From Klein`s Platonic Solids to Kepler`s Archimedean Solids: [3pt
Transcription
From Klein`s Platonic Solids to Kepler`s Archimedean Solids: [3pt
Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces From Klein’s Platonic Solids to Kepler’s Archimedean Solids: Elliptic Curves and Dessins d’Enfants Part II Edray Herber Goins Department of Mathematics Purdue University September 7, 2012 Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Abstract In 1884, Felix Klein wrote his influential book, “Lectures on the Icosahedron,” where he explained how to express the roots of any quintic polynomial in terms of elliptic modular functions. His idea was to relate rotations of the icosahedron with the automorphism group of 5-torsion points on a suitable elliptic curve. In fact, he created a theory which related rotations of each of the five regular solids (the tetrahedron, cube, octahedron, icosahedron, and dodecahedron) with the automorphism groups of 3-, 4-, and 5-torsion points. Using modern language, the functions which relate the rotations with elliptic curves are Belyı̆ maps. In 1984, Alexander Grothendieck introduced the concept of a Dessin d’Enfant in order to understand Galois groups via such maps. We will complete a circle of ideas by reviewing Klein’s theory with an emphasis on the octahedron; explaining how to realize the five regular solids (the Platonic solids) as well as the thirteen semi-regular solids (the Archimedean solids) as Dessins d’Enfant; and discussing how the corresponding Belyı̆ maps relate to moduli spaces of elliptic curves. Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Outline of Talk 1 Dessin d’Enfants Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem 2 Examples due to Magot and Zvonkin Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 3 Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Recap Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem What is a Platonic Solid? A regular, convex polyhedron is one of the collections of vertices V = (z1 : z0 ) ∈ P1 (C) δ(z1 , z0 ) = 0 in terms of the homogeneous polynomials n z1 + z0 n z1 z1 3 − z0 3 z z z 4 − z0 4 1 0 1 δ(z1 , z0 ) = z1 8 + 14 z1 4 z0 4 + z0 8 10 5 5 10 z1 z0 z1 − 11 z1 z0 − z0 z1 20 + 228 z1 15 z0 5 + 494 z1 10 z0 10 − 228 z1 5 z0 15 + z0 20 for the regular polygon, for the tetrahedron, for the octahedron, for the cube, for the icosahedron, for the dodecahedron. We embed V ,→ S 2 (R) into the unit sphere via stereographic projection. Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem http://mathworld.wolfram.com/RegularPolygon.html http://en.wikipedia.org/wiki/Platonic_solids Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Rigid Rotations of the Platonic Solids Recall the action ◦ : PSL2 (C) × P1 (C) → P1 (C). We seek Galois extensions Q(ζn , z)/Q(ζn , j) for rational j(z). Zn = r r n = 1 and Dn = r , s s 2 = r n = (s r )2 = 1 are the rigid rotations of the regular convex polygons, with r (z) = ζn z, 1 , z s(z) = and j(z) = 1728 z n or 6912 z n . (z n + 1)2 A4 = r , s s 2 = r 3 = (s r )3 = 1 ' PSL2 (F3 ) are the rigid rotations of the tetrahedron, with r (z) = ζ3 z, s(z) = 1−z , 2z + 1 and j(z) = − 27 (8 z 3 + 1)3 . z 3 (z 3 − 1)3 S4 = r , s s 2 = r 3 = (s r )4 = 1 ' PGL2 (F3 ) ' PSL2 (Z/4 Z) are the rigid rotations of the octahedron and the cube, with r (z) = ζ4 + z , ζ4 − z s(z) = 1−z , 1+z and j(z) = 16 (z 8 + 14 z 4 + 1)3 . z 4 (z 4 − 1)4 A5 = r , s s 2 = r 3 = (s r )5 = 1 ' PSL2 (F4 ) ' PSL2 (F5 ) are the rigid rotations of the