatedquestionnaire[20]. Statisticalanalyses Propensityscorematching Afterapplyingexclusioncriteria,n=2139participants(n=243OLDpersonsand n=1896non‐OLDpersons)wereidentified(Figure1).Bymeansofindependent t‐tests, Mann‐Whitney‐U tests and χ2‐tests as appropriate, sex, age, body mass index(BMI),packyearsandsmokingstatusweresignificantlydifferentbetween OLD persons and non‐OLD persons(Table 1). To enable balanced comparisons between OLD persons and non‐OLD persons accounting for these confounders, we performed propensity score matching [21]. For this, propensity scores for OLD status were calculated for the entire population (n=2139) using logistic linear regression based on sex, age, race, clinic site, BMI, smoking status and packyears.Subsequently,threenon‐OLDparticipantswerematchedtoeachOLD person with the closest propensity score. In this procedure we allowed for replacement of non‐OLD persons, which has been shown to increase balance [22]. Fourmethodswereemployedtoassessthesuccessofthematching.First,we confirmedthatnoneofthevariablesincludedinthepropensityscorecalculation werestatisticallydifferentanymorebetweenOLDpersonsandnon‐OLDpersons after matching (Table 1), indicating that a balanced match was reached. Also, comparisonsofthemeanpropensityscoresbetweenOLDpersonsandnon‐OLD persons before (0.211±0.149 vs 0.101±0.093, P<.001) and after matching (0.211±0.149 vs 0.211±0.149, P=.99) showed a perfect match. Additionally, the standardizeddifferencesbetweentheOLDpersonsandnon‐OLDpersonsofthe variablesincludedinthepropensityscorecalculationwerecomparedbeforeand after matching (Table 1). The standardized differences were calculated as the absolute difference in sample means divided by the standard deviation of the total population, expressed as a percentage [23]. The standardized differences 95 EXCESSIVEABDOMINALVISCERALFATINCOPD wereconsiderablyimprovedbythematching,reachingacceptablelevels.Finally, empirical‐QQ plots were created before and after matching for the continuous variables included in the propensity score calculation (i.e., age, BMI and pack years).TheseplotsallowforavisualinspectionofthedatadistributioninOLD persons and non‐OLD persons and show that the equality of data distribution wasmarkedlyimprovedbythematchingprocedure(Figure2). Table1.Sociodemographicdatabeforeandafterpropensityscorematching. Beforematching Aftermatching Non‐OLD Standardized OLD Non‐OLD Standardized persons (n=243) persons (n=1896) Sex,%men 58 47b Age,y 73(3) 74(3)c Race,%white 54 61 Clinicsite, 51 46 %Memphis 25.6(4.6) 27.4(4.5)b BMI,kg/m2 Packyearsd 38(9‐57) 2(0‐25)b Smokingstatus Current,% 27.6 7.8 Former,% 54.7 44.5b Never,% 17.7 47.7 difference (%) persons difference(%) (n=729)a 22.8 19.9 13.9 9.2 58 73(3) 56 48 0.0 0.2 2.8 1.5 40.6 84.5 25.7(4.1) 30(6‐63) 66.0 20.5 60.4 18.6 61.6 19.9 4.1 3.3 22.4 14.1 5.6 Abbreviations: BMI, body mass index; OLD, obstructive lung disease. Data are mean (SD) unless indicated otherwise. aNone of these variables were statistically different compared to OLD persons as testedwithrandom‐effectsanalysisofvariance. bP<.001, cP<.01comparedtoOLDpersonsastestedby independentt‐tests,Mann‐Whitney‐UtestsandΧ2‐testsasappropriate.dMedian(IQR). Analyseswithintheestablishedmatch Itiscrucialthatcomparisonsdoneafterpropensityscorematchingaccountfor the lack of independence between matched sets [23]. We used random‐effects analysis of variance to test phenotypical differences between OLD persons and matched non‐OLD persons. Association analyses were performed using linear mixed models in which matched sets were treated as random factors. Cox proportionalhazardmodelsaccountingforcorrelateddata[24]wereperformed toinvestigatethehazardratio(HR)ofall‐cause,respiratoryandcardiovascular mortality of OLD persons relative to matched non‐OLD persons. These models were first performed unadjustedand adjusted for thevariables included in the propensityscorecalculation.Subsequently,thephenotypicalvariablesthatwere significantly different between OLD persons and matched non‐OLD persons 96 CHAPTER5 Figure 2. Empirical‐QQ plots for age (A), body mass index (B), and pack years (C)beforeandaftermatching. Quantilesofage,bodymassindex(BMI)andpackyearsofobstructivelungdisease(OLD)personsand non‐OLD persons were plotted against each other before and after matching. The solid line indicates y=x,whichrepresentsthesituationinwhichthetwodistributionsbeingcomparedareequal.Itcanbe observed that the matching improved balance considerably. The “before matching” figures describe datafromn=243OLDpersonsandn=1896non‐OLDpersons,andthe“aftermatching”figuresdescribe datafromn=243OLDpersonsandn=729non‐OLDpersons. wereaddedtothemodeltotestwhetherthesepredictedmortalityandmodified mortalitybyOLDstatus. 97 EXCESSIVEABDOMINALVISCERALFATINCOPD R version 2.11.1 was used to establish the match (Matching package), to perform the linear mixed models (nlme package), and to perform the proportional hazard models (Survival package). Random‐effects analysis of variance tests were performed in PASW Statistics 17.0 (SPSS inc. Chicago, IL, USA).DifferencesweredeclaredtobestatisticallysignificantatP<.05. Results PhenotypicaldifferencesbetweenOLDpersonsandmatchednon‐OLDpersons Table 2 summarizes the main phenotypical characteristics of OLD persons and matched non‐OLD persons. On the whole‐body level, fat and fat‐free masses werenotdifferent.Yet,OLDpersonshadsignificantlygreaterVFA(P<.001)but nodifferentSFA(Figure3).CirculatinglevelsofIL‐6,adiponectinandPAI‐1were significantlyhigherinOLDpersonswhereaslevelsofCRP,TNF‐αandleptinwere notdifferent.ApartfromahigherprevalenceofhypertensioninOLDpersons,no differences were found for HOMA‐IR, diabetes, cardiovascular disease and metabolicsyndromecriteria. Associationanalyses Our findings of concomitantly increased VFA, IL‐6, adiponectin and PAI‐1 raise the suggestion that VF may be a significant contributor to these elevated circulating adipocytokines. Table 3 summarizes the data from the linear mixed effectsmodelsstudyingtheindependentassociationsofVFAandOLDstatuson these plasma adipocytokine concentrations. VFA and OLD status were both significantlyand independently associated with IL‐6. OLD status was positively associated with adiponectin, independent of VFA, and VFA associated negative with adiponectin. OLD status was no longer associated with PAI‐1 after accountingforVFAwhichwassignificantlyassociatedwithPAI‐1.Thedatafrom thesemodelsdidnotchangeafterfurtheradjustmentforBMI,suggestingspecific VFeffects. Mortalityanalyses During a median follow‐up period of 9.4 years (7728 person years), 104 OLD persons (43%) and 201 non‐OLD persons (28%) died from all causes. Unadjusted Cox proportional hazards models revealed a significantly worse survival in OLD persons compared to matched non‐OLD persons for all‐cause mortality (HR 1.70 [95% CI 1.29, 2.34], P<.001) (Figure 4A). As expected, respiratory mortality risk was significantly higher in OLD persons (HR 4.03 [95%CI2.12,7.64],P<.001)(Figure4B).Alsocardiovascularmortalityriskwas 98 CHAPTER5 Table 2. Phenotypical characteristics of OLD persons and matched non‐OLD persons. OLDpersons(n=243) Non‐OLDpersons(n=729) FEV1,%preda 63(18) 99(16) <.001 FVC,%preda 81(18) 98(14) <.001 FEV1/FVC,% 57(7) 75(5) <.001 Pulmonaryfunction Bodycomposition Weight,kg P 72.6(14.9) 72.3(14.4) .76 Fatmass,kg 23.9(8.4) 23.4(7.2) .33 Fatfreemass,kg 48.7(10.5) 49.0(10.7) .72 Subcutaneousfatarea,cm2 246(118) 238(101) .31 Visceralfatarea,cm2 143(77) 123(59) <.001 Systemicadipocytokines IL‐6,pg/mlb CRP,µg/mlb 2.16(1.52‐3.34) 1.75(1.20‐2.69) <.001 2.0(1.2‐3.7) 1.4(0.9‐2.6) .12 TNF‐α,pg/mlb 3.03(2.35‐4.08) 3.10(2.40‐4.07) .77 PAI‐1,ng/mlb 22(12‐37) 18(11‐31) .008 Adiponectin,µg/ml 12.3(7.4) 11.3(6.7) .037 7.61(3.33‐14.07) 7.86(4.22‐14.28) .91 .33 Leptin,ng/mlb Insulinsensitivity HOMA‐IR 1.5(1.1‐2.3) 1.5(1.0‐2.2) Metabolicsyndrome Abdominalobesity,% 48 45 .42 .57 b Highbloodpressure,% 79 77 Highglucose,% 21 20 .86 LowHDL,% 24 26 .36 Hightriglycerides,% 21 20 .14 Prevalentdiseases Hypertension,% 66 56 .010 Diabetes,% 12 13 .71 Cardiovasculardisease,% 22 28 .27 Abbreviations: FEV1, forced expiratory volume in 1s; FVC, forced vital capacity; CRP, C‐reactive protein;TNF‐α,tumornecrosisfactor‐α.HOMA‐IR,homeostaticmodelassessmentinsulinresistance; HDL, high density lipoprotein. Data are mean (SD) unless indicated otherwise. aFrom reference equations[13].bMedian(IQR).Analyseswereperformedusingrandom‐effectsANOVA. significantlyhigherinOLDpersons(HR1.76[95%CI1.07,2.89],P=.026)(Figure 4C). Table4describestheanalysesofpredictorsformortality.Adjustmentforthe variablesincludedinthepropensityscorematchinghadnomajoreffectonthese hazard ratios (Model 2). Because we found increased VFA, elevated IL‐6, adiponectin and PAI‐1, and higher hypertension prevalence in OLD persons compared to matched non‐OLD persons, we studied whether these predicted 99 EXCESSIVEABDOMINALVISCERALFATINCOPD Figure 3. Excessive visceral fat accumulation but normal subcutaneous fat contentinOLD. Abdominal CT‐scans from a healthy person (A) and a COPD patient (FEV1 53% of predicted) (B) matchedforage,sex,andbodymassindex(29kg/m2).TheblackandwhiteareasinCandDdenotethe visceralandsubcutaneousfatcompartments,respectively. mortality (Model 3). IL‐6 and adiponectin independently predicted all‐cause mortality.Inthefinalmodel,onlyIL‐6remainedsignificant.IL‐6wasalsofound to be a strong and independent predictor of respiratory and cardiovascular mortality.PAI‐1,VFAandhypertensionwerenopredictorsofmortality. Table5summarizestheprimaryandunderlyingcausesofmortalityinOLD personsandmatchednon‐OLDpersons.Primaryrespiratoryandcardiovascular causes were particularly common in OLD persons, whereas cardiovascular causes were most represented among non‐OLD persons. Respiratory causes werereportedastheunderlyingcauseofmortalityin15%ofOLDpersonsandin only 3% in non‐OLD persons, whereas cardiovascular causes underlying mortalityweremostcommoninnon‐OLDpersons. 100 CHAPTER5 Figure4.All‐cause(A),respiratory(B),andcardiovascular(C)mortalityofOLD personsandmatchednon‐OLDpersons. Abbreviations:OLD,obstructivelungdisease.PlotsarefromunadjustedCoxproportionalhazardmodels fromn=972persons. Dietaryintakeandphysicalactivitylevel Asexplained,packyearssmokedandsmokingstatuswerematchedbetweenthe OLDpersonsandnon‐OLDpersons.Consequently,thecurrentstudypopulation consisted of mainly current/former smokers with a relatively high number of packyears. Food Frequency Questionnaire data were available of n=210 OLD persons andn=565non‐OLDpersons(Table6).Whereastotalcalories,totalproteinand total carbohydrate intake were not different between the groups, OLD persons had significantly higher intakes of total fat, saturated fat, cholesterol and trans fat.Also,OLDpersonshadsignificantlylowerintakeofdietaryfibers,whichwas attributabletoaloweramountoffibersfromfruits/vegetables(datanotshown). Additionally, daily vitamin C intake was significantly lower in OLD persons. Whereas daily glycemic load was not different, daily glycemic index was significantly higher in OLD persons. On average, HEI scores were within the rangethathasbeenclassifiedas‘needsimprovement’inbothOLDpersonsand non‐OLDpersons,butwereevenlowerinOLDpersons. Total physical activity was significantly lower in OLD persons compared to non‐OLDpersons(Table6).Morespecifically,fewerOLDpersonswalkedbriskly for ≥90min/wk and fewer OLD persons performed high‐intensity exercise for ≥90min/wkthannon‐OLDpersons. Discussion WeaimedtounravelOLD‐specificeffectsfromage‐relatedeffectsonVFmass,to study the associations between VF and adipocytokines by OLD status and to investigate their relation with mortality. We found that OLD persons had significantly increased VF mass independent of age, BMI and whole‐body fat 101 EXCESSIVEABDOMINALVISCERALFATINCOPD Table 3. Mixed model analyses investigating the independent associations of OLDstatusandVFAonplasmaconcentrationsofIL‐6,adiponectinandPAI‐1. Model1 Model2 Model3 β(SE) P β(SE) P β(SE) P IL‐6(logtransformed) OLDstatus Non‐OLD 0[Ref] OLD 0.10 (0.02) VFA,dm2 Adiponectin(μg/ml) OLDstatus Non‐OLD 0[Ref] OLD 1.04(0.45) VFA,dm2 PAI‐1(logtransformed) OLDstatus Non‐OLD 0[Ref] OLD 0.07 (0.02) VFA,dm2 <.001 .022 .004 0[Ref] 0.08(0.02) 0.06(0.02) 0[Ref] <.001 0.08(0.02) <.001 0.07(0.02) 0[Ref] 0[Ref] 1.93(0.42) <.001 1.69(0.43) ‐4.39(0.30) <.001 ‐3.37(0.40) 0[Ref] 0.02 (0.02) 0.22(0.02) 0[Ref] .87 0.03 (0.02) <.001 0.20 (0.02) <.001 <.001 <.001 <.001 .69 <.001 Abbreviations:IL‐6,interleukin‐6;OLD,obstructivelungdisease;PAI‐1,plasminogenactivatorinhibitor‐ 1;Ref,reference; VFA,visceralfatarea.Analyseswereperformedusinglinearmixedmodels. Model 1: Adjustedforage,gender,race,clinicsite,smokingstatusandpackyearssmoked.Model2:Model1plus adjustmentforVFA.Model3:Model2plusadjustmentforbodymassindex. mass.OurdatasuggestthatthisexcessiveVFcontributestoincreasedplasmaIL‐ 6, which was subsequently shown to be a strong predictor of all‐cause, respiratoryandcardiovascularmortality.Inaddition,OLDpersonsengagedinan unhealthierlifestylethatwascharacterizedbypoorerdietaryqualityandlower dailyphysicalactivitylevel. Making use of the wealthof data inthe Health ABCStudy, we were able to carefully match a non‐OLD control group to OLD participants using propensity score matching for important confounders. This approach allowed us to disentangle OLD‐specific effects from age‐related effects for body fat distribution, inflammation and mortality. We found that a number of plasma adipocytokineswerenotdifferentbetweenOLDandmatchednon‐OLDpersons. It could be possible that whole‐body fat mass rather than specific VF may be implicated, and as whole‐body fat mass was matched, no differences in these markerswereobserved. 102 CHAPTER5 Table 4. Hazard ratios (95% confidence interval) of all‐cause, respiratory, and cardiovascularmortalityaccordingtoOLDstatusandfactorsaccountingforthe relationship(per1SD‐increaseforcontinuousvariables). Model1 All‐causemortality OLDstatus Non‐OLD 1[Ref] OLD 1.70(1.29‐2.34)a IL‐6 Adiponectin PAI‐1 VFA Hypertension No Yes Respiratorymortality OLDstatus Non‐OLD 1[Ref] OLD 4.03(2.12‐7.64)a IL‐6 Adiponectin PAI‐1 VFA Hypertension No Yes Cardiovascularmortality OLDstatus Non‐OLD 1[Ref] OLD 1.76(1.07‐2.89)c IL‐6 Adiponectin PAI‐1 VFA Hypertension No Yes Model2 Model3 Model4 1[Ref] 1[Ref] 1[Ref] 1.72(1.30‐2.26)a 1.44(1.05‐1.98)c 1.52(1.14‐2.03)b 1.44(1.28‐1.61)a 1.41(1.26‐1.58)a 1.23(1.02‐1.48)c 1.18(0.98‐1.41)d 1.10(0.96‐1.25) 1.13(0.89‐1.43) 1[Ref] 1.20(0.86‐1.67) 1[Ref] 1[Ref] 1[Ref] 4.13(2.19‐7.80)a 3.61(1.80‐7.25)a 3.66(1.94‐6.91)a 1.50(1.21‐1.83)a 1.47(1.18‐1.84)a 1.21(0.80‐1.82) 1.22(0.82‐1.58) 0.96(0.65‐1.41) 1[Ref] 0.93(0.48‐1.82) 1[Ref] 1[Ref] 1[Ref] 1.75(1.06‐2.89)c 1.49(0.85‐2.60) 1.62(0.96‐2.75)d 1.40(1.14‐1.72)b 1.36(1.11‐1.66)b 1.32(0.99‐1.77)d 1.12(0.87‐1.44) 1.10(0.74‐1.64) 1[Ref] 1.24(0.65‐2.35) Abbreviations:IL‐6,interleukin‐6;OLD,obstructivelungdisease;PAI‐1,plasminogenactivator‐inhibitor‐ 1;Ref,reference;VFA,visceralfatarea.AnalyseswereperformedusingCoxproportionalhazardmodels. Model1:unadjusted.Model2:Adjustedforage,gender,race,clinicsite,bodymassindex,smokingstatus and pack years. Model 3: Model 2 plus adjustment for IL‐6, adiponectin, PAI‐1, visceral fat area and hypertension. Model 4: Model 2 plus adjustment for significant predictors of Model 3. aP<.001. bP<.01. cP<.05.dP≤.08. 103 EXCESSIVEABDOMINALVISCERALFATINCOPD Table5.PrimaryandunderlyingcausesofOLDdeathsandnon‐OLDdeaths. Primarycauseofdeath Underlyingcauseofdeath OLDdeaths non‐OLD OLDdeaths non‐OLD (n=104) deaths (n=104) deaths (n=201) (n=201) Cardiovascular,%a 32 30 33 34 Respiratory,%b 26 11 15 3 Cancer,% 1 0 33 40 Gastrointestinalbleed, 10 9 2 6 renalfailureorsepsis,% Othercorunknown,% 32 49 16 17 Cardiovascular causes included atherosclerotic cardiovascular disease (definite fatal myocardial infarction,definitefatalcoronaryheartdisease,possiblefatalcoronaryheartdisease),cerebrovascular disease, atherosclerotic disease other than coronary or cerebrovascular, other cardiovascular disease (including valvular heart disease and other). bRespiratory causes included chronic obstructive pulmonarydisease,pneumoniaandrespiratoryfailure. cOthercausesincludeddementia,diabetes,and stillothercauses. a Ourresultscannotbegeneralizedtoallolderpersons,especiallythosewith severe OLD, because participants in the Health ABC study were selected to be abletowalkaquarterofamileandtoclimbtenstepswithoutresting.Ourdata apply to an older OLD population with on average mild airflow obstruction. A limitation in the Health ABC Study is that no post‐bronchodilator pulmonary functionisavailable,precludingtheapplicationofGlobalinitiativeofObstructive Lung Disease criteria for defining COPD. However, instead of using the same cutoffsforallindividuals,weusedstringentcriteriabaseonage‐,sex‐andrace‐ adjustedLLNcutpointtodefineOLDinthisolderandmulti‐ethnicpopulation, as recommended by prior studies [25], and used in prior Health ABC Study publications[12,14,15]. Elevated plasma IL‐6 has been consistently reported in COPD patients [26‐ 30] and has recently been identified as an important biomarker with added predictive value for mortality in addition to clinical predictors [31]. It is estimated that about one‐third of the plasma IL‐6 originates from adipose tissues,andinobesesubjectsvisceraladipocytesproduce3‐foldmoreIL‐6than subcutaneousadipocytes[7].Otherpotentialsourcesmayincludea“spill‐over” from the pulmonary compartment, but the liver, peripheral skeletal muscle, circulating immune cells and dietary factors have also been suggested to contribute to systemic inflammation. IL‐6 was previously shown to be an independent predictor for mortality in various chronic aging‐related diseases such as chronic kidney disease [32], peripheral artery disease [33], and also in OLD[14].Importantly,IL‐6alsohasbeenidentifiedasapredictorofmortalityin older populations, after adjustment for chronic diseases [11, 34]. Our data strengthen previous studies identifying IL‐6 as an important biomarker of 104 CHAPTER5 Table 6. Dietary intake and physical activity level of OLD and non‐OLD participants. OLDpersons non‐OLD P persons Dietaryintakea Calories,kcal/d 2021(824) 1963(791) .36 Protein,g/d 70.8(29.4) 69.1(30.4) .49 Carbohydrate,g/d 253(109) 254(105) .91 Totalfat,g/d 81.5(39.5) 74.9(38.7) .034 Saturatedfat,g/d 24.3(12.6) 21.5(11.3) .003 Cholesterol,mg/d 250(154) 216(141) .003 Transfat,g/d 8.3(6.1) 7.4(5.1) .036 Totaldietaryfiber,g/d 16.4(6.9) 18.2(8.4) .007 VitaminC,mg/d 129(71) 144(79) .014 Dailyglycemicload,glucosescale 135(62) 133(58) .64 Dailyglycemicindex,glucosescale 56.7(4.3) 56.0(4.7) .037 Healthyeatingindex 65.0(13.0) 67.2(12.9) .030 Physicalactivitylevelb c Totalphysicalactivity,kcal/kg/wk 65(36‐99) 67(41‐110) .039 Walkingbriskly≥90min/wk,% 6.6 17.3 <.001 High‐intensityexercise≥90min/wk,% 8.2 17.6 <.001 Dataaremeans(SD)unlessspecifiedotherwise.Analyseswereperformedusingrandom‐effectsANOVA. aAvailableforn=210OLDpersonsandn=656non‐OLDpersons. bAvailableforn=243OLDpersonsand n=729non‐OLDpersons.cMedian(IQR). mortalityrisk,andextendthisbythefindingthatexcessiveVFisassociatedwith increased IL‐6 in OLD. Future studies are warranted to examine the inflammatory status in VF biopsies from COPD patients and BMI‐matched controlsubjectstofurtherelucidatethecontributionofVFtolow‐gradesystemic inflammationinCOPD. Adiponectin is almost exclusively produced by adipocytes and is typically described as an insulin sensitizer with anti‐inflammatory properties [35]. Paradoxically, increased circulating adiponectin was found to be a strong independentpredictorofmortalityinageneralolderpopulation[36],butalsoin variouswasting‐associateddiseasessuchaschronicheartfailure(CHF)[37,38], chronic kidney disease [39], respiratory failure [40] and COPD [41]. It is noteworthy that adiponectin circulates in high, middle, and low‐molecular weight isoforms. These isoforms have different affinities with the adiponectin receptors and therefore their mode of action may differ as well. We measured only total adiponectin in this study, but it might be relevant to explore adiponectin isoforms in future studies because SF and VF release different isoforms [42]. Interestingly, whereas we found thatVF was strongly negatively 105 EXCESSIVEABDOMINALVISCERALFATINCOPD associatedwithplasmaadiponectin,OLDpersons‐whohadincreasedVF‐had elevated adiponectin levels. This suggests that other fat depots or even other organ systems are implicated in the elevated adiponectin levels in OLD. In a recent study it was found that adiponectin was highly expressed in pulmonary epithelium, and this pulmonary adiponectin expression was strongly increased in emphysematous COPD patients compared to control subjects [43]. Adiponectinmayplayaroleinpulmonaryinflammationafterozoneexposurein mice[44],thoughitsfunctioninCOPD‐associatedinflammationremainsunclear. It has been proposed that elevated adiponectin levels increase energy expenditureandinduceweightlossthroughadirecteffectonthebrain[38,45], which would be unfavorable in chronic wasting‐associated diseases, including COPD.Alternatively,elevatedadiponectinlevelsinCOPDandCHF[46]maybea sign of adiponectin resistance at the level of skeletal muscle. Lower expression levels of adiponectin receptors in skeletal muscle have been associated with insulin resistance [47] and, interestingly, Van Berendoncks et al. [48] recently showed lower adiponectin receptor expression in skeletal muscle biopsies of CHFpatients.Thesedatasuggestanimportantcross‐talkbetweenadiposetissue andskeletalmusclethatwarrantsfurtherinvestigationinCOPDpatients. FuturestudiesarenecessarytoidentifyfactorsassociatedwithincreasedVF accumulationinCOPD.Poordietaryqualityanddecreasedphysicalactivitylevel deservefurtherattentionwithrespecttobodyfatdistributioninCOPDbutalso point towards the need of more and integrated attention to diet and physical activity in addition to smoking as lifestyle determinants of COPD risk and progression.Also,hypogonadismhasbeenassociatedwithCOPD[49]andwith VFaccumulation[50].Interestingly,increasedVFmasshasalsobeenobservedin other diseases associated with chronic inflammation, including rheumatoid arthritis[51],Crohn’sdisease[52],andpsoriasis[53],supportingacentralrole forVFinchronicinflammatorydiseases. Inconclusion,ourstudydemonstratesincreasedVF(independentoftotalfat mass) and a possible role of VF in inflammatory pathways associated with mortalityinolderpersonswithOLD. 