Kuliah 01 - Departemen Ilmu Komputer IPB
Transcription
Kuliah 01 - Departemen Ilmu Komputer IPB
12/1/2009 Kontrak Perkuliahan Yeni Herdiyeni Departemen Ilmu Komputer FMIPA IPB http://www.ilkom.fmipa.ipb.ac.id/~yeni KECERDASAN BUATAN • • • • • Nama Mata Kuliah Kode Mata Kuliah Beban Kredit Semester Pengajar : Kecerdasan Buatan : KOM321 : 3(3-0) : Gasal, 2009/2010 : – Yeni Herdiyeni, S.Si. M.Komp (YHY) – Mushtofa, S.Komp., MSc. (MUS) KULIAH 01 - PENDAHULUAN Deskripsi • Pembahasan dalam matakuliah ini dimulai dengan posisi dan ruang lingkup artificial intelligent. Dilanjutkan dengan domain permasalahan, berbagai metode searching, berbagai representasi pengetahuan, matching, metode inferensi (secara statistik, bayes, maupun fuzzy), dan diakhiri dengan pembahasan mengenai soft computing dengan tiga topik utama yaitu : neural network, fuzzy system, dan algoritma genetika. Referensi • Russell S. & Peter N. 2003. Artificial Intelligence: A Modern Approach. Edisi ke2. Prentice-Hall, New Jersey. Tujuan • Mahasiswa mampu menjelaskan sistem kecerdasasan buatan serta mampu merepresentasikan pengetahuan dan menjelaskan metode inferensia pengambilan kesimpulan Kriteria Penilaian • Nilai akhir (NA) adalah nilai kumulatif dari nilai ujian tengah semester (UTS), ujian akhir semester (UAS), tugas perorangan (TP), dan tugas kelompok atau proyek akhir (PA). Metode dan bobot nilai sebagai berikut: • UTS (1‐6) dan UAS (7‐14) dilakukan melalui ujian tertulis dengan bobot masing‐masing 35%. Kisi‐kisi ujian akan disampaikan pada pertemuan ke‐6 untuk UTS, dan pada pertemuan ke‐14 untuk UAS. • Nilai TP adalah rata‐rata dari semua tugas yang diberikan, dan diberi bobot 10% • Nilai PA terdiri dari nilai produk proyek (program komputer, laporan) dan presentasi. Bobot nilai PA adalah 20%. 1 12/1/2009 Topik Apakah Kecerdasan Buatan itu? 1. 2. 3. 4. 5. 6. 7. 8. Kuliah 01 - Pendahuluan Kuliah 02 - Penelusuran Kuliah 03 & 04 : Teknik Penelusuran Kuliah 05 & 06 :Agen berbasis logika preposisi Kuliah 07 - Studi Kasus Kuliah 08 & 09 : Agen berbasis logika predikat orde satu (FOL) Kuliah 10 : Reasoning : Statistical Reasoning I (Probabilitas Bayes) Kuliah 11 & 12 : Reasoning : Statistical Reasoning II (Bayesian Networks) 9. Kuliah 13 :Machine Learning : 10. Kuliah 14 : Studi Kasus How do we emulate the human brain? How does the human brain work? How do we create intelligence? What is intelligence? Who cares? Let’s do some cool and useful stuff! Why study AI? How do we classify research as AI? Does it emulate the brain? Does it investigate the brain? Is it intelligent? Does it investigate intelligence? If we don’t know how it works, then it’s AI. When we find out how it works, it’s not AI anymore… Search engines Science Medicine/ Diagnosis Labor Appliances Honda Humanoid Robot What else? Sony AIBO Walk Turn http://world.honda.com/robot/ Stairs http://www.aibo.com 2 12/1/2009 Natural Language Question Answering What is AI? • Various definitions: – Building intelligent entities. – Getting computers to do tasks which require human intelligence. • But what is “intelligence”? • Simple things turn out to be the hardest to automate: – Recognising a face. – Navigating a busy street. – Understanding what someone says. • All tasks require reasoning on knowledge. http://aimovie.warnerbros.com http://www.ai.mit.edu/projects/infolab/ Why do AI? Who does AI? • Two main goals of AI: • Many disciplines contribute to goal of creating/modelling intelligent entities: – To understand human intelligence better. We test theories of human intelligence by writing programs which emulate it. – To create useful “smart” programs able to do tasks that would normally require a human expert. – Computer Science – Psychology (human reasoning) – Philosophy (nature of belief, rationality, etc) – Linguistics (structure and meaning of language) – Human Biology (how brain works) • Subject draws on ideas from each discipline. Definisi Kecerdasan Buatan The exciting new effort to make computers thinks … machine with minds, in the full and literal sense” (Haugeland 1985) “The study of mental faculties through the use of computational models” (Charniak et al. 1985) “The art of creating machines that perform functions that require intelligence when performed by people” (Kurzweil, 1990) A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes” (Schalkol, 1990) Systems that think like humans Systems that think rationally Systems that act like humans Systems that act rationally Approaches to AI • • • • • • Searching Learning From Natural to Artificial Systems Knowledge Representation and Reasoning Expert Systems and Planning Communication, Perception, Action 3 12/1/2009 Search • “All AI is search” – Game theory – Problem spaces • Every problem is a feature space of all possible (successful or unsuccessful) solutions. • The trick is to find an efficient search strategy. Learning • Explanation – Discovery – Data Mining • No Explanation – Neural Nets – Case Based Reasoning AI with Neural networks Learning: Explanation • Cases to rules • Introduction to perceptrons, Hopfield networks, self-organizing feature maps. How to size a network? What can neural networks achieve? x 1(t) w1 x 2(t) w2 w xn(t) Approaches to AI • • • • • • axon y(t+1) n Genetic Algorithms. Evolving Intelligent Systems Searching Learning From Natural to Artificial Systems Knowledge Representation and Reasoning Expert Systems and Planning Communication, Perception, Action Introduction to genetic algorithms and their use in optimization problems. 4 12/1/2009 Approaches to AI • • • • • • Rule-Based Systems • Logic Languages – Prolog, Lisp • Knowledge bases • Inference engines Searching Learning From Natural to Artificial Systems Knowledge Representation and Reasoning Expert Systems and Planning Communication, Perception, Action Rule-Based Languages: Prolog Father(abraham, isaac). Father(haran, lot). Father(haran, milcah). Father(haran, yiscah). Male(isaac). Male(lot). Female(milcah). Female(yiscah). Son(X,Y) Father(Y,X), Male(X). Daughter(X,Y) Father(Y,X), Female(X). Son(lot, haran)? Ability-Based Areas • • • • • • Computer vision Natural language recognition Natural language generation Speech recognition Speech generation Robotics Natural Language: Translation “The flesh is weak, but the spirit is strong” Translate to Russian Translate back to English “The food was lousy, but the vodka was great!” 5 12/1/2009 Natural Language Recognition OBJ Semantics PERSON: Joe GOLD: X TRANSACTION REPT AGNT PERSON: Fred Context sentence w VP VP NP Syntax Words VP NP pronoun n verb pronoun d You give me NP article noun the gold Audio 6