106 CHAPTER5 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. GooneratneNS,PatelNP,CorcoranA.Chronicobstructivepulmonarydiseasediagnosisandmanagementinolder adults.JAmGeriatrSoc.2010;58(6):1153‐62. Patel AR, Hurst JR. Extrapulmonary comorbidities in chronic obstructive pulmonary disease: state of the art. ExpertRevRespirMed.2011;5(5):647‐62. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347‐55. Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc NutrSoc.2009;68(4):370‐7. vandenBorstB,GoskerHR,WesselingG,deJagerW,HellwigVA,SnepvangersFJ,ScholsAM.Low‐gradeadipose tissue inflammation in patients with mild‐to‐moderate chronic obstructive pulmonary disease. Am J Clin Nutr. 2011;94(6):1504‐12. KoenenTB,StienstraR,vanTitsLJ,JoostenLA,vanVelzenJF,HijmansA,PolJA,vanderVlietJA,NeteaMG,Tack CJ, et al. The inflammasome and caspase‐1 activation: a new mechanism underlying increased inflammatory activityinhumanvisceraladiposetissue.Endocrinology.2011;152(10):3769‐78. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin‐6:depotdifferenceandregulationbyglucocorticoid.JClinEndocrinolMetab.1998;83(3):847‐50. FurutateR,IshiiT,WakabayashiR,MotegiT,YamadaK,GemmaA,KidaK.Excessivevisceralfataccumulationin advancedchronicobstructivepulmonarydisease.IntJChronObstructPulmonDis.2011;6:423‐30. KukJL,LeeS,HeymsfieldSB,RossR.Waistcircumferenceandabdominaladiposetissuedistribution:influenceof ageandsex.AmJClinNutr.2005;81(6):1330‐4. SugiharaM,OkaR,SakuraiM,NakamuraK,MoriuchiT,MiyamotoS,TakedaY,YagiK,YamagishiM.Age‐related changesinabdominalfatdistributioninJapaneseadultsinthegeneralpopulation.InternMed.2011;50(7):679‐85. SinghT,NewmanAB.Inflammatorymarkersinpopulationstudiesofaging.AgeingResRev.2011;10(3):319‐29. Yende S, Waterer GW, Tolley EA,Newman AB,Bauer DC,Taaffe DR, JensenR, CrapoR,RubinS,Nevitt M, etal. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung diseaseinwellfunctioningelderlysubjects.Thorax.2006;61(1):10‐6. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population.AmJRespirCritCareMed.1999;159(1):179‐87. MehrotraN,FreireAX,BauerDC,HarrisTB,NewmanAB,KritchevskySB,MeibohmB.Predictorsofmortalityin elderlysubjectswithobstructiveairwaydisease:thePILEscore.AnnEpidemiol.2010;20(3):223‐32. vandenBorstB,KosterA,YuB,GoskerHR,MeibohmB,BauerDC,KritchevskySB,LiuY,NewmanAB,HarrisTB, etal.Isage‐relateddeclineinleanmassandphysicalfunctionacceleratedbyobstructivelungdiseaseorsmoking? Thorax.2011;66(11):961‐9. Snijder MB, Visser M, Dekker JM, Seidell JC, Fuerst T, Tylavsky F, Cauley J, Lang T, Nevitt M, Harris TB. The prediction of visceral fat by dual‐energy X‐ray absorptiometry in the elderly: a comparison with computed tomographyandanthropometry.IntJObesRelatMetabDisord.2002;26(7):984‐93. KosterA,StenholmS,AlleyDE,KimLJ,SimonsickEM,KanayaAM,VisserM,HoustonDK,NicklasBJ,TylavskyFA, etal.BodyFatDistributionandInflammationAmongObeseOlderAdultsWithandWithoutMetabolicSyndrome. Obesity(SilverSpring).2010;18(12):2354‐61. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta‐cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia.1985;28(7):412‐9. GrundySM,CleemanJI,DanielsSR,DonatoKA,EckelRH,FranklinBA,GordonDJ,KraussRM,SavagePJ,SmithSC, Jr.,etal.Diagnosisandmanagementofthemetabolicsyndrome:anAmericanHeartAssociation/NationalHeart, Lung,andBloodInstituteScientificStatement.Circulation.2005;112(17):2735‐52. Lee JS, Kritchevsky SB, Tylavsky FA, Harris T, Everhart J, Simonsick EM, Rubin SM, Newman AB. Weight‐loss intention in the well‐functioning, community‐dwelling elderly: associations with diet quality, physical activity, andweightchange.AmJClinNutr.2004;80(2):466‐74. Sekhon JS. Multivariate and propensity score matching software with automated balance optimization: the matchingpackageforR.JournalofStatisticalSoftware.2011;42(7). Ming K, Rosenbaum PR. Substantial gains in bias reduction from matching with a variable number of controls. Biometrics.2000;56(1):118‐24. AustinPC.Acriticalappraisalofpropensity‐scorematchinginthemedicalliteraturebetween1996and2003.Stat Med.2008;27(12):2037‐49. WeiLJ,LinDY,WeissfeldL.Regressionanalysisofmultivariateincompletefailuretimedatabymodelingmarginal distributions.JournaloftheAmericanStatisticalAssociation.1989;84:1065‐73. Swanney MP, Ruppel G, Enright PL, Pedersen OF, Crapo RO, Miller MR, Jensen RL, Falaschetti E, Schouten JP, HankinsonJL,etal.UsingthelowerlimitofnormalfortheFEV1/FVCratioreducesthemisclassificationofairway obstruction.Thorax.2008;63(12):1046‐51. Walter RE, Wilk JB, Larson MG, Vasan RS, Keaney JF, Jr., Lipinska I, O'Connor GT, Benjamin EJ. Systemic inflammationandCOPD:theFraminghamHeartStudy.Chest.2008;133(1):19‐25. BreyerMK,RuttenEP,VernooyJH,SpruitMA,DentenerMA,vanderKallenC,VangreevenbroekMM,WoutersEF. Genderdifferencesintheadiposesecretomesysteminchronicobstructivepulmonarydisease(COPD):Apivotal roleofleptin.RespirMed.2011;105(7):1046‐53. 107 EXCESSIVEABDOMINALVISCERALFATINCOPD 28. AttaranD,LariSM,TowhidiM,MaralluHG,AyatollahiH,KhajehdalueeM,GhaneiM,BasiriR.Interleukin‐6and airflowlimitationinchemicalwarfarepatientswithchronicobstructivepulmonarydisease.IntJChronObstruct PulmonDis.2010;5:335‐40. 29. HeZ,ChenY,ChenP,WuG,CaiS.LocalinflammationoccursbeforesystemicinflammationinpatientswithCOPD. Respirology.2010;15(3):478‐84. 30. Garcia‐RioF,MiravitllesM,SorianoJB,MunozL,Duran‐TauleriaE,SanchezG,SobradilloV,AncocheaJ.Systemic inflammationinchronicobstructivepulmonarydisease:apopulation‐basedstudy.RespirRes.2010;11:63. 31. CelliBR,LocantoreN,YatesJ,Tal‐SingerR,MillerBE,BakkeP,CalverleyP,CoxsonH,CrimC,EdwardsLD,etal. Inflammatorybiomarkersimproveclinicalpredictionofmortalityinchronicobstructivepulmonarydisease.AmJ RespirCritCareMed.2012;185(10):1065‐72. 32. Barreto DV, Barreto FC, Liabeuf S, Temmar M, Lemke HD, Tribouilloy C, Choukroun G, Vanholder R, Massy ZA. Plasma interleukin‐6 is independently associated with mortality in both hemodialysis and pre‐dialysis patients withchronickidneydisease.KidneyInt.2010;77(6):550‐6. 33. DepalmaRG,HayesVW,ChowBK,ShamayevaG,MayPE,ZacharskiLR.Ferritinlevels,inflammatorybiomarkers, andmortalityinperipheralarterialdisease:asubstudyoftheIron(Fe)andAtherosclerosisStudy(FeAST)Trial.J VascSurg.2010;51(6):1498‐503. 34. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH, Jr., Heimovitz H, Cohen HJ, Wallace R. Associations of elevated interleukin‐6 and C‐reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506‐12. 35. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85‐97. 36. Poehls J, Wassel CL, Harris TB, Havel PJ, Swarbrick MM, Cummings SR, Newman AB, Satterfield S, Kanaya AM. Association of adiponectin with mortality in older adults: the Health, Aging, and Body Composition Study. Diabetologia.2009;52(4):591‐5. 37. Tsutamoto T, Tanaka T, Sakai H, Ishikawa C, Fujii M, Yamamoto T, Horie M. Total and high molecular weight adiponectin,haemodynamics,andmortalityinpatientswithchronicheartfailure.EurHeartJ.2007;28(14):1723‐ 30. 38. KistorpC,FaberJ,GalatiusS,GustafssonF,FrystykJ,FlyvbjergA,HildebrandtP.Plasmaadiponectin,bodymass index,andmortalityinpatientswithchronicheartfailure.Circulation.2005;112(12):1756‐62. 39. Menon V, Li L, Wang X, Greene T, Balakrishnan V, Madero M, Pereira AA, Beck GJ, Kusek JW, Collins AJ, et al. Adiponectinandmortalityinpatientswithchronickidneydisease.JAmSocNephrol.2006;17(9):2599‐606. 40. WalkeyAJ,RiceTW,KonterJ,OuchiN,ShibataR,WalshK,deBoisblancBP,SummerR.Plasmaadiponectinand mortalityincriticallyillsubjectswithacuterespiratoryfailure.CritCareMed.2010;38(12):2329‐34. 41. Waschki B, Kirsten A, Holz O, Muller KC, Meyer T, Watz H, Magnussen H. Physical activity is the strongest predictor of all‐cause mortality in patients with chronic obstructive pulmonary disease: a prospective cohort study.Chest.2011;140(2):331‐42. 42. Kovacova Z, Tencerova M, Roussel B, Wedellova Z, Rossmeislova L, Langin D, Polak J, Stich V. The impact of obesityonsecretionofadiponectinmultimericisoformsdiffersinvisceralandsubcutaneousadiposetissue.IntJ Obes(Lond).2011Dec6[Epubaheadofprint]. 43. MillerM,ChoJY,PhamA,RamsdellJ,BroideDH.Adiponectinandfunctionaladiponectinreceptor1areexpressed byairwayepithelialcellsinchronicobstructivepulmonarydisease.JImmunol.2009;182(1):684‐91. 44. ZhuM,HugC,KasaharaDI,JohnstonRA,WilliamsAS,VerboutNG,SiH,JastrabJ,SrivastavaA,WilliamsES,etal. Impactofadiponectindeficiencyonpulmonaryresponsestoacuteozoneexposureinmice.AmJRespirCellMol Biol.2010;43(4):487‐97. 45. QiY,TakahashiN,HilemanSM,PatelHR,BergAH,PajvaniUB,SchererPE,AhimaRS.Adiponectinactsinthebrain todecreasebodyweight.NatMed.2004;10(5):524‐9. 46. VanBerendoncksAM,ConraadsVM.Functionaladiponectinresistanceandexerciseintoleranceinheartfailure. CurrHeartFailRep.2011;8(2):113‐22. 47. Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, Berria R, Belfort R, DeFronzo RA, Mandarino LJ, et al. Adiponectin receptors gene expression and insulin sensitivity in non‐diabetic Mexican AmericanswithorwithoutafamilyhistoryofType2diabetes.Diabetologia.2004;47(5):816‐20. 48. VanBerendoncksAM,GarnierA,BeckersP,HoymansVY,PossemiersN,FortinD,MartinetW,VanHoofV,Vrints CJ, Ventura‐Clapier R, et al. Functional adiponectin resistance at the level of the skeletal muscle in mild to moderatechronicheartfailure.CircHeartFail.2010;3(2):185‐94. 49. Van Vliet M, Spruit MA, Verleden G, Kasran A, Van Herck E, Pitta F, Bouillon R, Decramer M. Hypogonadism, quadricepsweakness,andexerciseintoleranceinchronicobstructivepulmonarydisease.AmJRespirCritCare Med.2005;172(9):1105‐11. 50. ZafonC.Fatandaging:ataleoftwotissues.CurrAgingSci.2009;2(2):83‐94. 51. GilesJT,AllisonM,BlumenthalRS,PostW,GelberAC,PetriM,TracyR,SzkloM,BathonJM.Abdominaladiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum.2010;62(11):3173‐82. 52. KatznelsonL,FairfieldWP,ZeizafounN,SandsBE,PeppercornMA,RosenthalDI,KlibanskiA.Effectsofgrowth hormone secretion on body composition in patients with Crohn's disease. J Clin Endocrinol Metab. 2003;88(11):5468‐72. 53. BalciA,BalciDD,YondenZ,KorkmazI,YeninJZ,CelikE,OkumusN,EgilmezE.Increasedamountofvisceralfatin patientswithpsoriasiscontributestometabolicsyndrome.Dermatology.2010;220(1):32‐7. 108 CHAPTER5 CHAPTER6 Characterizationoftheinflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia BramvandenBorst,AnnemieM.W.J.Schols,ChieldeTheije,AgnesW. Boots,S.EleonoreKöhler,GijsH.Goossens,HarryR.Gosker JournalofAppliedPhysiology2013Mar28[Epubaheadofprint] 109 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM Abstract Rationale: In both obesity and chronic obstructive pulmonary disease (COPD), altered oxygen tension in the adipose tissue (AT) has been suggested to evoke ATdysfunction,subsequentlycontributingtometaboliccomplications.Studying theeffectsofchronichypoxiaonATfunctionwilladdtoourunderstandingofthe complex pathophysiology of alterations in AT inflammation, metabolism and mass seen in both obesityand COPD. This study investigatedthe inflammatory andmetabolicprofileofATafterchronichypoxia. Methods: Fifty‐two‐week‐old C57Bl/6J mice were exposed to chronic hypoxia (8% O2) or normoxia for 21 days after which AT and plasma were collected. Adipocyte size, AT gene expression of inflammatory and metabolic genes, AT macrophagedensityandcirculatingadipokineconcentrationsweremeasured. Results: Food intake and body weight decreased upon initiation of hypoxia. However, whereas food intake normalized after 10 days, lower body weight persisted. Chronic hypoxia markedly reduced AT mass and adipocyte size. AT macrophagedensityandexpressionofEmr1,Ccl2,LepandTnfweredecreased, whereas Serpine1 and Adipoq expression levels were increased after chronic hypoxia. Concomitantly, chronic hypoxia increased AT expression of regulators of oxidative metabolism and markers of mitochondrial function and lipolysis. Circulating IL‐6 and PAI‐1 concentrations were increased and leptin concentrationwasdecreasedafterchronichypoxia. Conclusion:Chronichypoxiaisassociatedwithdecreasedratherthanincreased AT inflammation, and markedly decreased fat mass and adipocyte size. Furthermore, our data indicate that chronic hypoxia is accompanied by significant alterations in AT metabolic gene expression, pointing towards an enhancedATmetabolicrate. 110 CHAPTER6 Introduction Obesity and chronic obstructive pulmonary disease (COPD) are two major chronic conditions with high prevalence worldwide [1, 2], and are increasingly co‐occurring [3, 4]. In obesity, both decreased and increased oxygen tension within the adipose tissue (AT) have been suggested to contribute to AT dysfunction and inflammation, which may subsequently increase the risk of metaboliccomplications[5‐8].ChronichypoxaemiainCOPD,ontheotherhand, accelerates loss of body and fat masses, in part by increasing the resting metabolic rate [9‐11]. However, the effects of chronic hypoxia on AT function remainincompletelyunderstood.StudyingtheeffectsofchronichypoxiaonAT function is important as it may add to our understanding of the complex pathophysiologyofalterationsinATinflammation,metabolismandmassseenin bothobesityandCOPD. It is now well‐established that AT is an inflammatory and metabolically active tissue [12]. Hypoxia may induce AT dysfunction and inflammation via directeffectsoflowPaO2,endoplasmicreticulumstress,oxidativestressorother mechanisms [8]. In obesity, the combination of hypertrophying adipocytes and insufficient neovascularisation may lead to local hypoxic tissue areas and to hypoxia within large adipocytes lying distant from capillaries [13]. Indeed, in various mouse models of obesity local areas of hypoxia were demonstrated in the AT [14‐16]. This was accompanied by increased AT expression of hypoxia‐ responsive markers (eg. glucose transporter [GLUT]‐1 [15, 16], vascular endothelialgrowthfactor[VEGF][16]),alteredadipokinemRNAexpression(eg. increased leptin and plasminogen activator‐inhibitor [PAI]‐1, decreased adiponectin[14]),increasedmRNAexpressionofpro‐inflammatorymarkers(eg. tumornecrosisfactor[TNF]‐α,interleukin[IL]‐6[16])andincreasedexpression and presence of F4/80+ macrophages in the AT [15, 16]. In order to further substantiate the potential direct role of hypoxia on adipocyte inflammation, manyinvitrostudieshavebeencarriedoutinwhicheithermurine(mostly3T3‐ L1cells)orhumanadipocyteswereexposedtohypoxia.Althoughthesestudies usedexposuretoextreme,non‐physiologicalPaO2(1%O2),themajorityofthese studies have indeed reported gross hypoxia‐induced changes rendering adipocytesmorepro‐inflammatoryandalteringtheiradipokineexpressionand secretion profiles [14, 16‐19]. Importantly, however, conflicting data have also been reported [5, 20]. It has been demonstrated that chronic hypoxia substantiallyloweredtheinflammatoryresponseinprimaryhumanadipocytes [20],andPaO2inabdominalsubcutaneousATwasinverselyassociatedwiththe expressionofinflammatorymarkersinthisfatdepot[5]. The physiological cellular response to hypoxia includes switching from oxidativetoanaerobicmetabolism.Invitrostudieshaveindeedshownincreased expression of various glucose transporters and other markers of glycolytic metabolism and decreased expression of mitochondrial components and their 111 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM major upstream regulator peroxisome proliferator‐activated receptor (PPAR)‐γ coactivator‐1α (PGC‐1α) [17]. This shift would imply increased lactate production from adipocytes which is indeed observed in obesity[21] and after hypoxia [22]. Studies investigating the effect of altered oxygen tension on lipolysishaveyieldedconflictingresults.Bothextremehypoxia(1%O2)[23]and hyperoxia(95%O2)[24]enhancedlipolysisin3T3‐L1adipocytes. ChronichypoxaemiaasaconsequenceofCOPDmayalsoaffectATfunction. Recent studies have detected increased mRNA expression of the pro‐ inflammatorymarkersCD40,MAPKkinase4,andc‐JunNH2‐terminalkinase[25] and increased expression of nuclear factor‐κB inhibitors [26] in abdominal subcutaneous AT biopsies from hypoxaemic, underweight COPD patients when comparedtonormoxaemic,overweightCOPDpatients. Although the data on the causal role of hypoxia on AT dysfunction and inflammation appear robust, there are several limitations that call for more research.WhereasAThypoxiainobesityischronic[8],theinvitrostudiescited above investigated hypoxia exposures of 2‐24h which rather induced acute effects. In addition, the level of hypoxia applied in these studies was very extreme (1% O2) which does not reflect physiological AT oxygen tension in obesity(3‐11%O2)[6].Third,giventhefactthatimmunecellswithintheATplay an important role in (co‐) driving AT dysfunction in obesity [27], an in vivo modelisthepreferredmodeltoallowfortheinteractionofdifferentcelltypes underhypoxicconditions.Forthesereasonswehavedesignedamodelinwhich weexposedmiceto21daysofhypoxia(8%O2).Thisallowedustoinvestigate whethertheacuteinflammatoryandmetabolicalterationsobservedwithacute, severe hypoxia also persist in a chronic model with more physiologically relevantlevelsofhypoxia. Methods Experimentalprocedure Fifty‐two‐week‐old male C57BL/6J mice (Charles River Laboratories) were exposed to ambient air (normoxia, n=8) or chronic hypoxia (n=8) for 21 days. We studied 52‐week‐old mice, rather than the more commonly studied young adultbutnotfully‐grown12‐week‐oldmice,toprecludeincreasingbodyweight (and expanding fat mass) as a confounder. 52‐week‐old mice remain weight stableundercontrolconditions.Allmicewerehousedinexperimentalchambers at 21°C with a 12‐hour dark/light cycle. Mice received standard chow (V1534‐ 000 ssniff R/M‐H, ssniff Spezialdiäten GmbH, Soest, Germany) and water ad libitum.UsingtheproOXP110(BioSpherix,NY,USA)system,O2wasreplacedby N2inastepwisemannertocreatenormobaricoxygenlevelsof12%(day1),10% (day2),andfinally8%(60.8mmHg)onday3.Thelatteroxygenconcentration was maintained for the remainder of the experiment. Three to four mice were 112 CHAPTER6 housed per cage. Daily food intake was determined per cage, and mice were weighed daily. On day 21, mice were anesthetized with isoflurane gas, the abdominal cavity was opened and aortic blood was collected into a heparin‐ coated1‐mLsyringe(Becton,DickinsonandCompany,Breda,TheNetherlands). OxygenlevelsandpHweremeasuredimmediatelyusingtheABL510BloodGas Analyzer(Radiometer,DiamondDiagnostics,MA,USA)andbloodcellcountwas determined with the Coulter Ac T Diff hematology Analyzer (Beckman Coulter, Woerden, The Netherlands). Plasma was stored at ‐80°C until further analyses. Visceral adipose tissue (VAT, epididymal) and subcutaneous adipose tissue (SCAT, inguinal) pads were collected bilaterally and weighed. One specimen of each was fixed in 4% formaldehyde, transferred to 70% ethanol and subsequentlyembeddedinparaffin.Theotherwassnap‐frozeninliquidnitrogen and stored at ‐80°C for later mRNA analyses. Lower limb skeletal muscles (gastrocnemius, tibialis anterior, soleus, extensor digitorum longus and plantaris), liver and spleen were dissected and weighed. Two normoxic mice were excluded because of infection. The protocol was approved by the CommitteeforAnimalCareandUseofMaastrichtUniversity(projectno.2009‐ 151). Plasmaadipokineassays PlasmaadipokineprofilesweredeterminedusingtheLuminexxMAP‐technology [28]. A Bio‐Plex (Bio‐Rad Laboratories, Veenendaal, the Netherlands) murine cytokine 6‐plex panel was used to quantify the concentrations of interleukin (IL)‐1β, IL‐6, keratinocyte‐derived chemokine (KC), monocyte chemotactic protein (MCP)‐1, tumor necrosis factor (TNF)‐α and chemokine (C‐C motif) ligand 5 (CCL5). Additionally, three independent single‐plex panels were executed to assess the concentrations of leptin, adiponectin and plasminogen activator‐inhibitor (PAI)‐1. All assays were performed according to manufacturer’sinstructions.DataanalysiswasdonewithaLuminex100IS 2.3 system (Luminex, Austin, TX, USA) using the Bio‐Plex Manager 4.1.1 software (Bio‐Rad Laboratories, Veenendaal, The Netherlands). The lower limits of detection(LLOD)ofthecytokinesandadipokinesmeasuredwere0.74pg/mlfor IL‐6,3.4pg/mlforTNF‐α,3.3pg/mlforIL‐1β,1.9pg/mlforKC,23.7pg/mlfor CCL5, 2.4 pg/ml for MCP‐1, 0.7 ng/ml for leptin, 6.5 pg/ml for PAI‐1, and 6.5 μg/mlforadiponectin.Cytokineconcentrationsforthemeasurementsbelowthe LLODwereimputedusingamaximum‐likelihoodestimationprocedure[29,30], whichwasrequiredfortheIL‐6andKCdata.Itiswell‐establishedthatsimpler methods such as assuming the value of one‐half of the LLOD or omitting undetectablesamplesfromanalysesgeneratebiasedestimatesofthemeasures [31]. Reproducibility statistics based on imputed data, on the other hand, are approximatelyunbiasedwhenlessthanhalfofthemeasurementsarebelowthe LLOD[29]aswasthecaseinourstudy. 113 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM Adipocytesize VATandSCATparaffinsections(4μm)werehematoxylin‐eosinstainedandnon‐ overlapping fields were photographed at 200× magnification (Nikon Eclipse E800,NikonInstrumentsEuropeBV,Amsterdam,TheNetherlands).Theareasof ≥400 unique adipocytes per fat pad were measured using computerized software(LuciaGF,Version4.81,LaboratoryImaging,Prague,CzechRepublic). RT‐qPCRanalysis Total RNA from VAT and SCAT was extracted with the Rneasy® Lipid Tissue Mini Kit (Qiagen, Venlo, The Netherlands) and reverse‐transcribed into cDNA using the Transcriptor cDNA synthesis kit (Roche Applied Sciences, Mannheim, Germany). cDNA was amplified using Sensimix SYBR & Fluorescein Kit (GC biotech B.V., Alphen a/d Rijn, The Netherlands) on a quantitative PCR machine (Bio‐Rad laboratories B.V., Veenendaal, The Netherlands). Table 1 presents an overview of the target genes and primer sequences. Expression levels of target genes were normalized for the expression of three stable housekeeping genes (Ppia,Axin1andCanx)usingGeNormsoftware(Primerdesign,Southampton,NY, USA)[32]. Immunohistochemistry Deparaffinized 4 μm thick sections of VAT and SCAT were incubated with the antibody AIA31240 (SanBio, Uden, The Netherlands) directed against macrophages [33]. Macrophages were quantified on microscopic pictures at 200× magnification, and macrophage density was expressed as number of macrophagesper100adipocytes.Ifcrown‐likestructures(CLS;aggregationsof singleoffusedmacrophagesaroundasingleadipocyte)wereencountered,their densitywasexpressedasnumberofCLSper100adipocytes. Statistics Differences between mice exposed to chronic hypoxia or to normoxia were tested using Student’s t‐test or Mann‐Whitney‐U tests as appropriate. Body weight changes during the experiment were tested using repeated measures ANOVA.DifferencesintheresponsesbetweenVATandSCATweretestedusing linearregressionanalysesinwhichtheinteractiontermofcondition(normoxia vs hypoxia) and adipose depot (VAT vs SCAT) was evaluated for statistical significance. Correlations were tested using Pearson’s correlation coefficient r. Data are presented as means±SEM. Analyses were performed using PASW Statistics 17.0 (SPSS inc. Chicago, IL, USA). A P‐value <.05 was considered statisticallysignificant. 114 TNF‐α Leptin Adiponectin Serine(orcysteine)peptidaseinhibitor,cladeE,member1(Serpine1) β3‐AR Adrenergicreceptor,beta3(Adrb3) Celldeath‐inducingDNAfragmentationfactor,alphasubunit‐likeeffectorA(Cidea) Cidea Peroxisomeproliferatoractivatedreceptorgamma(Pparg) Sterolregulatoryelement‐bindingprotein1c(Srebp1c) Lipase,hormonesensitive(Lipe) Patatin‐likephospholipasedomaincontaining2(Pnpla2) Phosphoenolpyruvatecarboxykinase1,cytosolic(Pck1) PeptidylprolylisomeraseA(Ppia) Axin1(Axin1) Calnexin(Canx) Lipidmetabolism Housekeepers UCP‐1 Uncouplingprotein1(mitochondrial,protoncarrier)(Ucp1) TFAM CCGGCAGAGACGGTTAAAAA Calnexin Axin‐1 CyclophilinA PEPCK ATGL HSL SREBP‐1c PPAR‐γ CATAAGCTGGGCAAGTGGTA GAAGAAGGGTCGCATGGCAAA GGACACCTCAATAATGTTGGCAC GGGCTTGCGTCCACTTAGTTC CATAGGGGGCGTCAAACAG TGGGCTTCACGTTCAGCAAG GCCGTGTTAAGGAATCTGCTG TCCACAGTTCGCAACCAGTT GACGTTCCAGGACCCGAGTC CCGCATGAACATCTCCCCA TCATCCTTTGCCTCCTGGAA CCCAGATGAGGGAAGGGACT CTTCATCCACGGGGAGACTG GCCAGGGTTGCACTAAACAT CCAACCTGCACAAGTTCCCTT AAGCCCAGGAATGAAGTCCA TTTTCACAGGGGAGAAATCG CCGTTTTTCCATCTTCTTCTTTGG TGAAGGACTCTGGCTTTGTCT TGCCCGGACTCCGCAA ATTGGGATCATCTTGCTGGT GCAGCGACCTATGATTGACAACC AGTGGATCATTGAGGGAGAGA GCTCCAAACCAATAGCACTGAAAGG GCCCCAGGACGCTCGAT TTCCTCCTTTCACAGAATTATTCCA CCGCCAGTGCCATTATGG GAGGCCACAGCTGCTGCAGAA CAACGCCACTCACATCTACGG CAGAAGGCACTAGGCGTGATG GATGTGCGAACTGGACACAG CGGAAGCCCTTTGGTGACTT TGCTCTTCTGTATCGCCCAGT AGGCAACCTGCTGGTAATCA GCGTACCAAGCTGTGCGATG Cytochromec‐1 GCATTCGGAGGGGTTTCCAG TranscriptionfactorA,mitochondrial(Tfam) Cytochromec‐1(Cyc1) ACCCTGAGAAAGCGCAATGA CAACAATGAGCCTGCGAACA Peroxisomeproliferativeactivatedreceptor,gamma,coactivator1beta(Ppargc1b) PGC‐1β GCCTCCTCATCCTGCCTAA TGTTCCTCTTAATCCTGCCCA CAAGCAGTGCCTATCCAGA CCAAGCCTTATCGGAAATGA GTAATGAAAGACGGCACACCCAC ATGGATCCTACCAAACTGGAT CAGCGCTGAGGTCAATCTGCC CCTGCTGTTCACAGTTGCC GGATGTACAGATGGGGGATG GGACCAGGGCCTACTTCAAAGAAG TCGCTGGTAGACATCCATGAACT Reverseprimer(5’‐3’) AGAACTTCCACTCTCCCACCCAAA AGGGTAGTGCCCATTGTTGAAGGA TGACCATCGCCCTGGCCT CTGTACCTCCACCATGCCAAGT Forwardprimer(5’‐3’) Oxidativemetabolism Peroxisomeproliferativeactivatedreceptor,gamma,coactivator1alpha(Ppargc1a) PGC‐1α PAI‐1 IL‐10 IL‐1β IL‐6 Adiponectin,C1Qandcollagendomaincontaining(Adipoq) Interleukin6(Il6) Leptin(Lep) Tumornecrosisfactor(Tnf) Adipocytokines MCP‐1 Chemokine(C‐Cmotif)ligand2(Ccl2) F4/80 PFKFB3 EGF‐likemodulecontaining,mucin‐like,hormonereceptor‐likesequence1(Emr1) Macrophages Interleukin1beta(Il1b) 6‐phosphofructo‐2‐kinase/fructose‐2,6‐biphosphatase3(Pfkfb3) GLUT‐1 Interleukin10(Il10) Solutecarrierfamily2(facilitatedglucosetransporter),member1(Slc2a1) Protein VEGF‐A VascularendothelialgrowthfactorA(Vegfa) Gene Hypoxia Table1.Genenames,proteinsencodedbythegenes,andprimersequences. Category HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM Results Chronichypoxiainducesmajorhematologicaladaptations Table 2 summarizes the blood gas analyses and hematological adaptations to chronic hypoxia. As expected, arterial PaO2 and SaO2 were markedly lower in miceexposedtochronichypoxia.Furthermore,miceexposedtochronichypoxia had lower pH and lower HCO3‐ but normal PaCO2. Further differences included increased hematocrit, erythrocyte count, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, and a decreased mean corpuscular hemoglobin concentration in mice exposed to chronic hypoxia. In linewiththeacidosis,thesignificantlyhigherp50(a)(oxygentensionofbloodat halfsaturation)inmiceexposedtochronichypoxiaindicatesaright‐shiftofthe oxygen‐hemoglobin dissociation curve, which means a lower affinity of hemoglobin for oxygen, suggesting improved delivery of oxygen to the tissues. Also, chronic hypoxia increased spleen weight by 263% (P<.001, data not shown). Table2.Arterialbloodgasanalysisandhematologicaladaptations. Miceexposedto Miceexposedto P normoxia(n=6) chronichypoxia(n=6) Arterialbloodgasanalysis pH PaO2,mmHg PaCO2,mmHg HCO3‐,mmol/L SaO2,% Baseexcess,mEq/L Hematologicaladaptations Hematocrit,% Hemoglobin,mmol/L Erythrocytes,x106 MCV,fL MCH,pg MCHC,g/dL p50(a) 7.28(0.01) 129.8(3.7) 35.1(2.7) 15.9(1.1) 100(0.4) ‐9.7(0.9) 7.11(0.02) 34.3(1.6) 35.0(1.4) 10.7(0.7) 24(2.4) ‐21.2(1.4) 45(1) 9.0(0.3) 10.0(0.2) 45.6(0.3) 0.91 (0.01) 19.8(0.2) 29.7(0.4) 76(1) 14.4(0.1) 13.5(0.2) 56.1(0.8) 1.07(0.02) 19.0(0.3) 51.6(0.9) <.001 <.001 .96 .002 <.001 <.001 <.001 <.001 <.001 <.001 <.001 .026 <.001 Dataaremeans(SE).Abbreviations:CH,chronichypoxia;MCV,meancorpuscularvolume;MCH,mean corpuscularhemoglobin,MCHC,meancorpuscularhemoglobinconcentration. 116 CHAPTER6 Recoveryoffoodintakebutlowerbodyweightduringchronichypoxia Directly after initiation of normobaric hypoxia, a drop in food intake was observed,whichreacheditsnadirat58%ofstartingfoodintakeonday3(Figure 1A). During days 6 to 10, a complete recovery of food intake was seen, and thereafter it remained stable throughout the remaining 11 days of the experiment. Starting body weights were not different between the two groups (32.6±0.3vs33.1±0.6g,P=.55).Duringdays0to6,bodyweightofmiceexposed to chronic hypoxia gradually decreased with approximately 13% (Figure 1B). Even though their food intake reached normal values by day 10, their body weightsremainedstablylowthroughouttherestoftheexperiment. Figure 1. Hypoxia reduces food intake and body weight, but only food intake recovers. A)Foodintakeaspercentageofstartingfoodintake.Threetofourmicewerehousedpercageanddata representthemeanfoodintakepermouse,relativetoday0.B)Bodyweightaspercentageofstarting bodyweight. Circulatinglevelsofcytokinesandadipokines Chronic hypoxia increased plasma IL‐6 and PAI‐1 concentrations, whereas it decreased leptin concentrations. Plasma concentrations of TNF‐α, IL‐1β, CCL5, MCP‐1,KC,andadiponectinremainedunalteredafterchronichypoxia(Table3). Loss of adipose tissue and skeletal muscle mass and decreased adipocyte size afterchronichypoxia Whereas chronic hypoxia decreased lower limb muscle weights by 10.5±2.5% (Table 4), the loss of AT mass was much more pronounced (Figure 2A). The decrease in VAT was significantly greater than that of SCAT (‐65% vs ‐55%, P<.001).Inline,adipocytesinVATshrunksignificantlymorecomparedtothose in SCAT after chronic hypoxia (‐52% vs ‐40%, P=.001) (Figure 2B). A strong correlation was found between AT mass and adipocyte size (VAT: r=0.94, P<.001;SCAT:r=0.81,P<.001). 117 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM Table3.Circulatinglevelsofcytokinesandadipokines. Miceexposedto Miceexposedto P normoxia(n=6) chronichypoxia(n=8) IL‐6,pg/ml 0.46(0.37‐0.87) 1.12(0.72‐2.45) .044 TNF‐α,pg/ml 25.1(23.5‐61.5) 33.3(25.1‐69.1) .47 IL‐1β,pg/ml 27.1(15.9‐36.4) 25.7(15.9‐35.7) .90 KC,pg/ml 10.6(4.1‐13.6) 12.1(5.1‐18.1) .65 CCL5,pg/ml 139(107‐188) 167(140‐209) .33 MCP‐1,pg/ml 31.7(25.3‐38.8) 33.5(26.2‐40.5) .70 Leptin,ng/ml 8.9(6.1‐11.9) 4.6(4.2‐5.1) .002 Adiponectin,μg/ml 31.8(27.3‐38.7) 32.1(27.4‐43.0) .90 PAI‐1,ng/ml 1.3(1.1‐1.7) 2.4(2.3‐3.0) .002 Abbreviations: CCL5, chemokine (C‐C motif) ligand 5; IL, interleukin; KC, keratinocyte‐derived chemokine; MCP‐1, monocyte chemotactic protein‐1; PAI‐1, plasminogen activator‐inhibitor‐1; TNF‐α, tumornecrosisfactor‐α.Dataaremediansand95%CIs. Table4.Peripheralskeletalmuscleweights. Miceexposedto Miceexposedto normoxia(n=6) chronichypoxia(n=8) Gastrocnemiusmuscle,mg Tibialismuscle,mg Plantarismuscle,mg Extensordigitorumlongus muscle,mg Soleusmuscle,mg P 317(2.2) 117(1.3) 41.2(0.8) 27.5(0.4) 276(4.0) 106(1.6) 36.0(0.8) 24.6(0.4) <.001 <.001 <.001 <.001 21.7(0.4) 20.2(0.6) .10 Abbreviation:CH,chronichypoxia.Dataaremeans(SE). Figure 2. Chronic hypoxia reduces adipose tissue weight and adipocyte size in visceral(VAT)andsubcutaneousadiposetissue(SCAT). Mice were sacrificed after 21 days of normoxic (n=6) or hypoxic (n=8) conditions and VAT and SCAT were isolated. A) Bilateral VAT and SCAT weights were significantly reduced during chronic hypoxia, being more pronounced in VAT. B) Decreased adipocyte size during chronic hypoxia, being more pronouncedinVAT.*P<.001forwithin‐fatpadcomparisons,#P<.001forbetween‐fatpadcomparisons. 118 CHAPTER6 Chronic hypoxia induces upregulation of hypoxia‐sensitive genes in adipose tissue Slc2a1, Vegfa and Pfkfb3 are hypoxia‐inducible genes encoding glucose transporter‐1 (GLUT‐1), vascular endothelial growth factor‐a (VEGF‐A) and the glycolysis‐promoting enzyme 6‐phosphofructo‐2‐kinase/fructose‐2,6‐biphosphatase 3 (PFKFB3), respectively [34, 35]. Chronic hypoxia increased expression of Slc2a1inSCATandVegfaandPfkf3binbothSCATandVAT(Figure3),suggesting that despite the hematological adaptations described above, oxygen‐delivery to ATwasinsufficientresultinginareducedATPaO2.Thedegreeofupregulationof thesegeneswassimilarinVATandSCAT. Figure 3. Expression of hypoxia‐sensitive genes is increased in adipose tissue afterchronichypoxiaexposure. Mice were sacrificed after 21 days of normoxic (n=6) or hypoxic (n=8) conditions and VAT and SCAT werecollected.mRNAexpressionwascorrectedforastableGeNormfactorandpresentedrelativetothe levelsinVATofnormoxicmice.ExpressionlevelsofVegfa(encodingVascularendothelialgrowthfactor‐ A, VEGF‐A), Pfkfb3 (encoding 6‐phosphofructo‐2‐kinase/fructose‐2,6‐biphosphatase 3, PFKFB3), and Scl2a1(encodingglucosetransporter1,GLUT‐1)weremeasured.*P<.05. ChronichypoxiaattenuatestheinflammatoryprofileinVATandSCAT AT macrophages are considered to be pivotal players in adipose tissue inflammation[27].InbothVATandSCATofmiceexposedtochronichypoxia,we foundsignificantlylowergeneexpressionofkeymarkersrelatedtomacrophage presence (Emr1) and macrophage recruitment (Ccl2) (Figure 4A). This was confirmedbylowermacrophagedensityinbothVATandSCAT(Figures4B‐C). The decreases in macrophage markers and density were not different between VATandSCAT.CLScountsweretoolowtodrawafirmconclusion,buttendedto be lower in mice exposed to chronic hypoxia, particularly in VAT (data not shown). 119 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM Figure4.Reducedadiposetissuemacrophageinfiltrationafterchronichypoxia. Mice were sacrificed after 21 days of normoxic (n=6) or hypoxic (n=8) conditions and VAT and SCAT werecollected.A)DecreasedmRNAlevelsofthemacrophagemarkersEmr1(encodingF4/80),andCcl2 (encoding monocyte chemotactic protein‐1, MCP‐1) were observed in VAT and SCAT after chronic hypoxia.mRNAexpressionwascorrectedforastableGeNormfactorandpresentedrelativetothelevels in VAT of normoxic mice. B) Adipose tissue macrophage density was assessed by quantification of immunohistochemically stained macrophages. A significant decrease was observed in AT of mice exposedtochronichypoxiaC)TherepresentativepicturesillustratedecreasedATmacrophagedensity andadipocytesizeafterexposuretochronichypoxia(at200×magnification).*P<.05. In addition, gene expression of Tnf, Il10 and Lep was lower in VAT of mice exposed to chronic hypoxia, whereas expression of Adipoq and Serpine2 was increased (Figure 5A). SCAT of mice exposed to chronic hypoxia was further characterized by lower expression of Il10 and Lep, and an increased Serpine2 120 CHAPTER6 expression (Figure 4B). The decrease in Lep and the increase in Adipoq expression were more pronounced in VAT than in SCAT. Additionally, the decrease in Il10 expression was greater in SCAT compared to VAT. The lower expression of Il1b in mice exposed to chronic hypoxia did not reach statistical significance,andnochangeswereobservedinIl6expression. Chronic hypoxia increases expression of genes involved in oxidative and lipid metabolisminadiposetissue Wefoundsignificantlyhigherexpressionofregulatorsandmarkersofoxidative metabolism in the AT of mice exposed to chronic hypoxia (Figure 5B). VAT of mice exposed to chronic hypoxia was characterized by increased Ppargc1a, Ppargc1b, Tfam, Adrb3, Cyc1, Ucp1 and Cidea expression. Congruently, SCAT of mice exposed to chronic hypoxia was characterized by increased Ppargc1b, Adrb3, Cyc1 and Ucp1 expression. The expression of the adipogenesis marker Pparg and of the lipogenesis marker Srebp1c were unchanged, whereas expressionofthelipolysismarkers LipeandPnpla2wasincreasedinbothVAT and SCAT of mice exposed to chronic hypoxia (Figure 5C). Furthermore, the expressionofPck1,encodingphosphoenolpyruvatecarboxykinase(PEPCK),was significantlyincreasedinbothVATandSCATofthesemice(Figure5C).Noneof the chronic hypoxia‐induced changes in metabolic gene expression were differentbetweenVATandSCAT. The alterations in metabolic gene expression after chronic hypoxia, in particularthemarkedlyincreasedUcp1expression,suggest‘browning’ofthese white adipose tissue pads. Interestingly, we found that the adipose tissue pads wereindeedcharacterizedbyabrownappearance(Figure6). Discussion Inmiceexposedtochronichypoxia,wefoundconsistentevidenceofdecreased AT inflammation and alterations in metabolic AT gene expression, suggesting increased oxidative metabolism and enhanced lipolysis. In view of the pro‐ inflammatoryandoxidative‐to‐glycolyticshiftsthathavebeendocumentedafter exposingadipocytestoacuteandseverehypoxiainvitro,andofstudiesinobese micesuggestingalinkbetweenAThypoxiaandlocalinflammation,ourfindings may be unexpected. However, the present findings are in line with previous reports, showing that abdominal subcutaneous AT PaO2 was significantly increased rather than decreased inobese insulin resistant individuals, and was positively associated with AT gene expression of several pro‐inflammatory markers [5]. In that study, the lower AT PaO2 in obesity seemed to be due to decreasedinvivoabdominalsubcutaneousAToxygenconsumption,suggestinga lower metabolic rate of AT in obese subjects. Furthermore, abdominal subcutaneous AT PaO2 was inversely associated with AT expression of 121 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM Figure 5. Significant alterations in adipose tissue gene expression of adipocytokines and of key markers of oxidative and lipid metabolism after chronichypoxia. Mice were sacrificed after 21 days of normoxic (n=6) or hypoxic (n=8) conditions and VAT and SCAT werecollected.A)mRNA levels ofspecificcytokines andadipokines. B)mRNAlevelsof regulatorsand markersofoxidativemetabolisminadiposetissueofmiceexposedtochronichypoxia.C)mRNAlevelsof lipolysis‐related markers. mRNA expression was corrected for a stable GeNorm factor and presented relative to the levels in VAT of normoxic mice. *P<.05 for within‐fat pad comparisons, #P<.05 for between‐fatpadcomparisons. 122 CHAPTER6 Figure 6. Brown appearance of visceral and subcutaneous adipose tissue after chronichypoxia. Pictures show representative adipose tissue pads of mice exposed to 21 days of normoxia or hypoxia. Pictures were taken once the tissues were embedded in paraffin. Note the brown appearance of the adipose tissue pads of mice exposed to chronic hypoxia. A) Visceral adipose tissue. B) Subcutaneous adiposetissue. PPARGC1AandVEGFA[5].Thepresentdatasuggestthattheseassociationsmay also hold in a model of chronic hypoxia. Congruently, it has recently been reported that primary human SCAT‐derived adipocytes from overweight individuals displayed reduced expression of nuclear factor‐κB related genes (includingCCL2),andshowedabluntedresponsetoTNF‐αstimulationinterms of CCL2 expression and protein secretion when exposed to hypoxia [20]. Our data underline the complexity of the effects of hypoxia on AT function and suggestimportantdifferencesbetweenacuteandchroniceffects.Tothebestof ourknowledge,nopreviousstudyhasinvestigatedATfunctionafterexposureto chronichypoxia,precludingdirectcomparisons. Thegrossphenotypicalchangesinmiceexposedtochronichypoxiashould not be disregarded when interpreting AT inflammatory and metabolic alterations. Chronic hypoxia markedly reduced fat mass and, congruently, decreased adipocyte size. This may have contributed to decreased AT inflammation. Indeed, adipocyte size has been recognized as an important determinantofadipokineexpressionandsecretion,withlargeadipocytesbeing more pro‐inflammatory than small adipocytes [36]. During the course of hypertrophy, adipocytes produce CCL2, and fatty acids released from hypertrophied adipocytes can bind Toll‐like receptor 4 complex, thereby activating an inflammatory response in AT macrophages [37]. Conversely, our data on smaller adipocytes, decreased AT Ccl2 and Emr1 expression and decreased AT macrophage density suggest that these mechanisms of AT macrophageinfiltrationandactivationaresignificantlyattenuatedafterchronic hypoxia. Low‐grade systemic inflammation, associated with elevated IL‐6, has been suggested to play a pivotal role in both obesity and COPD, and AT has been considered as an important contributor in both diseases [38, 39]. It has 123 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM previously been shown that sustained hypoxia results in increased levels of circulating IL‐6 [40, 41], which is confirmed by the current data. Also, chronic hypoxiaalmostdoubledtheconcentrationsofcirculatingPAI‐1,whichisamain inhibitoroffibrinolysis.Thisisinlinewithapreviousstudy[42],andwiththe well‐known association between systemic inflammation and a pro‐thrombotic state [43]. The changes in circulating PAI‐1 and leptin concentrations after chronic hypoxia were paralleled by changes in AT gene expression of these adipokines. However, AT IL‐6 gene expression was unchanged and other pro‐ inflammatorymarkerswereevendecreased.Thissuggeststhatchronichypoxia‐ enhanced circulating IL‐6 levels and likely chronic hypoxia‐induced low‐grade systemicinflammationingeneral,arenotaccountedforbytheAT. In our model, exposure to hypoxia initially induced significant weight loss anddecreasedfoodintake,butaftertendaysfoodintakecompletelynormalized whereas body weight remained stably low. These data suggest that a new homeostatic equilibrium was established which is characterized by a hypermetabolic state. Interestingly, this was accompanied by major changes in ATmetabolicgeneexpressionthatcollectivelysuggestincreasedmitochondrial biogenesis,mitochondrialfunctionandlipolysisafterchronichypoxia.Giventhis specificpatternofmetabolicgeneexpression,itistemptingtospeculatethatAT remodeling occurred via chronic stimulation of adipocytic β3‐adrenergic receptors (β3‐AR). Indeed, nor‐adrenergic remodeling of white AT is characterized by an elevation of the metabolic rate, an expansion of mitochondrialmassandupregulationoffattyacidoxidationgenes,andhaseven beenshowntoinduceuncouplingprotein‐1(UCP‐1),whichistypicallyabrown AT marker [44, 45]. Hormone sensitive lipase‐mediated lipolysis has, notably, been recognized asan important component of AT remodeling followingβ3‐AR activation [45]. Additionally, PEPCK (encoded by Pck1) is a key mediator of glyceroneogenesis, which involves re‐esterification of fatty acids to triacylglycerol serving adipocytic retention rather than secretion of fatty acids [46]. In brown AT, it has been suggested that glyceroneogenesis regulates the deliveryofFAtothemitochondria,allowingforUCP‐1activation[46].Moreover, Pck1 transcription is induced by nor‐adrenergic stimulation in brown AT [47] and in white AT pro‐inflammatory cytokines inhibit Pck1 expression [48]. β3‐ adrenergic remodeling is induced by chronic cold exposure [44], therefore, a limitation of the present study is that we did not assess body temperature nor applyathermoneutralenvironment.Forthesereasons,wecannotfullyexclude that part of our findings can be explained by relative cold exposure in mice exposedtochronichypoxia.AsmetabolicremodelingofwhiteATisreceivinga great deal of attention in the combat against obesity, our finding of this phenomenoncoincidingwithdecreasedATinflammationmayberelevanttothe obesityfield.Thelowerfatmassandthemarkedlyreducedadipocytesizepoint towardsincreasedlipolysisafterchronichypoxia,whichisfurthersupportedby the increased gene expression of the key lipolytic enzymes HSL and ATGL, and 124 CHAPTER6 theunchangedgeneexpressionoftheadipogenic/lipogenicmarkersPPAR‐γand SREBP‐1c.Alimitationofthisstudy,however,isthatwedidnotassesssystemic markersoflipolysisduetolimitedavailabilityofmaterial. In conclusion, chronic hypoxia is associated with decreased rather than increasedATinflammation,andmarkedlydecreasedfatmassandadipocytesize. Furthermore, our data indicate that chronic hypoxia is accompanied by alterations in AT metabolic gene expression, pointing towards an enhanced AT metabolicrate. 125 HYPOXIA,ADIPOSETISSUEINFLAMMATIONANDMETABOLISM References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 126 Buist AS, McBurnieMA, VollmerWM, GillespieS,Burney P, Mannino DM, Menezes AM, Sullivan SD, Lee TA, Weiss KB, et al. International variation in the prevalence of COPD (the BOLD Study): a population‐based prevalencestudy.Lancet.2007;370(9589):741‐50. Popkin BM. Recent dynamics suggest selected countries catching up to US obesity. Am J Clin Nutr. 2010;91(1):284S‐8S. Franssen FM, O'Donnell DE, Goossens GH, Blaak EE, Schols AM. Obesity and the lung: 5. Obesity and COPD. Thorax.2008;63(12):1110‐7. Vozoris N, O'Donnell DE. Prevalence, risk factors, activity limitation and health care utilization of an obese, population‐basedsamplewithchronicobstructivepulmonarydisease.CanRespirJ.2012;19(3):e18‐24. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JW, Cajlakovic M, RibitschV, ClementK,etal.Increasedadiposetissueoxygentensioninobesecomparedwithleanmenisaccompaniedby insulinresistance,impairedadiposetissuecapillarization,andinflammation.Circulation.2011;124(1):67‐76. GoossensGH,BlaakEE.Adiposetissueoxygentension:implicationsforchronicmetabolicandinflammatory diseases.CurrOpinClinNutrMetabCare.2012;15(6):539‐46. PasaricaM,SeredaOR,RedmanLM,AlbaradoDC,HymelDT,RoanLE,RoodJC,BurkDH,SmithSR.Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammationwithoutanangiogenicresponse.Diabetes.2009;58(3):718‐25. TrayhurnP.Hypoxiaandadiposetissuefunctionanddysfunctioninobesity.PhysiolRev.2013;93(1):1‐21. Raguso CA, Luthy C. Nutritional status in chronic obstructive pulmonary disease: role of hypoxia. Nutrition. 2011;27(2):138‐43. ScholsAM.Pulmonarycachexia.IntJCardiol.2002;85(1):101‐10. Wagner PD. Possible mechanisms underlying the development of cachexia in COPD. Eur Respir J. 2008;31(3):492‐501. GoossensGH.Theroleofadiposetissuedysfunctioninthepathogenesisofobesity‐relatedinsulinresistance. PhysiolBehav.2008;94(2):206‐18. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347‐55. HosogaiN,FukuharaA,OshimaK,MiyataY,TanakaS,SegawaK,FurukawaS,TochinoY,KomuroR,Matsuda M, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56(4):901‐11. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissuehypoxiaandcytotoxicT‐cellinfiltration.IntJObes(Lond).2008;32(3):451‐63. YeJ,GaoZ,YinJ,HeQ.Hypoxiaisapotentialriskfactorforchronicinflammationandadiponectinreductionin adiposetissueofob/obanddietaryobesemice.AmJPhysiolEndocrinolMetab.2007;293(4):E1118‐28. MazzattiD,LimFL,O'HaraA,WoodIS,TrayhurnP.Amicroarrayanalysisofthehypoxia‐inducedmodulation ofgeneexpressioninhumanadipocytes.ArchPhysiolBiochem.2012;118(3):112‐20. WreeA,MayerA,WestphalS,BeilfussA,CanbayA,SchickRR,GerkenG,VaupelP.Adipokineexpressionin brownandwhiteadipocytesinresponsetohypoxia.JEndocrinolInvest.2012;35(5):522‐7. Yu J, Shi L, Wang H, Bilan PJ, Yao Z, Samaan MC, He Q, Klip A, Niu W. Conditioned medium from hypoxia‐ treatedadipocytesrendersmusclecellsinsulinresistant.EurJCellBiol.2011;90(12):1000‐15. FamullaS,HorrighsA,CramerA,SellH,EckelJ.Hypoxiareducestheresponseofhumanadipocytestowards TNFalpharesultinginreducedNF‐kappaBsignalingandMCP‐1secretion.IntJObes(Lond).2012;36(7):986‐92. DiGirolamo M, Newby FD, Lovejoy J. Lactate production in adipose tissue: a regulated function with extra‐ adiposeimplications.FASEBJ.1992;6(7):2405‐12. PerezdeHerediaF,WoodIS,TrayhurnP.Hypoxiastimulateslactatereleaseandmodulatesmonocarboxylate transporter(MCT1,MCT2,andMCT4)expressioninhumanadipocytes.PflugersArch.2010;459(3):509‐18. Yin J, Gao Z, He Q, Zhou D, Guo Z, Ye J. Role of hypoxia in obesity‐induced disorders of glucose and lipid metabolisminadiposetissue.AmJPhysiolEndocrinolMetab.2009;296(2):E333‐42. Quintero P, Gonzalez‐Muniesa P, Garcia‐Diaz DF, Martinez JA. Effects of hyperoxia exposure on metabolic markersandgeneexpressionin3T3‐L1adipocytes.JPhysiolBiochem.2012;68(4):663‐9. TkacovaR,UkropecJ,SkybaP,UkropcovaB,PobehaP,KurdiovaT,JoppaP,KlimesI,TkacI,GasperikovaD. Increased adipose tissue expression of proinflammatory CD40, MKK4 and JNK in patients with very severe chronicobstructivepulmonarydisease.Respiration.2011;81(5):386‐93. TkacovaR,UkropecJ,SkybaP,UkropcovaB,PobehaP,KurdiovaT,JoppaP,KlimesI,TkacI,GasperikovaD. EffectsofHypoxiaonAdiposeTissueExpressionofNFkappaB,IkappaBalpha,IKKgammaandIKAPinPatients withChronicObstructivePulmonaryDisease.CellBiochemBiophys.2012. MorrisDL,SingerK,LumengCN.Adiposetissuemacrophages:phenotypicplasticityanddiversityinleanand obesestates.CurrOpinClinNutrMetabCare.2011;14(4):341‐6. CHAPTER6 28. Sabo‐Attwood T, Ramos‐Nino M, Bond J, Butnor KJ, Heintz N, Gruber AD, Steele C, Taatjes DJ, Vacek P, MossmanBT.GeneexpressionprofilesrevealincreasedmClca3(Gob5)expressionandmucinproductionina murinemodelofasbestos‐inducedfibrogenesis.AmJPathol.2005;167(5):1243‐56. 29. LubinJH,ColtJS,CamannD,DavisS,CerhanJR,SeversonRK,BernsteinL,HartgeP.Epidemiologicevaluation ofmeasurementdatainthepresenceofdetectionlimits.EnvironHealthPerspect.2004;112(17):1691‐6. 30. WongHL,PfeifferRM,FearsTR,VermeulenR,JiS,RabkinCS.Reproducibilityandcorrelationsofmultiplex cytokinelevelsinasymptomaticpersons.CancerEpidemiolBiomarkersPrev.2008;17(12):3450‐6. 31. Helsel DR. Fabricating data: how substituting values for nondetects can ruin results, and what can be done aboutit.Chemosphere.2006;65(11):2434‐9. 32. VandesompeleJ,DePreterK,PattynF,PoppeB,VanRoyN,DePaepeA,SpelemanF.Accuratenormalization ofreal‐timequantitativeRT‐PCRdatabygeometricaveragingofmultipleinternalcontrolgenes.GenomeBiol. 2002;3(7):RESEARCH0034. 33. PoggiM,EngelD,ChristA,BeckersL,WijnandsE,BoonL, DriessenA,CleutjensJ,WeberC,GerdesN,etal. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. ArteriosclerThrombVascBiol.2011;31(10):2251‐60. 34. ObachM,Navarro‐SabateA,CaroJ,KongX,DuranJ,GomezM,PeralesJC,VenturaF,RosaJL,BartronsR.6‐ Phosphofructo‐2‐kinase(pfkfb3)genepromotercontainshypoxia‐induciblefactor‐1bindingsitesnecessary fortransactivationinresponsetohypoxia.JBiolChem.2004;279(51):53562‐70. 35. Trayhurn P, WangB, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?BrJNutr.2008;100(2):227‐35. 36. SkurkT,Alberti‐HuberC,HerderC,HaunerH.Relationshipbetweenadipocytesizeandadipokineexpression andsecretion.JClinEndocrinolMetab.2007;92(3):1023‐33. 37. ItohM,SuganamiT,HachiyaR,OgawaY.Adiposetissueremodelingashomeostaticinflammation.IntJInflam. 2011;2011:720926. 38. EderK,BaffyN,FalusA,FulopAK.Themajorinflammatorymediatorinterleukin‐6andobesity.InflammRes. 2009;58(11):727‐36. 39. vandenBorstB,GoskerHR,KosterA,YuB,KritchevskySB,LiuY,MeibohmB,RiceTB,ShlipakM,YendeS,et al.Theinfluenceofabdominalvisceralfatoninflammatorypathwaysandmortalityriskinobstructivelung disease.AmJClinNutr.2012;96(3):516‐26. 40. Kozak W, Wrotek S, Walentynowicz K. Hypoxia‐induced sickness behaviour. J Physiol Pharmacol. 2006;57 Suppl8:35‐50. 41. RajaKB,GOL‐D,PetersTJ,McKieAT,SimpsonRJ.Roleofinterleukin‐6inhypoxicregulationofintestinaliron absorption.BrJHaematol.2005;131(5):656‐62. 42. PinskyDJ,LiaoH,LawsonCA,YanSF,ChenJ,CarmelietP,LoskutoffDJ,SternDM.Coordinatedinductionof plasminogenactivatorinhibitor‐1(PAI‐1)andinhibitionofplasminogenactivatorgeneexpressionbyhypoxia promotespulmonaryvascularfibrindeposition.JClinInvest.1998;102(5):919‐28. 43. EsmonCT.Theinteractionsbetweeninflammationandcoagulation.BrJHaematol.2005;131(4):417‐30. 44. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652‐60. 45. MottilloEP,ShenXJ,GrannemanJG.Roleofhormone‐sensitivelipaseinbeta‐adrenergicremodelingofwhite adiposetissue.AmJPhysiolEndocrinolMetab.2007;293(5):E1188‐97. 46. HansonRW,ReshefL.Glyceroneogenesisrevisited.Biochimie.2003;85(12):1199‐205. 47. HahnP,KirbyLT.Theeffectsofcatecholamines,glucagon,anddietonenzymeactivitiesinbrownfatandliver oftherat.CanJBiochem.1974;52(9):739‐43. 48. FeingoldKR,MoserA,ShigenagaJK,GrunfeldC.Inflammationinhibitstheexpressionofphosphoenolpyruvate carboxykinaseinliverandadiposetissue.InnateImmun.2012;18(2):231‐40. 127 CHAPTER7 DietaryfiberandfattyacidsinCOPD risk and progression: a systematic review Eric L.A. Fonseca Wald, Bram van den Borst, Harry R. Gosker, AnnemieM.W.J.Schols Submitted 129 DIETARYFIBERANDFATTYACIDSINCOPD Abstract Background: Non‐smoking lifestyle factors including dietary components have attracted increasing attention in the risk for and course of chronic obstructive pulmonarydisease(COPD).Dietaryfiberandfattyacidshavebeenhypothesized to play an immunomodulating role in chronic inflammatory diseases, including COPD. Objective:Toreviewthecurrentevidenceonthepotentialrolesofdietaryfiber orfattyacidsinCOPDriskandprogression. Methods: We systematically searched Pubmed, EMBASE, Cochrane Collaboration Database and conference databases for original studies in adults addressingtheassociationbetweenfiberorfattyacidintakeandCOPDinterms ofrisk,lungfunctionandrespiratorysymptoms. Results:Ninearticleswereincludedofwhichfourreportedondietaryfiberand fiveonfattyacids.Dataofstudiescouldnotbepooledbecauseofmethodological diversity. Greater intake of dietary fiber has been consistently associated with reduced COPD risk, better lung function, and reduced respiratory symptoms. ResultsontheassociationsbetweenfattyacidsandCOPDareinconsistent. Conclusions: Dietary quality, particularly in terms of dietary fiber amount, deservesfurtherattentioninCOPDpreventionandmanagementprograms. 130 CHAPTER7 Introduction An estimated 64 million people suffer from chronic obstructive pulmonary disease(COPD)worldwide,adiseasethatisassociatedwithhighmorbidityand mortality [1]. COPD has been defined as a preventable and largely lifestyle‐ induced disease characterized by an abnormal pulmonary inflammatory response resulting in a progressive, partially irreversible airflow limitation [2]. In addition, COPD has been shown to have a profound systemic component characterizedbylow‐gradesystemicinflammationandco‐morbidities[2]. ThediseasestateofCOPDislikelytheproductofgeneticandenvironmental factors [3]. Although exposure to cigarette smoke is considered the principal environmental risk factor, an estimated 25‐45% of COPD patients have never smoked[4],only~20%ofsmokerseventuallydevelopCOPD[5],andonly~10% of the variability in forced expiratory volume in 1s (FEV1) is explained by smokinginthegeneralpopulation[6].Ithasthereforebeensuggestedthatnon‐ smokingenvironmentalfactorssuchasdietandphysicalactivityshouldalsobe considered.Foracomprehensiveoverviewontheeffectsofphysicalinactivityon COPD risk we refer the reader to a recent review by Hopkinson et al. [7]. The presentsystematicreviewwasundertakentosummarizethecurrentknowledge ontheeffectsofspecificdietarycomponents,morespecificallydietaryfiberand fattyacids,onCOPDriskandprogression. NutritionalsupportinCOPDmanagementcurrentlyhasaprimaryfocuson malnourished patients. In recent years, however, nutritional research in COPD has also explored associations between dietary patterns and specific dietary components with COPD risk and progression. It was shown that a diet rich in fruit,vegetables,whole‐mealcerealsandfishreducestheriskofCOPDwhereasa “Westerndiet”richinrefinedgrains,curedandredmeats,dessertsandFrench frieshasbeenshowntoincreaseCOPDrisk[8‐10].However,knowledgeonthe influence of specific dietary components may ultimately provide the best possible way to optimize dietary recommendations in COPD. Dietary fiber and fattyacidshavebeenshowntoinfluencetheimmunesysteminvariouswaysand couldbehypothesizedtoplayaroleinchronicinflammatorydiseasesincluding COPD. Greater intake of dietary fiber has been associated with improved gut immunity and reduced systemic inflammation [11‐14]. Polyunsaturated fatty acids (PUFAs) have been shown to possess pro‐ and anti‐inflammatory properties through direct influences on membrane functioning and through binding with peroxisome proliferator‐activated receptors (PPARs), and indirectlyviatheirmetabolizationintoeicosanoids[15]. The present systematic review summarizes the current evidence on the potential roles of dietary fiber or specific fatty acids in COPD risk and progression. 131 DIETARYFIBERANDFATTYACIDSINCOPD Methods Datasourcesandsearchstrategy This systematic review was performed according to MOOSE (Meta‐analysis Of Observational Studies in Epidemiology) guidelines [16]. Relevant articles were searched in Pubmed (through August 2012), EMBASE (1989 through August 2012), Cochrane Collaboration Database (through August 2012), and in conference databases of the European Respiratory Society (2006‐2011), AmericanThoracicSociety(2008‐2012),EuropeanSocietyforClinicalNutrition and Metabolism (2003‐2012), American Society for Parenteral and Enteral Nutrition (2009‐2011) and Experimental Biology (2010‐2012). Databases were either systematically searched by combining free terms and subject headings (MeshorEmtreetermsforPubmedandEMBASE,respectively)whenavailable, orwerehandsearched.Thesearchstrategyconsistedoftermsondietaryfiber and specific fatty acids in combination with relevant COPD‐related terms and lung function (see Appendix for terms used and search strategies per e‐ database). In Pubmed and EMBASE the limits ‘humans’ and ‘adults’ were imposed. Additionally, references of retrieved articles were hand searched to findmorearticles. Studyselection Articles identified by the search were first screened by title. Subsequently, the corresponding abstracts of potentially relevant hits were independently screened by two researchers (ELAFW and BB) based on selection criteria. The second researcher was blinded for journal, authors, title, publication date and publication language (all abstracts were in English). In case of disagreement, consensuswasreachedontheselectionofstudiesforfull‐textassessment.Tobe included,studieshadtomeetthefollowingcriteria:studiesneededtobeoriginal studiesinadultsaddressingtheassociationbetweendietaryfiberorfattyacids withpredefinedoutcomemeasures(pulmonaryfunction,pulmonarysymptoms and/or COPD risk/ incidence/ prevalence). Studies that assessed plasma biomarkers of specific fatty acids as surrogate marker of dietary intake were excluded. In case of uncertainty for inclusion of full‐text articles or conference abstracts, consensus was reached via a second reviewer. Native speakers were consultedforforeignlanguagearticles. 132 CHAPTER7 Results Searchresults A flowchart of study selection is presented in Figure 1. Briefly, the search in electronic databases yielded 5016 hits from Pubmed, 5088 from EMBASE and 218fromtheCochraneCollaborationDatabase,fromwhichintotal220possibly eligiblearticleswerefound.Additionally,16articleswereidentifiedinreference lists. In total, 236 abstracts were judged on the need to assess the full‐text. Subsequently, 88 full‐text articles and 41 conference abstracts underwent thoroughassessmentbasedonthepredefinedcriteria.Finally,ninearticleswere included.Ofthese,fourreporteddataonassociationsbetween fiberintakeand COPD,andfiveinvestigatedassociationsbetweenfattyacidintakeandCOPD.At first, the objective was to perform a meta‐analysis. However, the studies provedinsufficientlyhomogeneoustoallowpoolingofresultsortabulatingtheir respective data. Hence, we provide a narrative synthesis of the respective studies. Allthestudiesusedafoodfrequencyquestionnaireorvalidatedanaloguesto assess nutrient intake. In addition, all the studies adjusted extensively for possibleconfoundingbyknownriskfactors,includingsmoking. Figure1.Flowchartofarticleselection. 133 DIETARYFIBERANDFATTYACIDSINCOPD AssociationsbetweendietaryfiberandCOPD Inthelargepopulation‐basedAtherosclerosisRiskinCommunities(ARIC)Study comprising 11.897 US men and women aged 44‐66y, higher total dietary fiber intakewascross‐sectionallyassociatedwithbetterlungfunction(FEV1,FVCand FEV1/FVCratio)[17].Notably,peopleinthehighestquintileoftotaldietaryfiber intake (median 25.0 g/day) had an adjusted 60 ml higher FEV1 compared with people in the lowest quintile (median 10.2 g/day). In addition, higher total dietary fiber intake was associated with lower odds ratios for COPD (OR 0.85, 95%CI0.68‐1.05).COPDwasdefinedaspre‐bronchodilatorFEV1/FVC<0.7and FEV1<80%ofpredictedand/orself‐reportedpersistedcoughandproductionof phlegmonmostdaysforatleastthreeconsecutivemonthsoftheyearfortwoor moreyears.Similardatawereobtainedwheninvestigatedforfiberfromcereals andfiberfromfruitbutnotforfiberfromvegetables. Another study by Hirayama et al. [18] compared n=278 Japanese COPD patients(meanFEV157%ofpredicted)andn=340community‐basednon‐COPD controls and found that the mean vegetable and fruit intakes of COPD patients were significantly lower. The authors subsequently applied logistic regression analyses to estimate the odds of having COPD across quartiles of nutrient intakes. They found that people who consumed ≥16.1 g total dietary fiber per day had lower odds of having COPD compared to those who consumed <8.8 g totaldietaryfiberperday(OR0.49,95%CI0.26‐0.94).Uponstratificationinto soluble and insoluble fiber intake, the authors found a similar association for insolublebutnotsolublefiber. Although the above referenced data from the ARIC study and the Japanese studymaysuggestarolefordietaryfiberinCOPDetiology,theircross‐sectional natures preclude from drawing any causal inferences. Two other studies, however, applied a prospective design and showed remarkably consistent results.First,ina5‐yearprospectivepopulation‐basedcohortof63.257middle‐ agedmenandwomenresidinginChinaandSingapore[19],higherintakeofnon‐ starch polysaccharides was negatively associated with the incidence of “COPD symptoms” (defined as cough and phlegm, both shorter and longer than 3 months).Interestingly,whereasfruitandvitaminCintakeswerealsoassociated with incident COPD symptoms, these associations disappeared after further adjustmentfordietaryfiberintake.Thissuggeststhatdietaryfiberintakemaybe atleastpartlyresponsiblefortheseassociations.Itshouldbetakenintoaccount that no pulmonary function data were available in this study, and that the respiratory symptoms designated as “COPD symptoms” may have reflected respiratory conditions other than COPD. Another 16‐year prospective study by Varrasoetal.[20]in111.580USmenandwomenfromtheNurses’HealthStudy and Health Professionals Follow‐up Study identified incident COPD cases by means of a thorough questionnaire and required report of a diagnostic test at diagnosis. Furthermore, the epidemiologic COPD definition was validated in a 134 CHAPTER7 randomsampleandshowedconfirmationofdiagnosisinupto88%.Itwasfound that compared to people in the lowest quintile of total dietary fiber intake (median 11.2 g/day) those in the highest quintile (median 28.4 g/day) had a lower adjusted relative risk of newly diagnosed COPD (RR 0.67, 95% CI 0.50‐ 0.90).Uponstratificationondietaryfibertype,onlycereal(primarilyinsoluble) fiberintakewasindependentlyassociatedwithnewlydiagnosedCOPD. AssociationsbetweenfattyacidsandCOPD Shaharetal.[21]investigatedthecross‐sectionalassociationsbetweenn‐3fatty acidintake(eicosapentaenoicacid[EPA]anddocosahexaenoicacid[DHA])and lungfunctionandCOPDstatusinsubjectsparticipatinginthepopulation‐based ARIC Study. It was found that higher fish consumption but also specifically higher total n‐3 fatty acid intake was strongly associated with lower odds for COPDandlowerlungfunction(dose‐dependently).Nosignificantfindingswere obtained in analyses restricted to never‐smokers in this study. N‐6 fatty acid intakewasnotreportedinthisstudy. In the cross‐sectional population‐based MORGEN‐EPIC study [22], data on intake of specific fatty acids and lung function were available of 13.820 Dutch men and women aged 20‐59y. The prevalence of COPD (GOLD 2 or higher, no post‐bronchodilator data) was 4%. Of the n‐3 fatty acids, only DHA was significantly associated with FEV1, but the direction of this association was inverse. Also, higher intake of n‐6 fatty acids were generally associated with lower FEV1 and greater ORs for COPD. Moreover, it was found that smoking statussignificantlyinteractedwiththeassociationsbetweenn‐6fattyacidsand FEV1; the inverse associations were stronger in smokers compared to non‐ smokers. In the entire population, α‐linolenic acid, EPA, docosapentaenoic acid and DHA (all n‐3) intake were all associated with an increased risk of wheeze, andEPA(n‐3),eicosadienoicacid(n‐6)andeicosatrienoicacid(n‐6)intakewere positivelyassociatedwithrespiratorysymptoms(chroniccough,chronicphlegm and/orbreathlessness).Finally,COPDprevalencewasnegativelyassociatedwith docosapentainoic acid (n‐3) and docosapentaenoic acid (n‐6), and positively with eicosadienoic acid (n‐6), eicosatrienoic acid (n‐6), arachidonic acid (n‐6) anddocosatetraenoicacid(n‐6)intake. In the much smaller population‐based Hunter Community Study [23], comprising n=195 Australian men and women aged 55‐85y (including n=45 subjects with FEV1<80% of predicted), no cross‐sectional associations were found between dietary intake of saturated fatty acids, monounsaturated fatty acids,n‐3polyunsaturatedfattyacids(PUFA)andn‐6‐PUFAswithFEV1,FVCor FEV1/FVC. In the same population in which Hirayama et al. reported data on associationsbetweendietaryfiberandCOPD[18],theauthorsalsoinvestigated associations for specific fatty acids which were published in a separate paper 135 DIETARYFIBERANDFATTYACIDSINCOPD [24].Comparedtocontrols,COPDpatientsconsumedsignificantlylessPUFAs,n‐ 6fattyacidsandn‐3fattyacidsbutsimilarquantitiesofsaturatedfattyacidsand mono‐unsaturated fatty acids.Significant P valuesfortrends were reported for COPD ORs and for breathlessness across quartiles of PUFA and n‐6 fatty acid intakes,butnotofn‐3fattyacidsor(n‐3):(n‐6)ratio.Incontrastwiththeother papers referenced above, this study excluded fatty acids from cooking oils, margarine, butter, mayonnaise and salad dressings, and may therefore have underestimatedactualintakelevels. Finally,anothercross‐sectionalstudyamong20.322peopleaged>30yfrom thepopulation‐basedSecondNationalHealthandNutritionExaminationSurvey (NHANESII)didnotfindanysignificantassociationbetweenoleicacid(n‐9)or linoleicacid(n‐6)intakewithwheezing[25]. Discussion There is growing attention for the influences of an overall poor lifestyle in the risk for and course of COPD, which goes beyond smoking. This review was undertakentosummarizethecurrentdataontherelationsbetweendietaryfiber or fatty acids and COPD risk and progression. At present, the available data suggest a particular important role for dietary fiber in COPD. Indeed, greater intake of dietary fiber has been associated with better lung function in the general population, lower oddsof COPD, and lower risk of incident respiratory symptomsandCOPD.Onthecontrary,thestudiesexaminingassociationsoffatty acids are limited by their cross‐sectional natures and we must interpret their dataasbeinginconsistent.Concerningboththeincludedstudiesondietaryfiber and fatty acids, most of them retrospectively analyzed data of pre‐existing epidemiological cohorts. Consequently, the methodological differences precludedperformingameta‐analysis. Studies have consistently shown that COPD patients consume less dietary fiber,vegetablesandfruitcomparedwithcontrolsubjects[18,26].Accordingto the European Food Safety Authority (EFSA) the current recommendation for dietary fiber intake is 25 g/day, and the actual intake averages between 15‐30 g/dayacrossEuropeancountries[27].Ofthestudieswereviewed,onlythosein thehighestquartiles(orquintiles)oftwostudiesmetthisrecommendation.The EFSA also states that dietary fiber intake of >25 g/day may be even more beneficialasithasbeenconsistentlyshowntoreducetheriskoftype2diabetes, cardiovascular disease and colorectal cancer [27]. There is currently no data available whether such amounts of dietary fiber intake are also beneficial in termsofreducedCOPDrisk,butitmayimprovesystemicmanifestationsofthe disease.Inarecent3‐yearprospectivestudyin120COPDpatients,participants were randomized to follow a fruit and vegetable rich diet or their regular diet. The former group succeeded to increase fruit and vegetable intake and, interestingly,thiswasassociatedwithaslightimprovementinFEV1over3years 136 CHAPTER7 (by approximately 5% of predicted), whereas the control group was characterizedbyadeclineinFEV1(byapproximately9%ofpredicted,between‐ groupdifferenceP=.03)[28].Thatstudywasperformedagainstthebackground ofapotentialbenefitofincreaseddietaryantioxidants;however,theresultsmay alsohavebeenpartlyaccountedforbythesimultaneousincreaseindietaryfiber intake. The feasibility of increasing fruitand vegetable intake in COPD patients wasconfirmedinarecentexploratorystudy[29]. TheARICstudyreporteda60mldifferenceinFEV1betweenpersonsinthe lowest vs highest quintiles of fiber intake, in favor of the latter [17]. This is a clinically substantial difference since normal FEV1 decline in adults is approximately 30 ml/y [30], and the FEV1 difference between never smokers and current smokers is generally around 200 ml [31]. Dietary fiber may thereforebeanimportantmodifiablefactortopreventordelaysignificantlung functiondecline. Currentevidenceisnotconclusiveaboutwhichfooditemscontainingdietary fiber are more inversely associated with COPD. Two studies found significant associations for fruit and cereal fiber but not for vegetable fiber [17, 20]. However,itisnotclearwhetherthisisaccountabletosolubleorinsolublefiber. Generally,cerealscontainmainlywater‐insolublefiber,butarealsoarelatively good source of water‐soluble fiber (about 25% [11]); fruits contain mainly water‐soluble fiber and vegetables water‐insoluble fiber [32]. On the contrary, onlyinsolublefiberwasassociatedwithlowerCOPDORsintheJapanesestudy [18],butthepoorrangeofsolublefiberintakeinthatstudy(≥3.4g/dayvs≤1.6 g/day)isalimitationinthisrespect. n‐6 fatty acids are thought to be more pro‐inflammatory than their n‐3 counterparts[15],anditishypothesizedthatgreatern‐3fattyacidintakeand/or lowern‐6:n‐3fattyacidratiosareassociatedwithbeneficialoutcomesrelatedto COPD. In a cross‐sectional analysis of 250 COPD patients, higher intake of α‐ linolenicacid(n‐3)wasassociatedwithlowercirculatingtumornecrosisfactor‐ α concentrations and higher intake of arachidonic acid (n‐6) was related to higher interleukin‐6 and C‐reactive protein concentrations [33]. However, whereas specific dietary fatty acids may be associated with systemic inflammation in COPD patients, the reviewed articles have produced inconclusive data with respect to outcome measures related to COPD. In most studiesn‐3fattyacidintakedoesnotseemtobeassociatedwithCOPD.However, one cross‐sectional study did show a significant association between n‐3 fatty acid intake and lung function and COPD risk [21]. The median intake of the highestquartileofEPAandDHAinthisstudywasconsiderablyhighercompared tothatintheotherstudies.Nonetheless,inallstudies,n‐3fattyacidintakewas farbelowthecurrentrecommendationsof1.6g/dayformenand1.1g/dayfor woman [34]. Protective effects may only become apparent with higher intake levels,whichmayexplainthelackofsignificantresults.Furthermore,ithasbeen suggested that a n‐6:n‐3 fatty acid ratio between 1:1 to 4:1 may be most 137 DIETARYFIBERANDFATTYACIDSINCOPD beneficialwhereascurrentratiosareapproximately16:1inWesterndiets[35]. Unfortunately, this hypothesis has not been investigated appropriately with respect to COPD outcomes. Two studies indicated that smoking status is importanttoconsiderwheninterpretingassociationsbetweenfattyacidintake and COPD related outcomes, as the negative associations with n‐6 fatty acids were stronger in smokers than in non‐smokers [22], and positive associations with EPA+DHA were found in ever‐smokers [21]. These data may suggest that lower n‐6:n‐3 ratios may be beneficial particularly in smokers, however, this hypothesishasnotbeenaddressedinthecurrentliterature. In conclusion, current data indicate that changes in dietary composition, in particular with respect to dietary fiber amount, may have beneficial effects in termsofCOPDriskandprogression.Thereforeitisworthwhiletofurtherstudy the underlying mechanisms in order to optimize specific nutritional recommendationsinCOPD. 138 CHAPTER7 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. World Health Organization. The global burden of disease: 2004 update. 2008; Available from http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Revised 2011. Available from http://www.goldcopd.org/uploads/users/files/GOLD_Report_2011_Feb21.pdf. WanES,SilvermanEK.GeneticsofCOPDandemphysema.Chest.2009;136(3):859‐66. SalviSS,BarnesPJ.Chronicobstructivepulmonarydiseaseinnon‐smokers.Lancet.2009;374(9691):733‐43. MadisonJM,IrwinRS.Chronicobstructivepulmonarydisease.Lancet.1998;352(9126):467‐73. Peat JK, Woolcock AJ, Cullen K. Decline of lung function and development of chronic airflow limitation: a longitudinalstudyofnon‐smokersandsmokersinBusselton,WesternAustralia.Thorax.1990;45(1):32‐7. Hopkinson NS, Polkey MI. Does physical inactivity cause chronic obstructive pulmonary disease? Clin Sci (Lond).2010;118(9):565‐72. ShaheenSO,JamesonKA,SyddallHE,AihieSayerA,DennisonEM,CooperC,RobinsonSM.Therelationshipof dietary patterns with adult lung function and COPD. Eur Respir J. [Research Support, Non‐U.S. Gov't]. 2010;36(2):277‐84. Varraso R, Fung TT, Barr RG, Hu FB, Willett W, Camargo CA, Jr. Prospective study of dietary patterns and chronicobstructivepulmonarydiseaseamongUSwomen.AmJClinNutr.2007;86(2):488‐95. Varraso R, Fung TT, Hu FB, Willett W, Camargo CA. Prospective study of dietary patterns and chronic obstructivepulmonarydiseaseamongUSmen.Thorax.2007;62(9):786‐91. GalisteoM,DuarteJ,ZarzueloA.Effectsofdietaryfibersondisturbancesclusteredinthemetabolicsyndrome. JNutrBiochem.2008;19(2):71‐84. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez‐Real JM, Dandona P. Increase in plasma endotoxin concentrations and the expression of Toll‐like receptors and suppressor of cytokine signaling‐3inmononuclearcellsafterahigh‐fat,high‐carbohydratemeal:implicationsforinsulinresistance. DiabetesCare.2009;32(12):2281‐7. KaczmarczykMM,MillerMJ,FreundGG.Thehealthbenefitsofdietaryfiber:Beyondtheusualsuspectsoftype 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism: clinical and experimental. 2012;61(8):1058‐66. VinoloMA,RodriguesHG,NachbarRT,CuriR.Regulationofinflammationbyshortchainfattyacids.Nutrients. [ResearchSupport,Non‐U.S.Gov'tReview].2011;3(10):858‐76. WallR,RossRP,FitzgeraldGF,StantonC.Fattyacidsfromfish:theanti‐inflammatorypotentialoflong‐chain omega‐3fattyacids.NutrRev.2010;68(5):280‐9. StroupDF,BerlinJA,MortonSC,OlkinI,WilliamsonGD,RennieD,MoherD,BeckerBJ,SipeTA,ThackerSB. Meta‐analysis of observational studies in epidemiology: a proposal for reporting. Meta‐analysis Of ObservationalStudiesinEpidemiology(MOOSE)group.JAMA.2000;283(15):2008‐12. KanH,StevensJ,HeissG,RoseKM,LondonSJ.Dietaryfiber,lungfunction,andchronicobstructivepulmonary diseaseintheatherosclerosisriskincommunitiesstudy.AmJEpidemiol.2008;167(5):570‐8. HirayamaF,LeeAH,BinnsCW,ZhaoY,HiramatsuT,TanikawaY,NishimuraK,TaniguchiH.Dovegetablesand fruits reduce the risk of chronic obstructive pulmonary disease? A case‐control study in Japan. Prev Med. 2009;49(2‐3):184‐9. ButlerLM,KohWP,LeeHP,YuMC,LondonSJ.Dietaryfiberandreducedcoughwithphlegm:acohortstudyin Singapore.AmJRespirCritCareMed.2004;170(3):279‐87. Varraso R, Willett WC, Camargo CA, Jr. Prospective study of dietary fiber and risk of chronic obstructive pulmonarydiseaseamongUSwomenandmen.AmJEpidemiol.2010;171(7):776‐84. ShaharE,FolsomAR,MelnickSL,TockmanMS,ComstockGW,GennaroV,HigginsMW,SorliePD,KoWJ,Szklo M. Dietary n‐3 polyunsaturated fatty acids and smoking‐related chronic obstructive pulmonary disease. AtherosclerosisRiskinCommunitiesStudyInvestigators.NEnglJMed.1994;331(4):228‐33. McKeever TM, Lewis SA, Cassano PA, Ocke M, Burney P, Britton J, Smit HA. The relation between dietary intakeofindividualfattyacids,FEV1andrespiratorydiseaseinDutchadults.Thorax.2008;63(3):208‐14. Wood LG, Attia J, McElduff P, McEvoy M, Gibson PG. Assessment of dietary fat intake and innate immune activationasriskfactorsforimpairedlungfunction.EurJClinNutr.2010;64(8):818‐25. Hirayama F, Lee AH, Binns CW, Hiramatsu N, Mori M, Nishimura K. Dietary intake of isoflavones and polyunsaturated fatty acids associated with lung function, breathlessness and the prevalence of chronic obstructive pulmonary disease: Possible protective effect of traditional Japanese diet. Mol Nutr Food Res. 2010;54(7):909‐17. SchwartzJ,WeissST.Dietaryfactorsandtheirrelationtorespiratorysymptoms.TheSecondNationalHealth andNutritionExaminationSurvey.AmJEpidemiol.1990;132(1):67‐76. vandenBorstB,GoskerHR,KosterA,YuB,KritchevskySB,LiuY,MeibohmB,RiceTB,ShlipakM,YendeS,et al.Theinfluenceofabdominalvisceralfatoninflammatorypathwaysandmortalityriskinobstructivelung disease.AmJClinNutr.2012;96(3):516‐26. EFSA. Panel on Dietetic Products, Nutrition & Allergies. Scientific Opinion on Dietary Reference Values for carbohydratesanddietaryfibre.EFSAJ.2010;8:1462‐539. Keranis E, Makris D, Rodopoulou P, Martinou H, Papamakarios G, Daniil Z, Zintzaras E, Gourgoulianis KI. Impactofdietaryshifttohigher‐antioxidantfoodsinCOPD:arandomisedtrial.EurRespirJ.2010;36(4):774‐80. 139 DIETARYFIBERANDFATTYACIDSINCOPD 29. Baldrick FR, Elborn JS, Woodside JV, Treacy K, Bradley JM, Patterson CC, Schock BC, Ennis M, Young IS, McKinleyMC.EffectoffruitandvegetableintakeonoxidativestressandinflammationinCOPD:arandomised controlled trial. The European respiratory journal : official journal of the European Society for Clinical RespiratoryPhysiology.[ResearchSupport,Non‐U.S.Gov't].2012;39(6):1377‐84. 30. Lee PN, Fry JS. Systematic review of the evidence relating FEV1 decline to giving up smoking. BMC Med. 2010;8:84. 31. OmoriH,NonamiY,MorimotoY.EffectofsmokingonFEVdeclineinacross‐sectionalandlongitudinalstudy ofalargecohortofJapanesemales.Respirology.2005;10(4):464‐9. 32. Theuwissen E, Mensink RP. Water‐soluble dietary fibers and cardiovascular disease. Physiol Behav. 2008;94(2):285‐92. 33. deBatlleJ,SauledaJ,BalcellsE,GomezFP,MendezM,RodriguezE,BarreiroE,FerrerJJ,RomieuI,GeaJ,etal. AssociationbetweenOmega3andOmega6fattyacidintakesandseruminflammatorymarkersinCOPD.The Journalofnutritionalbiochemistry.[ResearchSupport,Non‐U.S.Gov't].2012;23(7):817‐21. 34. FoodandNutritionBoardIoM.Dietaryreferenceintakesforcarbohydrate,fiber,fat,fattyacids,cholesterol, protein,andaminoacid.Washington,DC:NationalAcademiesPress.2005. 35. SimopoulosAP.Theimportanceoftheomega‐6/omega‐3fattyacidratioincardiovasculardiseaseandother chronicdiseases.ExpBiolMed(Maywood).2008;233(6):674‐88. 140 CHAPTER7 Appendix:searchtermsusedinonlinedatabases SearchinPubmedonAugust4,2012yielding5016hits: ("dietary fiber"[All Fields] OR "soluble fiber"[All Fields] OR "insoluble fiber"[All Fields] OR fibre[All Fields] OR "non starch polysaccharides"[All Fields] OR ("glucans"[MeSH Terms] OR "glucans"[All Fields]) OR ("inulin"[MeSH Terms] OR "inulin"[All Fields]) OR ("dextrins"[MeSH Terms] OR "dextrins"[AllFields])OR("lignin"[MeSHTerms]OR"lignin"[AllFields])OR("waxes"[MeSHTerms]OR "waxes"[AllFields])OR("chitin"[MeSHTerms]OR"chitin"[AllFields])OR("pectins"[MeSHTerms]OR "pectins"[All Fields]) OR ("oligosaccharides"[MeSH Terms] OR "oligosaccharides"[All Fields]) OR ("gingiva"[MeSH Terms] OR "gingiva"[All Fields] OR "gums"[All Fields]) OR "resistant starches"[All Fields]OR("dietaryfiber"[MeSHTerms]OR("dietary"[AllFields]AND"fiber"[AllFields])OR"dietary fiber"[AllFields]OR"roughage"[AllFields])OR("dietaryfiber"[MeSHTerms]OR("dietary"[AllFields] AND"fiber"[AllFields])OR"dietaryfiber"[AllFields]OR"roughages"[AllFields])ORarabinoxylans[All Fields]OR("cellulose"[MeSHTerms]OR"cellulose"[AllFields])OR"fattyacids"[AllFields]OR"SFA"[All Fields] OR "saturated fatty acids"[All Fields] OR "MUFA"[All Fields] OR "monounsaturated fatty acids"[All Fields] OR "PUFA"[All Fields] OR "polyunsaturated fatty acids"[AllFields]OR"n‐3 fatty"[All Fields] OR omega‐3[All Fields] OR omega‐6[All Fields] OR "EPA"[All Fields] OR "eicosapentaenoic acid"[All Fields] OR "DHA"[All Fields] OR "docosahexaenoic acid"[All Fields] OR "ALA"[All Fields] OR "alpha‐linolenicacid"[AllFields]OR"n‐6fatty"[AllFields]OR"linoleicacid"[AllFields]OR"arachidonic acid"[All Fields] OR "gamma‐linolenic acid"[All Fields] OR "trans fatty acids"[All Fields] OR "Hexadecatrienoicacid"[AllFields]OR"Stearidonicacid"[AllFields]OR"Eicosatrienoicacid"[AllFields] OR "Eicosatetraenoic acid"[All Fields] OR "Clupanodonic acid"[All Fields] OR "Tetracosapentaenoic acid"[All Fields] OR "Tetracosahexaenoic acid"[All Fields] OR "Eicosadienoic acid"[All Fields] OR "Dihomogammalinolenicacid"[AllFields]OR(Docosadienoic[AllFields]AND("acids"[MeSHTerms]OR "acids"[AllFields]OR"acid"[AllFields]))OR"Adrenicacid"[AllFields]OR"Docosapentaenoicacid"[All Fields]OR"Calendicacid"[AllFields]OR"Myristoleicacid"[AllFields]OR"Palmitoleicacid"[AllFields] OR (Sapienic[All Fields] AND ("acids"[MeSH Terms] OR "acids"[All Fields] OR "acid"[All Fields])) OR "Oleic acid"[All Fields] OR "erucic acid"[All Fields] OR "lauric acid"[All Fields] OR "myristic acid"[All Fields] OR "palmitic acid"[All Fields] OR "stearic acid"[All Fields] OR "arachidic acid"[All Fields] OR "behenic acid"[All Fields] OR "lignoceric acid"[All Fields] OR "cerotic acid"[All Fields] OR "lard"[All Fields] OR "butter"[All Fields] OR "coconut oil"[All Fields] OR "palm oil"[All Fields] OR "cottonseed oil"[All Fields] OR "wheat germ oil"[All Fields] OR "soya oil"[All Fields] OR "olive oil"[All Fields] OR "cornoil"[AllFields]OR"sunfloweroil"[AllFields]OR"hempoil"[AllFields]OR"canolaoil"[AllFields] OR "short chain fatty acids"[All Fields] OR "medium chain fatty acids"[All Fields] OR "long chain fatty acids"[All Fields] OR "rapeseed oil"[All Fields] OR "Dietary Fiber"[Mesh] OR "Polysaccharides"[Mesh] OR "Dietary fats"[Mesh] OR "Fatty acids"[Mesh] OR "Fish Oils"[Mesh] OR ("fruit"[MeSH Terms] OR "fruit"[AllFields]OR"fruits"[AllFields])OR("fishes"[MeSHTerms]OR"fishes"[AllFields]OR"fish"[All Fields]) OR ("vegetables"[MeSH Terms] OR "vegetables"[All Fields]) OR ("meat"[MeSH Terms] OR "meat"[All Fields]) OR fowl[All Fields] OR ("cereals"[MeSH Terms] OR "cereals"[All Fields] OR "grain"[All Fields]) OR ("eggs"[MeSH Terms] OR "eggs"[All Fields]) OR ("nuts"[MeSH Terms] OR "nuts"[AllFields]))AND("lungfunction"[AllFields]OR"pulmonaryfunction"[AllFields]OR"respiratory function"[All Fields] OR "respiratory symptoms"[All Fields] OR "pulmonary symptoms"[All Fields] OR ("dyspnea"[MeSHTerms]OR"dyspnea"[AllFields]OR"breathlessness"[AllFields])OR("cough"[MeSH Terms]OR "cough"[All Fields])ORphlegm[AllFields]OR("dyspnoea"[All Fields]OR"dyspnea"[MeSH Terms] OR "dyspnea"[All Fields]) OR ("dyspnoea"[All Fields] OR "dyspnea"[MeSH Terms] OR "dyspnea"[All Fields]) OR ("sputum"[MeSH Terms] OR "sputum"[All Fields]) OR FEV[All Fields] OR FEV1[All Fields] OR "forced expiratory volume"[All Fields] OR "forced vital capacity"[All Fields] OR FVC[AllFields]OR("pulmonarydisease,chronicobstructive"[MeSHTerms]OR("pulmonary"[AllFields] AND "disease"[All Fields] AND "chronic"[All Fields] AND "obstructive"[All Fields]) OR "chronic obstructive pulmonary disease"[All Fields] OR "copd"[All Fields]) OR "chronic obstructive pulmonary disease"[All Fields] OR ("bronchitis, chronic"[MeSH Terms] OR ("bronchitis"[All Fields] AND "chronic"[AllFields])OR"chronicbronchitis"[AllFields]OR("chronic"[AllFields]AND"bronchitis"[All Fields])) OR ("pulmonary emphysema"[MeSH Terms] OR ("pulmonary"[All Fields] AND "emphysema"[All Fields]) OR "pulmonary emphysema"[All Fields] OR "emphysema"[All Fields] OR "emphysema"[MeSH Terms]) OR "Respiratory function tests"[Mesh] OR "pulmonary disease, chronic obstructive"[Mesh])AND("humans"[MeSHTerms]AND"adult"[MeSHTerms]) 141 DIETARYFIBERANDFATTYACIDSINCOPD SearchinEMBASEonAugust4,2012yielding5088hits: 1.expdietaryfiber/ 2.fructoseoligosaccharide/ordextrin/orguargum/orpectin/ 3.exphighfiberdiet/ 4.expfiber/ 5.*fiber/ 6.cereal/orpolysaccharide/orpectin/ 7.expglucan/ 8.expINULIN/ 9.expDEXTRIN/ 10.expLIGNIN/ 11.expCHITIN/ 12.expoligosaccharide/ 13.expARABINOXYLAN/ 14.expCELLULOSE/ 15.expfattyacid/ 16.expsaturatedfattyacid/ 17.expunsaturatedfattyacid/ 18. exp fish oil/ or exp omega 3 fatty acid/ or exp docosahexaenoic acid/ or exp icosapentaenoic acid/orexpfatintake/ 19.expomega6fattyacid/ 20.eicosapentaenoicacid.mp.orexpicosapentaenoicacid/ 21.PUFA.mp. 22.SFA.mp. 23.MUFA.mp. 24.EPA.mp. 25.DHA.mp. 26.alpha‐linolenicacid.mp.orexplinolenicacid/ 27.explinolenicacid/ 28.n‐3fatty.mp. 29.n‐6fatty.mp. 30.exparachidonicacid/ 31.expgammalinolenicacid/ 32.exptransfattyacid/ 33.exppalmitoleicacid/orexphexadecatrienoicacid/ 34.expstearidonicacid/ 35.eicosatrienoicacid.mp.orexpicosatrienoicacid/ 36.eicosatetraenoicacid.mp.orexpicosatetraenoicacid/ 37.clupanodonicacid.mp. 38.tetracosapentaenoicacid.mp. 39.eicosadienoicacid.mp. 40.expdihomogammalinolenicacid/ 41.docosadienoicacid.mp. 42.expadrenicacid/ 43.expdocosapentaenoicacid/ 44.expconjugatedlinolenicacid/orexpcalendicacid/orexpconjugatedlinoleicacid/ 45.expvolatilefattyacid/orexpmyristoleicacid/ 46.explauricacid/orexpsapienicacid/ 47.expoleicacid/ 48.experucicacid/ 49.explauricacid/ 50.expmyristicacid/ 51.exppalmiticacid/ 52.expstearicacid/ 53.exparachidicacid/ 54.expbehenicacid/ 55.explignocericacid/ 56.ceroticacid.mp.orexpoleanolicacid/orexphexacosanoicacid/ 142 CHAPTER7 57.expverylongchainfattyacid/orexplongchainfattyacid/orexpshortchainfattyacid/orexp aceticacid/orexpbutyricacid/ 58.exp3hydroxybutyricacid/orexpmediumchainfattyacid/ 59.expBUTTER/ 60.expcoconutoil/ 61.exppalmoil/ 62.expcottonseedoil/ 63.expwheatgermoil/orexpvegetableoil/ 64.soyaoil.mp.orexpsoybeanoil/ 65.expoliveoil/ 66.expcornoil/ 67.expsunfloweroil/ 68.hempoil.mp. 69.exprapeseedoil/orexpcanolaoil/ 70.expFRUIT/ 71.expVEGETABLE/ 72.expMEAT/ 73.expFISH/ 74.expCHICKENMEAT/ 75.expegg/ 76.expnut/ 77.1or2or3or4or5or6or7or8or9or10or11or12or13or14or15or16or17or18or19 or20or21or22or23or24or25or26or27or28or29or30or31or32or33or34or35or36 or37or38or39or40or41or42or43or44or45or46or47or48or49or50or51or52or53 or54or55or56or57or58or59or60or61or62or63or64or65or66or67or68or69or70 or71or72or73or74or75or76 78.explungfunction/ 79.pulmonaryfunction.mp. 80.exprespiratoryfunction/ 81.ventilatoryfunction.mp. 82.expchronicbronchitis/orexpwheezing/orrespiratorysymptoms.mp.orexpcoughing/ 83.pulmonarysymptoms.mp. 84.breathlessness.mp.orexpdyspnea/ 85.expcoughing/orexpsputum/orphlegm.mp. 86.dyspnoea.mp. 87.FEV.mp.orexpforcedexpiratoryvolume/ 88. exp vital capacity/ or exp chronic obstructive lung disease/ or exp airway obstruction/ or exp lungfunctiontest/orFEV1.mp. 89.FVC.mp. 90.expforcedvitalcapacity/ 91.COPD.mp. 92.expLUNGEMPHYSEMA/orexpEMPHYSEMA/ 93.78or79or80or81or82or83or84or85or86or87or88or89or90or91or92 94.77and93 95.limit94to(humanand(adult<18to64years>oraged<65+years>)) SearchinCochraneCollaborationDatabaseonAugust4,2012yielding218hits: (dietaryfiberORsolublefiberORinsolublefiberORfibreORnonstarchpolysaccharidesORglucans OR inulin OR dextrins OR lignin OR waxes OR chitin OR pectins OR oligosaccharides OR gums OR resistantstarchesORroughageORroughagesORarabinoxylansORcelluloseORfattyacidsORSFA OR saturated fatty acids OR MUFA OR monounsaturated fatty acids OR PUFA OR polyunsaturated fatty acids OR n‐3 fatty OR omega‐3 OR omega‐6 OR EPA OR eicosapentaenoic acid OR DHA OR docosahexaenoic acid OR ALA OR alpha‐linolenic acid OR n‐6 fatty OR linoleic acid OR arachidonic acidORgamma‐linolenicacidORtransfattyacidsORHexadecatrienoicacidORStearidonicacidOR EicosatrienoicacidOREicosatetraenoicacidORClupanodonicacidORTetracosapentaenoicacidOR TetracosahexaenoicacidOREicosadienoicacidORDihomogammalinolenicacidORDocosadienoic acidORAdrenicacidORDocosapentaenoicacidORCalendicacidORMyristoleicacidORPalmitoleic 143 DIETARYFIBERANDFATTYACIDSINCOPD acidORSapienicacidOROleicacidORerucicacidORlauricacidORmyristicacidORpalmiticacidOR stearicacidORarachidicacidORbehenicacidORlignocericacidORceroticacidORlardORbutter ORcoconutoilORpalmoilORcottonseedoilORwheatgermoilORsoyaoilORoliveoilORcornoil ORsunfloweroilORhempoilORcanolaoilORshortchainfattyacidsORmediumchainfattyacids ORlongchainfattyacidsORrapeseedoilORfruitsORvegetablesORmeatORfowlORgrainOReggs ORnutsORfishOR("DietaryFiber"[Mesh])OR("Polysaccharides"[Mesh])OR("Dietaryfats"[Mesh]) OR ("Fatty acids"[Mesh]) OR ("Fish Oils"[Mesh])) AND (lung function OR pulmonary function OR respiratory function OR respiratory symptoms OR pulmonary symptoms OR breathlessness OR cough OR phlegm OR dyspnea OR dyspnoea OR sputum OR FEV OR FEV1 OR forced expiratory volume OR forced vital capacity OR FVC OR COPD OR chronic obstructive pulmonary disease OR chronic bronchitis OR emphysema OR ("Respiratory function tests"[Mesh]) OR (“Lung diseases, obstructive"[Mesh])OR("pulmonarydisease,chronicobstructive"[Mesh])) 144 CHAPTER8 Discussion Central fat and peripheral muscle: partnersincrimeinCOPD BramvandenBorst,HarryR.Gosker,AnnemieM.W.J.Schols American Journal of Respiratory and Critical Care Medicine 2013;187(1):8‐13 145 DISCUSSION Introduction According to the World Health Organisation, by the year 2020, chronic obstructivepulmonarydisease(COPD)isexpectedtobethethird‐leadingcause of death, and it is the only major chronic disease with an increasing mortality rate. Successful efforts to reduce this mortality will require a better understanding of the relationship between risk factors and the severity of the underlyinglungdisease.Inpatientswithadvanceddisease,respiratoryfailureis the most common cause of death and weight loss and low muscle mass and strengthareimportantdeterminantsofmortality[1].Inthesepatients,therisk ofdeathisremarkablylowerinobesepatients.Incontrast,inpatientswithmild‐ to‐moderate disease, the primary cause of death is ischemic cardiovascular disease, for which overweight and obesity are important risk factors [2]. The ongoingworldwideobesityepidemicnecessitatesanenhancedunderstandingof the interactions between cigarette smoke exposure, cardiovascular disease, skeletal muscle dysfunction and adiposity in patients with COPD. In this essay, wewilldiscusssomeofthemechanismslinkingmetabolismandadipositywith clinicaloutcomesinpatientswithCOPDandoffertailoredlifestyleinterventions thatmayreducemorbidityandmortalityinthesepatients. DriversofcardiovascularandmetabolicriskinCOPD Lossofperipheralskeletalmuscleoxidativephenotype MuscleatrophyishighlyprevalentinCOPDirrespectiveofdiseaseseverity[3,4]. In moderate‐to‐severe COPD, this atrophy is associated with a reduction in the activity of oxidative enzymes, a decrease in mitochondrial density, impaired mitochondrial function, and a fiber type I‐to‐II shift [5]. This loss of skeletal muscle “oxidative phenotype” has been associated with muscle fatigue [6] and decreasedmechanicalefficiency[7],andhasrecentlyalsobeendemonstratedin patientswithmild‐to‐moderateCOPDintheabsenceofmuscleatrophy[8]. In diabetes, it has been proposed that skeletal muscle mitochondrial dysfunctionmayunderlieperipheralinsulinresistanceviacomplexmechanisms including oxidative stress, intramuscular lipid accumulation, and inflammation [9, 10]. However, recent tests of this hypothesis in human subjects have suggested that the mitochondrial defect observed in the skeletal muscles of patientswithdiabetesmightbesecondarytotheinsulin‐resistantstateinstead ofbeingacausalfactor(reviewedin[11]).Thisnotionissupportedbystriking parallels in skeletal muscle oxidative phenotype between underweight/normal weightnon‐diabeticCOPDpatientsandoverweight/obesediabetespatients.For example,decreasedmitochondrialrespirationhasalsobeenreportedinpatients withtype2diabetes[12,13],andthemagnitudeofreducedskeletalmusclePGC‐ 1α gene (the master regulator of mitochondrial biogenesis) expression is 146 CHAPTER8 comparable between non‐obese COPD patients [8, 14] and obese subjects with type2diabetes[15].Also,severalstudieshaveshownevidenceforadecreased typeIfiberproportioninoverweight/obesetype2diabetespatientscompared to BMI‐matched controls [16, 17]. The decreased oxidative capacity of the skeletalmusclehasbeensuggestedtoplayamajorrolein‘metabolicinflexibility’ [18],whichisdefinedbyareducedcapacitytoincreasefatoxidationinresponse toincreasedfattyacidavailabilityandanimpairedswitchfromfattoglucoseas the primary fuel source after a meal. Metabolic inflexibility may lead to the accumulation of intramyocellular lipids which has been associated with insulin resistance through mechanisms possibly involving the lipid intermediates ceramidesanddiacylglycerolthatinterferewithinsulinsignalingpathways[19]. In case of high caloric intake and lack of physical exercise, a positive energy balancemaythenfurtherenhanceectopicfatdeposition. Investigators have employed homeostatic modeling of insulin resistance (HOMA index) to show that insulin sensitivity is lower in non‐obese and non‐ diabetic COPD patients compared with BMI‐matched healthy controls [20‐22]. The HOMA index, however, primarily reflects hepatic insulin sensitivity, while skeletal muscle insulin sensitivity can be most accurately assessed with the euglycaemic insulin clamp technique. Therefore, clamp studies are indicated in ordertoproofordisputethatadecreasedskeletalmuscleoxidativephenotypeis associatedwithinsulinresistanceatthelevelofskeletalmuscleinCOPDasitis indiabetes. Visceralobesity Several groups of investigators have suggested that low‐grade systemic inflammationcharacteristicofanumberofdiseasesincludingCOPDisassociated with an increased risk for the development of atherosclerosis and ischemic cardiovascularevents[23].Thereisincreasingevidencethatadiposetissueisa significantcontributortothesystemicinflammatoryloadinCOPD.Forexample, apersistentsystemicinflammationphenotypewasrecentlydescribedinpatients withCOPDandwasassociatedwithbodymassindex(BMI)butnotwithfat‐free mass index, suggesting an inflammatoryrole foradipose tissue [24]. Moreover, in a subgroup of COPD patients, low‐grade systemic inflammation has been positively related to total abdominal fat mass [25]. Thus, adipose tissue dysfunction,includingenhancedadiposetissueinflammation,maycontributeto low‐gradesystemicinflammationinCOPDpatientswithabsoluteorrelativefat abundance. Abdominal visceral fat appears to be more strongly associated than subcutaneous fat with risk factors for cardiovascular and metabolic disorders, including hypertension and insulin resistance [26, 27], and is receiving increasingattentioninCOPD.Indeed,tworecentstudieshavereportedexcessive visceral fat mass in non‐obese mild‐to‐moderate COPD patients as detected by 147 DISCUSSION CT scanning [28, 29]. Moreover, excessive visceral fat mass was positively associated with circulating interleukin (IL)‐6 levels, which were strongly associatedwithall‐causeandCVDmortality[28].Importantly,excessivevisceral fat mass in these COPD patients existed in the absence of obesity or increased abdominal circumference compared with the control persons in these studies, suggestingenhancedfataccumulationspecificallyinthevisceralcompartment.It isunclearwhetherthepulmonaryimpairmentperseoranoverallpoorlifestyle, or both, predispose to excessive visceral fat accumulation. A similar selective increase in visceral fat mass has been observed in other chronic diseases characterized by tissue inflammation including rheumatoid arthritis, Crohn’s disease, and psoriasis. These intriguing findings suggest a link between inflammation, visceral fat and cardiovascular risk. Careful mechanistic studies willberequiredtodeterminewhetheranincreaseinvisceralfatplaysacausal roleinthischain. Theinflammatorycapacityofvisceralfatisconsiderablygreaterthanthatof subcutaneous fat, and it has been suggested that visceral fat is an important source of IL‐6 and IL‐1β [30]. In addition, there is evidence that an increase in visceral relative to subcutaneous fat is associated with hypertriglyceridaemia and a decreased rate of glucose utilization in obese humans [31]. Differential expressionofthefatmassandobesityassociated(FTO)genehasbeenassociated with the differential deposition of fat in the visceral or subcutaneous stores, adipose tissue inflammation and differences in the expression of inflammatory and insulin resistance‐related genes in the visceral compared with the subcutaneous fat in otherwise healthy overweight/obese subjects [32]. Consistentwiththehypothesisthatthisgenemaycontributetoobesity‐related inflammation in patients with COPD, single nucleotide polymorphisms in FTO genewerereportedtobepositivelyassociatedwithBMIinpatientswithCOPD[33]. Increased visceral fat mass has been associated with increased portal drainageoffreefattyacidsandadipokinestotheliver,whichmayinducehepatic insulin resistance, inflammation and oxidative stress (‘portal hypothesis’ [34]). Furthermore,visceraladiposityhasbeenassociatedwithfatdepositioninother undesirable sites such as the liver, the heart, and the skeletal muscle [35]. To date,thereisnodataavailableifectopicfatdepositionplaysaroleintheriskof cardiovascular and metabolic disease in COPD, but it may be involved in those withincreasedvisceralfatmass. Thereisincreasingevidencethatcomponentsofthemetabolicsyndromeare more prevalent in overweight patients with mild‐to‐moderate COPD compared withBMI‐matchedcontrols.AstudyreportedthatinoverweightCOPDpatients 47% had the metabolic syndrome compared to 21% in BMI‐matched healthy subjects[36].Inanotherstudyof170GermanpatientswithCOPD,53%ofGOLD IIpatientsmetthecriteriaformetabolicsyndromeandasmuchas83%fulfilled the criteria for abdominal obesity [37]. Congruently, a large population study showed that those with airflow obstruction had greater odds of having the 148 CHAPTER8 metabolic syndrome when adjusted for BMI, and when its components were further analyzed only abdominal obesity was significantly related to airflow obstruction[38]. Lifestyleinterventiontoreducetheriskofcardiovascularand metabolicdiseaseinpatientswithCOPD Smokingcessation It is well‐known that smoking isan independent riskfactor for both COPDand cardiovascular disease. Less recognized is that smokers have more central adiposity[39]andexposuretosmokingisassociatedwithpoorskeletalmuscle function [40]. Very recent data showed that smokers are characterized by decreased skeletal muscle insulin sensitivity, which was partially reversible uponsmokingcessation.Experimentalevidencesuggestsinvolvementofskeletal muscle mammalian target of rapamycin (mTOR) in this process, a crucial regulator of cellular protein synthesis [41]. BMI, as well as whole‐body muscle and fat masses, are comparably reduced in older mild‐to‐moderate COPD patients and age‐matched non‐COPD smokers compared with non‐smokers, suggesting a common insult earlier in life related to smoking [4]. Furthermore, the peripheral skeletal muscle of non‐COPD smokers shows a loss of oxidative phenotype compared to non‐smoking healthy controls [42]. Smoking induces low‐grade systemic inflammation, independently of COPD [43], and the persistentsystemicinflammationobservedinpatientswithCOPDwaspredicted by current smoking status [24]. Notably, chronic exposure of mice to cigarette smoke also induces systemic inflammation and decreased skeletal muscle oxidative capacity [44]. Smoking cessation is associated with fat mass gain, particularly in the visceral compartment [45], stressing the need for broad lifestyleinterventionsbeyondsmokingcessation. Physicalactivityandaerobicexercisetraining The Centers for Disease Control and Prevention and the American College of Sports Medicine recommend that a person should engage in ≥30 minutes of moderate‐to‐vigorous physical activity each day, preferably in bouts of ≥10 minutes[46].ThemajorityofpatientswithCOPDhaveasedentarylifestyle[5] and physical inactivity contributes to the risk and mortality associated with cardiovascular and metabolic disease. Patients with COPD, irrespective of diseaseseverity,havefewer,shorterandlessintenseperiodsofintensephysical activity,andspendmoretimesedentarycomparedwithhealthysubjects[8].It has been argued that the reduced level of physical activity level is causally implicated in the development of COPD, as studies have consistently reported 149 DISCUSSION attenuatedFEV1declineinphysicallyactivepersons(smokersandnon‐smokers) [47]. Bed‐reststudiesinhealthy,leansubjectshaveshownthatphysicalinactivity induces a wide array of metabolic abnormalities including skeletal muscle insulin resistance, impaired skeletal muscle lipid trafficking, a shift in fuel metabolism in favor of carbohydrate oxidation and in detriment of lipid oxidation, an increase in intramyocellular lipid content, muscle atrophy and muscle fiber type I‐to‐II shift, and increased plasma non‐esterified fatty acid levels [48]. As many of these metabolic abnormalities have also been found in COPD,theadverseeffectsofphysicalinactivityarelikelytobesubstantial. The benefits of aerobic exercise training on cardiometabolic health have been well‐described in overweight or obese adults with and without type 2 diabetes,buthavebeenincompletelystudiedinpatientswithCOPD.Inhealthy overweight or obese adults, aerobic exercise training improves insulin sensitivityandinducesmitochondrialbiogenesisintheskeletalmuscle[49,50], andinducesthelossofvisceralfatmass[51].Theseeffectswereobservedeven inpatientswhosebodymassorwaistcircumferencedidnotchange. Classically, it was assumed that aerobic exercise training intensity in COPD could not reach the levels required to induce physiological effects due to ventilatory limitation. Two important papers disputed this assumption by showing improved lactate‐to‐work ratios and increased activity of key mitochondrial enzymes in muscle biopsies after aerobic exercise training [52, 53]andthesefindingshavebeensubsequentlyconfirmed. Arterialstiffnessisanindependentcardiovascularriskfactor,whichisalso improvedbyaerobicexercisetraininginhealthysubjects[54].Increasedarterial stiffness has been reported in patients with COPD, particularly those with advanced disease [55]. Interestingly, Vivodtzev et al. reported that a relatively short aerobic exercise training program improved arterial stiffness and quadricepsmuscleenduranceinacohortofpatientswithCOPD[56].Galeetal. [57]showedthatstandardmultidisciplinarypulmonaryrehabilitationincluding aerobic exercise training reduced arterial stiffness without changing BMI in mildlyoverweightCOPDpatients. Dietandnutritionalmodulation While weight gain and improved nutrition are recommended for underweight patientswithCOPD[58],thereisnosystematicstudydemonstratingefficacyof improved nutrition or weight reduction strategies in overweight or obese patients with COPD. It seems likely that the obesity paradox has limited enthusiasm for this approach. However, data from weight loss interventions in patientsatriskfordiabetessuggestthatevenmodestreductionsinweightcan reduce the risk of cardiovascular and metabolic diseases, perhaps through improvementsinbodyfatdistribution.Forexample,an~2‐5%lossofbodymass 150 CHAPTER8 wasreportedtobeassociatedwithasustainedandpreferentiallossofvisceral relativetosubcutaneousfatinotherwisehealthyoverweightorobesepersons, however, weight loss >5% was associated with the loss of fat in both compartments[59]. Dietary factors have recently also been put forward as contributing environmental factors in COPD etiology and pathology. A diet rich in fruit, vegetables,whole‐mealcerealsandfishisassociatedwithareducedCOPDrisk, whereas a “western diet” rich in refined grains, cured and red meats, desserts andFrenchfriesisassociatedwithincreasedCOPDrisk,independentofsmoking [60, 61]. Further study is required to identify the specific dietary components withCOPDriskasthesestrategiesmightbeusedtopreventthedevelopmentor slowtheprogressionofCOPDwhilesimultaneouslyreducingcardiovascularrisk. The available literature suggests a particular important role for dietary fiber. ThereisconvincingevidenceoflowerfiberintakeinCOPDpatients[28]andthat increaseddietaryfiberintakeisinverselyassociatedwithrespiratorymortality [62]. Dietary fiber has been shown to alter gut immunity and reduce systemic inflammation, which may be mediated by alterations in the gut microbiome or other mechanisms. Poly‐unsaturated fatty acids (PUFAs) warrant further investigationintargetednutritionalmodulationasPUFAs(inparticularn‐3fatty acids) are known agonists of peroxisome proliferator‐activated receptors (PPARs), which are implicated in skeletal muscle oxidative gene expression. PUFA supplementation was also shown to enhance training effects on exercise capacityinarandomizedcontrolledtrialthatincludedpatientswithmoderate‐ to‐severe COPD [63]. PPARs as potential targets for nutritional as well as pharmacological modulation in COPD have been discussed in detail elsewhere [64]. Another promising example of nutritional modulation to improve the cardiovascular and metabolic disease risk profile in COPD is resveratrol, a naturalpolyphenoliccompoundinnutsandgrapesthatiswidelyavailableasa nutritional supplement. Resveratrol supplementation (150 mg/day) has emerged as a calorie restriction mimetic with beneficial cardiovascular, anti‐ agingandanti‐diabetogenicpropertiesinotherwisehealthyoverweightorobese men [65]. Interestingly, pharmacological inhibition of phosphodiesterase‐4 reproduced all of the metabolic benefits of resveratrol in experimental studies, likely through the same potential mechanisms. These include elevation of intracellular cAMP levels, thereby increasing NAD(+) and the activity of SirT1, whichinconcertprovideadriveforincreasingoxidativemetabolism[66]. Concludingremarks Adversemetabolichealth,intermsoflossofperipheralskeletalmuscleoxidative phenotype and excessive visceralfat accumulation isassociated with increased morbidityandmortalityinpatientswithCOPD.Thisincreasedriskisevidentat 151 DISCUSSION all stages of the disease and is not necessarily restricted to obese patients. Rudermanetal.describedthisphenotypeasa“metabolicallyobese,butnormal weight person” [67]. Physical inactivity, poor dietary quality, and smoking contributetothesemetabolicabnormalities,andinconcertfurtherincreasethe riskofcardiovascularmorbidityandmortality(Figure1). Because loss of muscle oxidative phenotype and excessive visceral fat accumulation can exist without changes in muscle mass and abdominal circumference,thereisaneedfornewdiagnostictoolsandbiomarkerstoreveal these hidden phenomena. Quadriceps muscle endurance tests or the lactate responseuponexercisemayprovidegoodindicatorsofskeletalmuscleoxidative phenotype, and abdominal bioelectrical impedance, ultrasound and plasma levels of the pro‐thrombotic adipokine plasminogen activator inhibitor‐1 have shown good correlations with CT‐acquired visceral fat mass but require validationinCOPD. Themostimportantquestionthatneedstobeansweredinfuturestudiesis whethertheadversemetabolicprofileinCOPDpatientsiscausedbythedisease itself or by an overall poor lifestyle, and whether the two act synergistically. Studies in patients with COPD and control subjects without COPD matched for overall lifestyle may help in disentangling COPD‐specific versus lifestyle‐ mediatedinfluences.Otherimportantquestionsremain:Isthelossofperipheral skeletal muscle oxidative phenotype in COPD an accelerator of or causally implicatedininsulinresistance?Isthereaphysiologicallinkbetweenthelossof peripheralskeletalmuscleoxidativephenotypeandvisceralfataccumulation?Is theinflammatorystatusofvisceralversussubcutaneousfatenhancedinCOPD, anddoesthis relate toanadverse cardiovascular ormetabolic profile? What is the role of ectopic fat deposition in the adverse cardiovascular and metabolic profile in COPD? Finally, a possible link between adipose hormones and pulmonary inflammation may shed new lights on the importance of adipose tissueinCOPDprogressioninthecurrentobesogenicsociety. Itisprojectedthatincreasedknowledgeofthemetabolicchangesinpatients with COPD will allow investigators to test interventions aimed at reducing the riskofcardiovascularandmetabolicdiseasesandtheirassociatedmorbidityand mortality. Available data suggest that the early implementation of tailored lifestyleinterventionsinpatientswithCOPDwhoarenotyetphysicallyimpaired are likely to be beneficial. These lifestyle factors extend beyond recommendations for smoking cessation, instead an integrated systems approach addressing smoking, physical inactivity, and poor diet may be most beneficialinslowingtheprogressionofthedisease. 152 CHAPTER8 Figure 1. Conceptual representation of the drivers of cardiovascular and metabolicriskinCOPD. 153 DISCUSSION References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 154 SwallowEB,ReyesD,HopkinsonNS,ManWD,PorcherR,CettiEJ,MooreAJ,MoxhamJ,PolkeyMI.Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax.2007;62(2):115‐20. McGarveyLP,JohnM,AndersonJA,ZvarichM,WiseRA.Ascertainmentofcause‐specificmortalityinCOPD: operationsoftheTORCHClinicalEndpointCommittee.Thorax.2007;62(5):411‐5. ShrikrishnaD,PatelM,TannerRJ,SeymourJM,ConnollyBA,PuthuchearyZA,WalshSL,BlochSA,SidhuPS, Hart N, et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J. 2012 Feb 23 [Epubaheadofprint]. vandenBorstB,KosterA,YuB,GoskerHR,MeibohmB,BauerDC,KritchevskySB,LiuY,NewmanAB,Harris TB,etal.Isage‐relateddeclineinleanmassandphysicalfunctionacceleratedbyobstructivelungdiseaseor smoking?Thorax.2011;66(11):961‐9. Rabinovich RA, Vilaro J. Structural and functional changes of peripheral muscles in chronic obstructive pulmonarydiseasepatients.CurrOpinPulmMed.2010;16(2):123‐33. AllaireJ,MaltaisF,DoyonJF,NoelM,LeBlancP,CarrierG,SimardC,JobinJ.Peripheralmuscleenduranceand theoxidativeprofileofthequadricepsinpatientswithCOPD.Thorax.2004;59(8):673‐8. LayecG,HaselerLJ,RichardsonRS.TheeffectofhigherATPcostofcontractiononthemetabolicresponseto gradedexerciseinpatientswithchronicobstructivepulmonarydisease.JApplPhysiol.2012;112(6):1041‐8. vandenBorstB,SlotIGM,HellwigVACV,VosseBAH,KeldersMCJM,BarreiroE,ScholsAMWJ,GoskerHR.Loss ofquadricepsmuscleoxidativephenotypeanddecreasedenduranceinpatientswithmild‐to‐moderateCOPD. JournalofAppliedPhysiology.2012Jul19[Epubaheadofprint]. Schrauwen P, Schrauwen‐Hinderling V, Hoeks J, Hesselink MK. Mitochondrial dysfunction and lipotoxicity. BiochimBiophysActa.2010;1801(3):266‐71. WangCH,WangCC,WeiYH.Mitochondrialdysfunctionininsulininsensitivity:implicationofmitochondrial roleintype2diabetes.AnnNYAcadSci.2010;1201:157‐65. HoeksJ,SchrauwenP.Musclemitochondriaandinsulinresistance:ahumanperspective.TrendsEndocrinol Metab.2012;23(9):444‐50. Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck‐Nielsen H, Hojlund K. Mitochondrial respirationisdecreasedinskeletalmuscleofpatientswithtype2diabetes.Diabetes.2007;56(6):1592‐9. RabolR,LarsenS,HojbergPM,AlmdalT,BoushelR,HaugaardSB,AndersenJL,MadsbadS,DelaF.Regional anatomic differences in skeletal muscle mitochondrial respiration in type 2 diabetes and obesity. J Clin EndocrinolMetab.2010;95(2):857‐63. Remels AH, Schrauwen P, Broekhuizen R, Willems J, Kersten S, Gosker HR, Schols AM. Peroxisome proliferator‐activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30(2):245‐52. Mensink M, Hesselink MK, Russell AP, Schaart G, Sels JP, Schrauwen P. Improved skeletal muscle oxidative enzyme activity and restoration of PGC‐1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatmentinobesepatientswithtype2diabetesmellitus.IntJObes(Lond).2007;31(8):1302‐10. SegerstromAB,ElgzyriT,ErikssonKF,GroopL,ThorssonO,WollmerP.Exercisecapacityinrelationtobody fatdistributionandmusclefibredistributioninelderlymalesubjectswithimpairedglucosetolerance,type2 diabetesandmatchedcontrols.DiabetesResClinPract.2011;94(1):57‐63. MarinP,AnderssonB,KrotkiewskiM,BjorntorpP.Musclefibercompositionandcapillarydensityinwomen andmenwithNIDDM.DiabetesCare.1994;17(5):382‐6. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes.2000;49(5):677‐83. Coen PM, Goodpaster BH. Role of intramyocellular lipids in human health. Trends Endocrinol Metab. 2012;23(8):391‐8. van den Borst B, Gosker HR, Wesseling G, de Jager W, Hellwig VA, Snepvangers FJ, Schols AM. Low‐grade adiposetissueinflammationinpatientswithmild‐to‐moderatechronicobstructivepulmonarydisease.AmJ ClinNutr.2011;94(6):1504‐12. BoltonCE,EvansM,IonescuAA,EdwardsSM,MorrisRH,DunseathG,LuzioSD,OwensDR,ShaleDJ.Insulin resistanceandinflammation‐AfurthersystemiccomplicationofCOPD.COPD.2007;4(2):121‐6. FranssenFM,SauerweinHP,AckermansMT,RuttenEP,WoutersEF,ScholsAM.Increasedpostabsorptiveand exercise‐induced whole‐body glucose production in patients with chronic obstructive pulmonary disease. Metabolism.2011;60(7):957‐64. Sin DD, Man SF. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease.Circulation.2003;107(11):1514‐9. Agusti A, Edwards LD, Rennard SI, Macnee W, Tal‐Singer R, Miller BE, Vestbo J, Lomas DA, Calverley PM, Wouters E, et al. Persistent Systemic Inflammation is Associated with Poor Clinical Outcomes in COPD: A NovelPhenotype.PLoSOne.2012;7(5):e37483. Rutten EP, Breyer MK, Spruit MA, Hofstra T, van Melick PP, Schols AM, Wouters EF. Abdominal fat mass contributes to the systemic inflammation in chronic obstructive pulmonary disease. Clin Nutr. 2010;29(6):756‐60. KishidaK,FunahashiT,MatsuzawaY,ShimomuraI.Visceraladiposityasatargetforthemanagementofthe metabolicsyndrome.AnnMed.2012;44(3):233‐41. CHAPTER8 27. PerriniS,LeonardiniA,LaviolaL,GiorginoF.Biologicalspecificityofvisceraladiposetissueandtherapeutic intervention.ArchPhysiolBiochem.2008;114(4):277‐86. 28. vandenBorstB,GoskerHR,KosterA,YuB,KritchevskySB,LiuY,MeibohmB,RiceTB,ShlipakM,YendeS,et al.Theinfluenceofabdominalvisceralfatoninflammatorypathwaysandmortalityriskinobstructivelung disease.AmJClinNutr.2012;96(3):516‐26. 29. FurutateR,IshiiT,WakabayashiR,MotegiT,YamadaK,GemmaA,KidaK.Excessivevisceralfataccumulation inadvancedchronicobstructivepulmonarydisease.IntJChronObstructPulmonDis.2011;6:423‐30. 30. ZafonC.Fatandaging:ataleoftwotissues.CurrAgingSci.2009;2(2):83‐94. 31. Klimcakova E, Roussel B, Kovacova Z, Kovacikova M, Siklova‐Vitkova M, Combes M, Hejnova J, Decaunes P, Maoret JJ, Vedral T, et al. Macrophage gene expression is related to obesity and the metabolic syndrome in humansubcutaneousfataswellasinvisceralfat.Diabetologia.2011;54(4):876‐87. 32. SamarasK,BotelhoNK,ChisholmDJ,LordRV.SubcutaneousandvisceraladiposetissueFTOgeneexpression and adiposity, insulin action, glucose metabolism, and inflammatory adipokines in type 2 diabetes mellitus andinhealth.ObesSurg.2010;20(1):108‐13. 33. WanES,ChoMH,BoutaouiN,KlandermanBJ,SylviaJS,ZinitiJP,WonS,LangeC,PillaiSG,AndersonWH,etal. Genome‐wide association analysis of body mass inchronic obstructive pulmonary disease. AmJRespir Cell MolBiol.2011;45(2):304‐10. 34. Bjorntorp P. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis.1990;10(4):493‐6. 35. DespresJP,LemieuxI.Abdominalobesityandmetabolicsyndrome.Nature.2006;444(7121):881‐7. 36. MarquisK,MaltaisF,DuguayV,BezeauAM,LeBlancP,JobinJ,PoirierP.Themetabolicsyndromeinpatients withchronicobstructivepulmonarydisease.JCardiopulmRehabil.2005;25(4):226‐32;discussion33‐4. 37. Watz H, Waschki B, Kirsten A, Muller KC, Kretschmar G, Meyer T, Holz O, Magnussen H. The metabolic syndromeinpatientswithchronicbronchitisandCOPD:frequencyandassociatedconsequencesforsystemic inflammationandphysicalinactivity.Chest.2009;136(4):1039‐46. 38. Lam KB, Jordan RE, Jiang CQ, Thomas GN, Miller MR, Zhang WS, Lam TH, Cheng KK, Adab P. Airflow obstructionandmetabolicsyndrome:theGuangzhouBiobankCohortStudy.EurRespirJ.2010;35(2):317‐23. 39. CanoyD,WarehamN,LubenR,WelchA,BinghamS,DayN,KhawKT.Cigarettesmokingandfatdistributionin 21,828Britishmenandwomen:apopulation‐basedstudy.ObesRes.2005;13(8):1466‐75. 40. Strand BH, Mishra G, Kuh D, Guralnik JM, Patel KV. Smoking history and physical performance in midlife: resultsfromtheBritish1946birthcohort.JGerontolABiolSciMedSci.2011;66(1):142‐9. 41. Bergman BC, Perreault L, Hunerdosse D, Kerege A, Playdon M, Samek AM, Eckel RH. Novel and Reversible MechanismsofSmoking‐InducedInsulinResistanceinHumans.Diabetes.2012;61(12):3156‐66. 42. Montes de Oca M,Loeb E, Torres SH, De SanctisJ, Hernandez N, Talamo C. Peripheral muscle alterationsin non‐COPDsmokers.Chest.2008;133(1):13‐8. 43. Yanbaeva DG, Dentener MA, Creutzberg EC, Wesseling G, Wouters EF. Systemic effects of smoking. Chest. 2007;131(5):1557‐66. 44. Gosker HR, Langen RC, Bracke KR, Joos GF, Brusselle GG, Steele C, Ward KA, Wouters EF, Schols AM. Extrapulmonary manifestations of chronic obstructive pulmonary disease in a mouse model of chronic cigarettesmokeexposure.AmJRespirCellMolBiol.2009;40(6):710‐6. 45. MatsushitaY,NakagawaT,YamamotoS,TakahashiY,NodaM,MizoueT.Associationsofsmokingcessation withvisceralfatareaandprevalenceofmetabolicsyndromeinmen:theHitachihealthstudy.Obesity(Silver Spring).2011;19(3):647‐51. 46. PateRR,PrattM,BlairSN,HaskellWL,MaceraCA,BouchardC,BuchnerD,EttingerW,HeathGW,KingAC,et al.Physicalactivityandpublichealth.ArecommendationfromtheCentersforDiseaseControlandPrevention andtheAmericanCollegeofSportsMedicine.JAMA.1995;273(5):402‐7. 47. Hopkinson NS, Polkey MI. Does physical inactivity cause chronic obstructive pulmonary disease? Clin Sci (Lond).2010;118(9):565‐72. 48. Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: evidencefrombed‐reststudies.JApplPhysiol.2011;111(4):1201‐10. 49. Olesen J, Kiilerich K, Pilegaard H. PGC‐1alpha‐mediated adaptations in skeletal muscle. Pflugers Arch. 2010;460(1):153‐62. 50. Bruce CR, Hawley JA. Improvements in insulin resistance with aerobic exercise training: a lipocentric approach.MedSciSportsExerc.2004;36(7):1196‐201. 51. IsmailI,KeatingSE,BakerMK,JohnsonNA.Asystematicreviewandmeta‐analysisoftheeffectofaerobicvs. resistanceexercisetrainingonvisceralfat.ObesRev.2012;13(1):68‐91. 52. CasaburiR,PatessioA,IoliF,ZanaboniS,DonnerCF,WassermanK.Reductionsinexerciselacticacidosisand ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143(1):9‐18. 53. MaltaisF,LeBlancP,SimardC,JobinJ,BerubeC,BruneauJ,CarrierL,BelleauR.Skeletalmuscleadaptationto endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154(2Pt1):442‐7. 54. Mattace‐RasoFU,vanderCammenTJ,HofmanA,vanPopeleNM,BosML,SchalekampMA,AsmarR,Reneman RS, Hoeks AP, Breteler MM, et al. Arterial stiffness and risk of coronary heart disease and stroke: the RotterdamStudy.Circulation.2006;113(5):657‐63. 155 DISCUSSION 55. McAllisterDA,MaclayJD,MillsNL,MairG,MillerJ,AndersonD,NewbyDE,MurchisonJT,MacneeW.Arterial stiffnessisindependentlyassociatedwithemphysemaseverityinpatientswithchronicobstructivepulmonary disease.AmJRespirCritCareMed.2007;176(12):1208‐14. 56. Vivodtzev I, Minet C, Wuyam B, Borel JC, Vottero G, Monneret D, Baguet JP, Levy P, Pepin JL. Significant improvementinarterialstiffnessafterendurancetraininginpatientswithCOPD.Chest.2010;137(3):585‐92. 57. Gale NS, Duckers JM, Enright S, Cockcroft JR, Shale DJ, Bolton CE. Does pulmonary rehabilitation address cardiovascularriskfactorsinpatientswithCOPD?BMCPulmMed.2011;11:20. 58. Schols AM, Slangen J, Volovics L, Wouters EF. Weight loss is a reversible factor in the prognosis of chronic obstructivepulmonarydisease.AmJRespirCritCareMed.1998;157(6Pt1):1791‐7. 59. ChastonTB,DixonJB.Factorsassociatedwithpercentchangeinvisceralversussubcutaneousabdominalfat duringweightloss:findingsfromasystematicreview.IntJObes(Lond).2008;32(4):619‐28. 60. Varraso R, Fung TT, Hu FB, Willett W, Camargo CA. Prospective study of dietary patterns and chronic obstructivepulmonarydiseaseamongUSmen.Thorax.2007;62(9):786‐91. 61. ShaheenSO,JamesonKA,SyddallHE,SayerAA,DennisonEM,CooperC,RobinsonSM.Therelationofdietary patternswithadultlungfunctionandCOPD.EurRespirJ.2010;36(2):277‐84. 62. ChuangSC,NoratT,MurphyN,OlsenA,TjonnelandA,OvervadK,Boutron‐RuaultMC,PerquierF,DartoisL, KaaksR,etal.Fiberintakeandtotalandcause‐specificmortalityintheEuropeanProspectiveInvestigation intoCancerandNutritioncohort.AmJClinNutr.2012;96(1):164‐74. 63. Broekhuizen R, Wouters EF, Creutzberg EC, Weling‐Scheepers CA, Schols AM. Polyunsaturated fatty acids improveexercisecapacityinchronicobstructivepulmonarydisease.Thorax.2005;60(5):376‐82. 64. Remels AH, Gosker HR, Schrauwen P, Langen RC, Schols AM. Peroxisome proliferator‐activated receptors: a therapeutictargetinCOPD?EurRespirJ.2008;31(3):502‐8. 65. TimmersS,KoningsE,BiletL,HoutkooperRH,vandeWeijerT,GoossensGH,HoeksJ,vanderKriekenS,Ryu D, Kersten S, et al. Calorie restriction‐like effects of 30 days of resveratrol supplementation on energy metabolismandmetabolicprofileinobesehumans.CellMetab.2011;14(5):612‐22. 66. ParkSJ,AhmadF,PhilpA,BaarK,WilliamsT,LuoH,KeH,RehmannH,TaussigR,BrownAL,etal.Resveratrol ameliorates aging‐related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148(3):421‐33. 67. Ruderman NB, Schneider SH, Berchtold P. The "metabolically‐obese," normal‐weight individual. Am J Clin Nutr.1981;34(8):1617‐21. 156 Summary 157 SUMMARY Chronic obstructive pulmonary disease (COPD) affects 64 million people worldwide and is projected to be the third leading cause of death by the year 2020. Patients with advanced COPD primarily die from respiratory failure, whereasthosewithmild‐to‐moderateCOPDmostoftendiefromcardiovascular events. Morbidity and mortality risk in COPD are likely determined by a combination of disease‐specific factors and an aging and obesogenic society in general. This thesis has a focus on patients with mild‐to‐moderate COPD and investigateswhethertheyarecharacterizedbyanincreasedmetabolicriskand towhatextentagingandanunhealthylifestyleareinvolved. Peripheral muscle in mild‐to‐moderate COPD: smoked and tired Thelossofmusclemassduringtheagingprocessisaphysiologicalphenomenon (termed ‘sarcopenia’) and has been associated with deterioration in physical functioning. Many patients with COPD experience muscle weakness that hampers their daily life activities and the question arises whether this can be attributedtotheirdiseaseorsimplybeexplainedbysarcopenia.InChapter2it isshownthattheratewithwhichthesarcopenicprocesstakesplaceinpatients with COPD is comparable to that of age‐matched subjects without COPD. However, patients with COPD enter old‐age with much lower absolute muscle massthansubjectswithoutCOPD.Thus,eitherthedeteriorationofmusclemass inpatientswithCOPDhadinitiatedearlierinlife,ortheyhadbeenleanallalong. The Chapter also shows that smokers without COPD are just as lean as the patients with COPD when entering old‐age. Being the major cause of COPD, exposure to cigarette smoke thus also seems to affect muscle mass, apparently earlierinlife. The mechanisms leadingto muscle dysfunction have been particularly well studiedinpatientswithsevereCOPD,butnotinpatientswithmilderdegreesof airflowlimitation.Chapter3providesevidenceforreducedquadricepsmuscle endurance in patients with mild‐to‐moderate COPD who had normal muscle mass.Musclefatiguewasassociatedwithaclearlossofoxidativephenotypeof thequadricepsmusclethatwascharacterizedbyalossofoxidativetypeImuscle fibers and decreased peroxisome‐proliferator activated receptor‐γ co‐activator 1αgeneexpression(beingthemajorregulatorofoxidativemetabolism).Thus,a lossofperipheralmuscleoxidativephenotypecanexistalreadyintheabsenceof musclewasting,andalreadyinpatientswithless‐advancedCOPD. AdiposetissueinflammationinCOPD:corebusiness Over the past decade, emerging research has shown that adipose tissue is not just an energy storage compartment but actively secretes proteins with 158 SUMMARY inflammatoryproperties,commonlyknownasadipokines.Ithasbeensuggested thatadysregulationofadipokinesecretionmayplayaroleinsystemicaswellas pulmonary inflammation in COPD. Chapter 4 presents the first comparison of adipose tissue inflammatory status between mild‐to‐moderate COPD patients andmatchedhealthysubjects.Neitheradiposetissueadipokinegeneexpression, nor adipose tissue macrophage infiltration, nor plasma concentrations of adipokinesweredifferentbetweentheCOPDpatientsandthehealthysubjects. Adipositywaspositivelyassociatedwithadiposetissueinflammationinboththe COPDpatientsandthehealthysubjects.Aspartofmetabolicriskassessment,the COPD patients did have lower insulin sensitivity compared with the healthy controls. These data suggest that abdominal subcutaneous adipose tissue inflammatorystatusisgenerallynotaffectedinmild‐to‐moderateCOPD. Chapter 5 shows that COPD patients with mild airflow obstruction are characterized by increased intra‐abdominal fat mass which is not necessarily associated with obesity or increased abdominal circumference. Plasma concentrations of interleukin (IL)‐6 were also increased in these patients and were positively associated with intra‐abdominal fat mass. Also, plasma IL‐6 concentration predicted excess 9‐year mortality of the COPD patients. The results suggest that interventions aimed at lowering intra‐abdominal fat mass maybebeneficialinCOPDpatientsintermsofloweringsystemicinflammation andrelatedmortality. Experimental studies have suggested that local tissue hypoxia in obesity inducesadiposetissueinflammation.Ifhypoxiaisindeedoneofthemechanisms involved,thismaybeofimportanceforCOPDasitoftenassociatedwithhypoxia. In Chapter 6 it was explored whether mice exposed to chronic hypoxia are characterized by adipose tissue inflammation. Interestingly, decreased rather than increased inflammation was found in both subcutaneous and visceral adiposetissue.Inconjunction,markedalterationsofmetabolicgeneexpression were shown consistent with upregulation of oxidative metabolism. This study argues against chronic hypoxia being associated with adipose tissue inflammation,andsimultaneouslysuggestsasignificantmetabolicshifttowards increased fat oxidative metabolism during chronic hypoxia. Future studies are warranted to investigate the effects of hypoxia on adipose tissue inflammation andmetabolisminhumans. UnhealthylifestyleofCOPDpatients:behindthesmokescreen InChapter2,itisshownthatsmokingisassociatedwithdecreasedmuscle,fat andbonemassesindependentlyoflungfunction.Thereby,smokingaloneposes individuals at risk for accelerated physical deterioration. Smoking cessation is oneofthehallmarksinCOPDtreatment,butitmaynotbesufficientintermsof lifestyle management in COPD. It is increasingly becoming clear that COPD patientsengageinanoverallpoorlifestylethatisalsocharacterizedbyphysical 159 SUMMARY inactivityandanunhealthydiet.Importantly,thisconcernsnotonlythosewith severeCOPDbutalsothosewithmilderdegreesofairflowobstruction.Chapter 3 demonstrates a 40% decreased daily physical activity in mild‐to‐moderate COPD patients which is further characterized by fewer, shorter, and less intensive bouts of moderate‐to‐vigorous exercise compared with those of healthysubjects.Nearly70%oftheirtimeduringtheday,COPDpatientsspend sedentary. Furthermore, Chapter 5 shows that only 8% of COPD patients perform high‐intensity physical activities for more than 90 minutes per week. Physical inactivity can lead to muscular deconditioning, adverse body fat distribution and low‐gradesystemic inflammation, and may thereby contribute todiseaseburdenandprogressionofCOPD. The studied COPD patients in Chapter 5 had a poor dietary quality characterizedbyincreasedfatconsumption,anddecreasedconsumptionoffruit, vegetables,anddietaryfiber.Asystematicreviewoftheliterature(Chapter7) further revealed that a greater intake of dietary fiber has been consistently associated with better lung function in the general population, lower odds of COPD,andlowerriskofincidentrespiratorysymptomsandCOPD.Importantly, these associations were independent of smoking. The mechanisms by which dietaryfiberleadstothesebeneficialeffectsrequirefurtherstudy. EarlymetabolicriskinCOPD Chapter8putsintoperspectivetheworkdescribedinthisthesisanddiscusses future directions. Early loss of peripheral muscle oxidative phenotype and adversebodyfatdistributionputthepatientwithCOPDatriskformetabolicand cardiovascular diseases– already in those with mild pulmonary deficits. Future research should elucidate whether this early metabolic risk is caused by COPD itselforbyanunhealthylifestyle,andwhetherthetwoactsynergistically. Animprovedunderstandingofthemechanismsofincreasedearlymetabolic riskinpatientswithCOPDisprojectedtoresultinnewtherapeuticdirectionsto reducediseaseburdenandmortality. 160 Samenvatting 161 SAMENVATTING Wereldwijdlijden64miljoenmensenaandechronischelongziekteCOPD,ende verwachting is dat COPD in het jaar 2020 doodsoorzaak nummer drie zal zijn. COPDiseenverzamelnaamvooremfyseemenchronischebronchitis.Patiënten met vergevorderd COPD overlijden hoofdzakelijk aan de gevolgen van het primaire longlijden terwijl patiënten met mild‐tot‐matig COPD juist vaker overlijdenaandegevolgenvanhart‐envaatziekten.Deverhoogdeziektelasten sterfte bij COPD patiënten wordt waarschijnlijk bepaald door zowel ziekte‐ specifiekefactorenalsdooralgemenetrendsindebevolkingzoalsvergrijzingen vervetting. Dit proefschrift richt zich op patiënten met mild‐tot‐matig COPD en onderzoekt of er bij hen sprake is van een verhoogd metabool risico. Tevens wordt onderzocht of veroudering en een ongezonde leefstijl hierin een rol spelen. Beenspierenalvroegopgerooktenuitgeblust Verlies van spiermassa tijdens veroudering (genaamd ‘sarcopenie’) is normaal en gaat gepaard met een achteruitgang van het lichamelijk functioneren. Veel patiënten met COPD ervaren spierzwakte waardoor ze beperkt zijn in het uitvoeren van dagelijkse activiteiten. De vraag rijst of deze spierzwakte veroorzaakt wordt door de COPD of dat het ‘simpelweg’ te verklaren is door sarcopenie. Hoofdstuk 2 toont aan dat de snelheid van het sarcopenieproces vanaf het 70ste levensjaar gelijk is in patiënten met COPD en mensen zonder COPD.Echter,voordietijdhebbenzereedsveelminderspiermassadangezonde ouderen.Dushetverliesvanspiermassabegintaanzienlijkvroegerinhetleven vandezepatiënten,ofwelzehaddenaltíjdalminderspiermassa.Hethoofdstuk laattevensziendatouderendierokenmaargeenCOPDhebben,evenmagerzijn als hun leeftijdsgenoten mét COPD. Als primaire risicofactor voor COPD heeft rokendusnietalleeneennegatiefeffectopdelongenmaarookopspiermassa. De mechanismen die leiden tot spierdisfunctie zijn goed bestudeerd in patiënten met ernstig COPD, maar niet in patiënten met mildere vormen van COPD. Hoofdstuk 3 toont bewijs voor een verminderd uithoudingsvermogen van de bovenbeenspier in patiënten met mild‐tot‐matig COPD die nog een normale spiermassa hebben. Het uithoudingsvermogen van de bovenbeenspier was gerelateerd aan nadelige veranderingen in de stofwisseling van diezelfde spier. Deze werden onder andere gekarakteriseerd door een verlies van het aantal zuurstofafhankelijke spiervezels en een verlaagde genexpressie van peroxisome proliferator‐activated receptor‐γ co‐activator 1α (een belangrijke regulatorvanzuurstofafhankelijkestofwisseling).Dus,reedsinmilderevormen van COPD bestaan er nadelige veranderingen van de stofwisseling van de bovenbeenspiereneneenverminderduithoudingsvermogenvandiespieren. 162 SAMENVATTING Vetalsontstekingsbron In de afgelopen 10 jaar heeft wetenschappelijk onderzoek aangetoond dat vetweefsel niet enkel een opslagplaats is voor energie, maar tegelijkertijd eiwitten uitscheidt met ontstekingsactiviteit (genaamd ‘adipokines’). Er wordt gesuggereerd dat een disregulatie van adipokine‐uitscheiding een rol speelt in ontstekingsactiviteitbijCOPD.Hoofdstuk4presenteerteenvergelijkingvande mate van vetweefselontsteking tussen patiënten met mild‐tot‐matig COPD en gezondemensen.Inbioptenvanonderhuidsbuikvetbleekdatnochgenexpressie van adipokines, noch het aantal ontstekingscellen (macrofagen) verschillend waren tussen patiënten met de mild‐tot‐matig COPD en de gezonde mensen. Evenmin waren er verschillen in bloedconcentraties van adipokines tussen de patiënten en de gezonde mensen. Een hogere vetmassa hing wel samen met meer vetweefselontsteking in zowel de COPD patiënten als in de gezonde mensen.Dezeresultatensuggererendatontstekingvanhetonderhuidsebuikvet over het algemeen niet afwijkend is in patiënten met mild‐tot‐matig COPD. Als onderdeelvandemetabole‐risicobepalingbleekdatdepatiëntenmetCOPDwel een verminderde insuline gevoeligheid hadden in vergelijking met de gezonde mensen. Dit staat dus mogelijk los van de ontstekingsactiviteit in onderhuids buikvet. Hoofdstuk 5 laat zien dat patiënten met mild COPD een verhoogde hoeveelheid vetweefsel ín hun buik hebben, onafhankelijk van obesitas of een toegenomen buikomvang. Bloedconcentratie van het ontstekingseiwit interleukine(IL)‐6waseveneensverhoogdenwaspositiefgeassocieerdmetde hoeveelheid vetweefsel in de buik. Bovendien was de IL‐6 concentratie voorspellend voor de hogere sterfte van de COPD patiënten. Deze resultaten suggererendatinterventiesgerichtophetverminderenvanvetmassaíndebuik een gunstig effect in COPD kunnen hebben door verlaging van systemische ontstekingengeassocieerdemortaliteit. Experimentele studies suggereren dat een laag zuurstofgehalte (hypoxie) eenlokaleontstekingsreactieuitloktinvetweefselvanobesemuizen.Alshypoxie inderdaad een van de mechanismen is die vetweefselontsteking kan veroorzaken, kan dit relevant zijn voor patiënten met COPD aangezien zij vaak hypoxie hebben door hun longfalen. In hoofdstuk 6 is geëxploreerd of muizen dieblootgesteldwordenaanchronischehypoxiegekarakteriseerdwordendoor vetweefselontsteking. Er werd echter een verlaagde en niet een verhoogde vetweefselontstekinggevondeninzowelonderhuidsvetalsookbuikvetvandeze muizen.Tevenswaserinhetvetweefseleenverhoogdeexpressievangenendie belangrijk zijn voor de zuurstofwisseling. Deze studie pleit ertegen dat chronische hypoxie gepaard gaat met vetweefselontsteking, en suggereert een belangrijke verschuiving naar meer vetverbranding tijdens chronische hypoxie. Toekomstige studies zijn nodig om te onderzoeken of deze resultaten ook bevestigdwordenbijCOPDpatiëntenmethypoxie. 163 SAMENVATTING OngezondeleefstijlinCOPD:achterhetrookgordijn Inhoofdstuk2blijktdatrokengeassocieerdismetverminderdespier‐,vet‐en botmassa,onafhankelijkvandelongfunctie.Daarmeeverhoogtrokenhetrisico vooreenversneldeachteruitgangvanfysiekfunctioneren.Stoppenmetrokenis een van de hoekstenen in de behandeling van COPD, maar het is mogelijk niet genoeg in het kader van leefstijl optimalisatie. Het wordt in toenemende mate bekend dat patiënten met COPD een algeheel ongezonde leefstijl hebben die naastrokenookgekenmerktwordtdoorverminderdelichamelijkeactiviteiten een ongezond voedingspatroon. Het is belangrijk te benadrukken dat dit niet enkel patiënten met ernstig COPD betreft, maar ook al patiënten met mild‐tot‐ matigCOPD.Hoofdstuk3toonteenafnamevandagelijksefysiekeactiviteitvan 40%inpatiëntenmetmild‐tot‐matigCOPDinvergelijkingmetgezondemensen. Bovendien hadden deze patiënten slechts weinig aaneengesloten perioden van lichamelijke activiteit van een hoog genoeg niveau dat gezondheidswinst oplevert zoals wandelen of sporten. Sterker nog: bijna 70% van de dag spendeerdendepatiëntenzittend.Hoofdstuk5laatbovendienziendatslechts 8% van de patiënten met mild COPD meer dan 90 minuten per week hoog‐ intense fysieke activiteit beoefenen, tegenover 18% van mensen zonder COPD. Lichamelijke inactiviteit leidt tot een deconditionering van spieren, een ongunstigeverdelingvanlichaamsvetensystemischeontsteking,enkanviadie wegenbijdragenaanziektelastenprogressieinCOPD. In vergelijking met mensen zonder COPD, hadden de COPD patiënten bestudeerd in Hoofdstuk 5 een slechte voedingskwaliteit welke werd gekarakteriseerddooreenhogevetconsumptie,enverminderdeconsumptievan fruit, groenten en vezels. Een systematisch overzicht van de literatuur (Hoofdstuk 7) laat zien dat juist een hogere inname van vezels gerelateerd is aan betere longfunctie in de algemene populatie, en een lagere kans op het ontwikkelenvansymptomenvandeluchtwegenenhetontstaanvanCOPD.Deze associaties staan los van de invloeden van roken. De mechanismen hoe voedingsvezels tot deze gunstige effecten kunnen leiden, dienen verder onderzochtteworden. VroegmetaboolrisicoinCOPD Hoofdstuk 8 zet de resultaten van dit proefschrift in perspectief en bediscussieert toekomstige onderzoeksrichtingen. Nadelige verandering in de stofwisseling van de beenspieren en een ongunstige verdeling van lichaamsvet verhogen het risico op metabole en hart‐ en vaatcomplicaties in patiënten met COPD– reeds in de vroege fase van hun ziekte. Toekomstig onderzoek zal uitwijzenofditvroegmetaboolrisicoveroorzaaktwordtdoorCOPDzelf,ofdat een algeheel ongezonde leefstijl hieraan ten grondslag ligt, en of COPD en een ongezondeleefstijlelkaarversterken. 164 SAMENVATTING Meer kennis over de mechanismen van verhoogd vroeg metabool risico in patiëntenmetCOPDzalleidentotnieuwetherapeutischeoptiesomdeziektelast ensterftevanCOPDteverminderen. 165 Dankwoord 167 DANKWOORD Hetuitvoerenvanpromotieonderzoekisallesbehalveeenonemanshow.Opdeze plaatswilikiedereenbedankendieheeftbijgedragenaandetotstandkomingvan ditproefschrift. Allereerstbenikallepatiëntenengezondevrijwilligerszeerdankbaarvoorhun participatieinonsonderzoek. Dan mijn promotor,prof. Annemie Schols. Het isal door zo velen gezegd, en ik kanmedaaralleenmaarbijaansluiten;jouwwetenschappelijkenthousiasmeis benijdenswaardig en enorm inspirerend. Je gaf me de mogelijkheid om in Amerika onderzoek te doen, waarvoor ik je zeer dankbaar ben. Mede door de enorm hoge snelheid waarmee je mijn e‐mails beantwoordde, heeft mijn onderzoek in een constante stroomversnelling gestaan. Soms leek het wel of je met Harry Gosker, mijn co‐promotor, een wedstrijdje deed wie het snelst reageerde. Harry, ontzettend bedankt voor al je inhoudelijke en praktische support.Ikkonaltijdbijjebinnenlopenengeenwetenschappelijkeuitdagingis jetegek.AnnemieenHarry,ikwiljulliehartelijkbedankenvoordeleerzameen fijnejaren.Datweopeenzaterdagtotdiepindenachtbrainstormdenoverde stellingen was tekenend voor jullie toewijding en betrokkenheid. Ik ben zeer verheugd dat we een subsidie van het Longfonds hebben binnengehaald zodat weonzesamenwerkingkunnenvervolgen. Ik wil de leden van de beoordelingscommissie bedanken voor hun kritische beoordelingengoedkeuringvanditproefschrift. Prof.EmielWouters,uintroduceerdemijinditonderzoeksprojectwaarvooriku dankbaarben. Top Institute Pharma en alle partners binnen ons project (Maastricht UMC+, UMC Utrecht, UMC Groningen, AstraZeneca, GlaxoSmithKline, Takeda, en Danone) ben ik dankbaar voor de vruchtbare samenwerking en leerzame bijeenkomsten. ValéryHellwig,roomie,watmoestikzonderjou?Waarligtdiemap?Watmoetik met dit formulier? Jouw logistieke en praktische bijdragen aan de klinische studie zijn zeer waardevol geweest. We begonnen vrijwel tegelijkertijd op dit project en hebben elkaar de weg gewezen in onderzoeksland. Het lag voor de handdatjijparanimfwerd,dankjewelvooralles! Paul Popelier, een vanzelfsprekendheid dat jij paranimf werd. Bedankt voor je hulpmetPrezi. 168 DANKWOORD Aging and for introducing me to the Health ABC Study. Annemarie Koster, bedanktvoordefijnetijd,voorjeintensievebegeleidingenvoorjehulpbijalle bureaucratierondomhetverwezenlijkenvaneentijdelijkebaaninAmerika. ThankstoalltheHealthABCStudyco‐authorsforyourvaluableinput. RamonLangen,bedanktvoordiekeerdatjemijnsamplesuitdekapottevriezer hebt gered! Tevens bedankt voor de vele brainstormsessies. En laten we de volgendekeermaarpassenvoordieCatalaansestierenballen. Bettine Vosse, bedankt voor het opstarten van de klinische studie. Zowel in de aanvraag voor de medisch ethische commissie als in de praktische voorbereidingenhebjijveelwerkverricht. Chiel de Theije, jij voerde de muisstudies uit voor je eigen proefschrift. Regelmatighebiknaastjegezetenomdeweefselsteverzamelen.Hetlagvoorde hand om een samenwerking aan te gaan om het vetweefsel van deze muizen onderdeloeptenemen,wateenmooihoofdstukheeftopgeleverd.Bedankt. IlseSlot,bedanktvoorjeinspanningendiekwalitatiefhoogstaandelaboratorium analysesopleverden. Frank Snepvangers en Marco Kelders, bedankt voor jullie expertise en het verlenenvanassistentiebijdeverschillendelaboratoriumanalyses. MijndankgaatuitnaardelongartsenvanhetMaastrichtUMC+,inhetbijzonder prof. Geertjan Wesseling, voor de rekrutering van COPD patiënten voor de klinischestudie. GijsGoossens,bedanktvoorjeinzichtendierichtinggavenaandemuisstudie. Juanita Vernooy, bij jou deed ik een vrijwillige stage en mijn afstudeerstage in het lab van de Longziekten en raakte ik besmet met het onderzoeksvirus. Bedanktdatjeeen‘goedwoordje’voormedeed. Frits Franssen, bedankt voor het advies om eerst promotie onderzoek te doen vóór de klinische opleiding. Ik zou dit op mijn beurt ook iedereen willen aanraden. Agnes Boots, bedankt voor je inspanningen met de Luminex analyses en je immersnellereacties. 169 DANKWOORD Een aantal publicaties is uiteindelijk niet in mijn proefschrift terechtgekomen. Desalniettemin wil ik prof. Maurice Zeegers, Nicole Souren en de overige co‐ auteursbedankenvoorhunbetrokkenheidhierbij. Bedanktaanallecollega’svandeafdelingLongziektenvoordeprettigejaren. Beste Tijs, lieve broer, bedankt voor alle tijd en energie die je stak in het ontwerpenvandecovervanmijnproefschrift.Hetisprachtiggeworden! LieveBertyenMartin,bedanktvoorjulliesupporteninteresseindeafgelopen jaren. Tot slot, lieve Sharon, het is een hele tocht geweest maar nu is het promotieonderzoekdanéchtklaar.Ikwiljeenormbedankenvoorallesteunin deze jaren en voor de vrijheid die je me gunde om een tijdje in Amerika te wonen. Hopelijk breekt er nu een rustigere periode aan met onze mooie zoon Nathan. 170 CurriculumVitae 171 CURRICULUMVITAE BramvandenBorst(18juli1983)behaaldein2001zijnVWOdiplomaaanhet Van Maerlant Lyceum in Eindhoven. In 2002 kon hij starten met de opleiding Geneeskunde aan de Universiteit Maastricht. Tijdens zijn opleiding deed hij stages aan de Universiteit van Linköping in Zweden en de Royal Victoria Infirmary, Newcastle in Engeland. Zijn afstudeerjaar stond geheel in het teken vanlongziekten,enin2008behaaldehijzijnartsendiploma.Van2008tot2012 werkte hij als promovendus binnen de onderzoeksschool NUTRIM bij de vakgroep Longziekten van het Maastricht University Medical Center+ onder supervisievanprof.dr.ir.AnnemieScholsendr.HarryGosker.Eendeelvanhet onderzoek dat hij in die periode uitvoerde staat beschreven in dit proefschrift. Twee hoofdstukken komen voort uit onderzoek dat hij deed aan het National Institute on Aging in Bethesda, USA. Sinds juli 2012 volgt hij de specialistenopleidingtotlongartsinhetOrbisMedischCentruminSittard‐Geleen enhetMaastrichtUniversityMedicalCenter+.Voortvloeienduitditproefschrift, en financieel gesteund door het Longfonds, zal in 2013 een vervolgonderzoek van start gaan met als titel “Vermindering van het verhoogde metabole en cardiovasculairerisicobijCOPDpatiëntenmetovergewicht.” 173 Listofpublications 175 LISTOFPUBLICATIONS Originalresearcharticlesandreviews BramvandenBorst,AnnemieMWJSchols,ChieldeTheije,SEleonoreKoehler, Agnes W Boots, Gijs H Goossens, Harry R Gosker. Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronichypoxia.JournalofAppliedPhysiology2013Mar28[Epubaheadofprint], doi:jap.00460.2012 Bram van den Borst, Harry R Gosker, Annemie MWJ Schols. Central fat and peripheralmuscle:partnersincrimeinchronicobstructivepulmonarydisease. AmericanJournalofRespiratoryandCriticalCareMedicine2013;187(1):8‐13 BramvandenBorst,IlseGMSlot,ValéryACVHellwig,BettineAHVosse,Marco CJM Kelders, Esther Barreiro, Annemie MWJ Schols, Harry R Gosker. Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild‐to‐moderate COPD. Journal of Applied Physiology 2012 Jul 19 [Epub aheadofprint],doi:jap.00508.2012 BramvandenBorst,HarryRGosker,AnnemarieKoster,BinbingYu,StephenB Kritchevsky, Yongmei Liu, Bernd Meibohm, Thomas B Rice, Michael Shlipak, Sachin Yende, Tamara B Harris, Annemie MWJ Schols. The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructivelungdisease.AmericanJournalofClinicalNutrition2012;96(3):516‐26 BramvandenBorst,HarryRGosker,GeertjanWesseling,WilcodeJager,Valéry ACV Hellwig, Frank J Snepvangers, Annemie MWJ Schols. Low‐grade adipose tissue inflammation in patients with mild‐to‐moderate chronic obstructive pulmonarydisease.AmericanJournalofClinicalNutrition2011;94(6):1504‐12 Bram van den Borst, Nicole YP Souren, Ruth JF Loos, Aimée DC Paulussen, Catherine Derom, Annemie MWJ Schols, Maurice P Zeegers. Genetics of maximally attained lung function: a role for leptin? Respiratory Medicine 2012;106(2):235‐42 Bram van den Borst, Annemarie Koster, Binbing Yu, Harry R Gosker, Bernd Meibohm, Douglas C Bauer, Stephen B Kritchevsky, Yongmei Liu, Anne B Newman, Tamara B Harris, Annemie MWJ Schols. Is age‐related decline in lean massandphysicalfunctionacceleratedbyobstructivelungdiseaseorsmoking? Thorax2011;66(11):961‐9 BramvandenBorst,HarryRGosker,MauricePZeegers,AnnemieMWJSchols. Pulmonaryfunctionindiabetes:ametaanalysis.Chest2010;138(2):393‐406 176 LISTOFPUBLICATIONS Eric LA Fonseca Wald, Bram van den Borst, Harry R Gosker, Annemie MWJ Schols.DietaryfiberandfattyacidsinCOPDriskandprogression:asystematic review.[submitted] BramvandenBorst,IlseGMSlot,ValéryACVHellwig,EstherBarreiro,Annemie MWJSchols,HarryRGosker.Normalmuscleoxidativemetabolicgeneresponse toO2‐desaturatingexerciseinCOPD.[submitted] Casereport BramvandenBorst,MichieldeVries,WieldeLange.Amanwithatumoronhis back[inDutch].TijdschriftvoorGeneeskunde2008;64(18):932‐4 Peer‐reviewedletterstotheeditor BramvandenBorst,GeertjanWesseling.AcuteexacerbationsinCOPD:it’sthe weekend but it can’t wait until Monday. European Respiratory Journal 2012;39(6):1547 Bram van den Borst, Annemie MWJ Schols. Low bone mineral density in emphysema: epiphenomenon of a wasting phenotype? American Journal of RespiratoryandCriticalCareMedicine2011;184(9):1087‐8 Bram van den Borst, Nicole YP Souren, Marij Gielen, Ruth JF Loos, Aimée DC Paulussen, Catherine Derom, Annemie MWJ Schols, Maurice P Zeegers. AssociationbetweentheIL6‐174G/CSNPandmaximallyattainedlungfunction. Thorax2011;66(2):179 Bookchapter Bram van den Borst, Annemie MWJ Schols. Chronic Obstructive Pulmonary Disease. Co‐Morbidities and Systemic Consequences. 1st ed. New York (NY): HumanaPress;2012.Chapter11,BodycompositionabnormalitiesinCOPD;Pp. 171‐92 177