icosahedron and the dodecahedron, with r (z) = ζ5 + ζ5 4 ζ5 − z , ζ5 + ζ5 4 z + ζ5 s(z) = ζ5 + ζ5 4 − z , ζ5 + ζ5 4 z + 1 Number Theory Seminar (z 20 + 228 z 15 + 494 z 10 − 228 z 5 + 1)3 j(z) = z 5 (z 10 − 11 z 5 − 1)5 . From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Klein’s Theory of Covariants Theorem (Felix Klein, 1884) The rational function 3 8 z3 + 1 −27 z 3 (z 3 − 1)3 3 z 8 + 14 z 4 + 1 j(z) = 16 4 (z 4 − 1)4 z 3 z 20 + 228 z 15 + 494 z 10 − 228 z 5 + 1 z 5 (z 10 − 11 z 5 − 1)5 for n = 3, for n = 4, for n = 5; is invariant under the group G = r , s s 2 = r 3 = (s r )n = 1 expressed in terms of the generators ζ3 z ζ4 + z r (z) = ζ4 − z ζ 5 + ζ5 4 ζ5 − z ζ5 + ζ 5 4 z + ζ5 for n = 3, for n = 4, for n = 5; 1−z 2z + 1 1−z s(z) = 1+z ζ 5 + ζ5 4 − z 4 ζ 5 + ζ5 z + 1 for n = 3, for n = 4, for n = 5. In particular, Gal Q(ζn , z)/Q(ζn , j) ' G ' PSL2 (Z/n Z). Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Elliptic Curves Associated to Principal Polynomials Theorem (Felix Klein, 1884; G, 1999) Set n = 3, 4, 5. Let q(x) = x n + A x n−3 + · · · + B x + C be over K = Q(ζn ) with splitting field L, and assume that Gal(L/K ) ' PSL2 (Z/n Z). Then there exists j ∈ K such that L K = K (E [n]x ) is the field generated by the x-coordinates of the n-torsion of an elliptic curve E with invariant j. If we define the rational functions λ(z) = 8 z3 + 1 3 z (z − 1) (1 + ζ ) z 2 − (1 + ζ ) z − ζ z 2 − (1 − ζ ) z + ζ z 2 + (1 + ζ ) z − ζ 4 4 4 4 4 4 4 z (z 4 h i2 h i2 2 2 4 z +1 z + 2 ζ5 + ζ5 z −1 z z 10 − 11 z 5 − 1) h i2 z 2 + 2 ζ5 2 + ζ5 3 z − 1 +3 −1 for n = 3, for n = 4, for n = 5; then we have the polynomials 1 x 3 + j " # Y 32 4 1 4 x+ q(x) = x− = x + j j λ ζn ν z ν 40 2 5 1 5 x − x − x− j j j Number Theory Seminar for n = 3, for n = 4, for n = 5. From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Motivating Question Let X be a compact Riemann surface. Fix a function φ : X → P1 (C). For each z in the inverse image of the thrice punctured sphere φ−1 P1 (C) − {0, 1, ∞} ⊆ X form the elliptic curve E : y2 = x3 + 2 3 x+ φ(z) − 1 φ(z) − 1 where j(E ) = 1728 . φ(z) What are the properties of this elliptic curve? Which types of functions φ : X → P1 (C) are allowed? If φ(z) has “lots of symmetries,” how does this translate into properties of the torsion elements K (E [n]x )? Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Belyı̆ Maps Theorem (André Weil, 1956; Gennadiı̆ Vladimirovich Belyı̆, 1979) A compact, P connected Riemann surface X can be defined by a polynomial equation i,j aij z i w j = 0 where the coefficients aij are not transcendental if 1 and only if there exists a rational function φ : X → P (C) which has at most three critical values 0, 1, ∞ . “This discovery, which is technically so simple, made a very strong impression on me, and it represents a decisive turning point in the course of my reflections, a shift in particular of my centre of interest in mathematics, which suddenly found itself strongly focused. I do not believe that a mathematical fact has ever struck me quite so strongly as this one, nor had a comparable psychological impact. – Alexander Grothendieck, Esquisse d’un Programme (1984) Definition 1 A rational function φ : X → P (C) which has at most three critical values 0, 1, ∞ is called a Belyı̆ map. Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Dessins d’Enfant Fix a Belyı̆ map φ : X → P1 (C). Denote the preimages φ W = φ−1 {1} E = φ−1 [0, 1] X − −−−− → P1 (C) y y y white edges R3 vertices The bipartite graph Γφ = V , E with vertices V = B ∪ W and edges E is called Dessin d’Enfant. We embed the graph on X in 3-dimensions. B = φ−1 {0} y black vertices I do not believe that a mathematical fact has ever struck me quite so strongly as this one, nor had a comparable psychological impact. This is surely because of the very familiar, non-technical nature of the objects considered, of which any child’s drawing scrawled on a bit of paper (at least if the drawing is made without lifting the pencil) gives a perfectly explicit example. To such a dessin we find associated subtle arithmetic invariants, which are completely turned topsy-turvy as soon as we add one more stroke. – Alexander Grothendieck, Esquisse d’un Programme (1984) Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solids Klein’s Theory of Covariants Belyı̆’s Theorem Must we work with Platonic Solids? Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Platonic Solids, Archimedean Solids, and Catalan Solids Definition A Platonic solid is a regular, convex polyhedron. They are named after Plato (424 BC – 348 BC). Aside from the regular polygons, there are five such solids. An Archimedean solid is a convex polyhedron that has a similar arrangement of nonintersecting regular convex polygons of two or more different types arranged in the same way about each vertex with all sides the same length. Discovered by Johannes Kepler (1571 – 1630) in 1620, they are named after Archimedes (287 BC – 212 BC). Aside from the prisms and antiprisms, there are thirteen such solids. A Catalan solid is a dual polyhedron to an Archimedean solid. They are named after Eugène Catalan (1814 – 1894) who discovered them in 1865. Aside from the bipyramids and trapezohedra, there are thirteen such solids. Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Platonic Solid Regular Polygon Tetrahedron Archimedean Solid Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Catalan Solid Prism Bipyramid Antiprism Trapezohedron Truncated Tetrahedron Triakis Tetrahedron Truncated Octahedron Tetrakis Hexahedron Truncated Cube Triakis Octahedron Octahedron Cuboctahedron Rhombic Dodecahedron Cube Truncated Cuboctahedron Disdyakis Dodecahedron Rhombicuboctahedron Deltoidal Icositetrahedron Snub Cube Pentagonal Icositetrahedron Truncated Icosahedron Pentakis Dodecahedron Truncated Dodecahedron Triakis Icosahedron Icosahedron Icosidodecahedron Rhombic Triacontahedron Dodecahedron Truncated Icosidodecahedron Disdyakis Triacontahedron Rhombicosidodecahedron Deltoidal Hexecontahedron Snub Dodecahedron Pentagonal Hexecontahedron Number Theory Seminar Rotation Group Dn A4 S4 A5 From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Proposition (Wushi Goldring, 2012) Let ψ(w ) be a rational function. The composition ψ ◦ φ is also a Belyı̆ map for 1 every Belyı̆ map φ : X → P (C) if and only if ψ is a Belyı̆ map which sends the set 0, 1, ∞ to itself. Proposition (Nicolas Magot and Alexander Zvonkin, 2000) The following ψ are Belyı̆ maps which send the set 0, 1, ∞ to itself. −(w − 1)2 /(4 w ) is a rectification, 3 (4 w − 1) /(27 w ) is a truncation, 1/w is a birectification, (4 − w )3 /(27 w 2 ) is a bitruncation, ψ(w ) = 4 (w 2 − w + 1)3 / 27 w 2 (w − 1)2 is a rhombitruncation, 4 2 (w + 1) / 16 w (w − 1) is a rhombification, 7496192 (w + θ)5 3 is a snubification, 25 (3 + 8 θ) w 88 w − (57 θ + 64) where θ2 − (7/64) θ + 1 = 0. Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group Dn Those semi-regular solids with group Dn = r , s s 2 = r n = (s r )2 = 1 −1 correspond to the vertices V = φ {0} in terms of the Belyı̆ maps n (z + 1)2 for the regular polygons, 4 zn (z 2n + 14 z n + 1)3 for the prisms, 108 z n (z n − 1)4 108 z n (z n − 1)4 φ(z) = for the bipyramids, 2n + 14 z n + 1)3 (z (z 2n + 10 z n − 2)4 for the antiprisms, 16 z n (z n − 4)3 (2 z n + 1)3 16 z n (z n − 4)3 (2 z n + 1)3 for the trapezohedra. (z 2n + 10 z n − 2)4 Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group Dn : Prism / Bipyramid http://en.wikipedia.org/wiki/Prism_(geometry) http://en.wikipedia.org/wiki/Bipyramid Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group Dn : Antiprism / Trapezohedron http://en.wikipedia.org/wiki/Antiprism http://en.wikipedia.org/wiki/Trapezohedra Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Groups A4 , S4 , and A5 Those semi-regular solids with group A4 = r , s s 2 = r 3 = (s r )3 = 1 correspond to the tetrahedron. φ(z) = − 64 z 3 (z 3 − 1)3 (8 z 3 + 1)3 Those semi-regular solids with group S4 = r , s s 2 = r 3 = (s r )4 = 1 correspond to the the octahedron. φ(z) = 108 z 4 (z 4 − 1)4 (z 8 + 14 z 4 + 1)3 Those semi-regular solids with group A5 = r , s s 2 = r 3 = (s r )5 = 1 correspond to the icosahedron. φ(z) = (z 20 1728 z 5 (z 10 − 11 z 5 − 1)5 + 228 z 15 + 494 z 10 − 228 z 5 + 1)3 Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group A4 : Truncated Tetrahedron / Triakis Tetrahedron http://en.wikipedia.org/wiki/Truncated_tetrahedron http://en.wikipedia.org/wiki/Triakis_tetrahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group S4 : Truncated Octahedron / Tetrakis Hexahedron http://en.wikipedia.org/wiki/Truncated_octahedron http://en.wikipedia.org/wiki/Tetrakis_hexahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group S4 : Truncated Cube / Triakis Octahedron http://en.wikipedia.org/wiki/Truncated_cube http://en.wikipedia.org/wiki/Triakis_octahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group S4 : Cuboctahedron / Rhombic Dodecahedron http://en.wikipedia.org/wiki/Cuboctahedron http://en.wikipedia.org/wiki/Rhombic_dodecahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group S4 : Truncated Cuboctahedron / Disdyakis Dodecahedron http://en.wikipedia.org/wiki/Truncated_cuboctahedron http://en.wikipedia.org/wiki/Disdyakis_dodecahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group S4 : Rhombicuboctahedron / Deltoidal Icositetrahedron http://en.wikipedia.org/wiki/Rhombicuboctahedron http://en.wikipedia.org/wiki/Deltoidal_icositetrahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group S4 : Snub Cube / Pentagonal Icositetrahedron http://en.wikipedia.org/wiki/Snub_cube http://en.wikipedia.org/wiki/Pentagonal_icositetrahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group A5 : Truncated Icosahedron / Pentakis Dodecahedron http://en.wikipedia.org/wiki/Truncated_icosahedron http://en.wikipedia.org/wiki/Pentakis_dodecahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group A5 : Truncated Dodecahedron / Triakis Icosahedron http://en.wikipedia.org/wiki/Truncated_dodecahedron http://en.wikipedia.org/wiki/Triakis_icosahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group A5 : Icosidodecahedron / Rhombic Triacontahedron http://en.wikipedia.org/wiki/Icosidodecahedron http://en.wikipedia.org/wiki/Rhombic_triacontahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group A5 : Truncated Icosidodecahedron / Disdyakis Triacontahedron http://en.wikipedia.org/wiki/Truncated_icosidodecahedron http://en.wikipedia.org/wiki/Disdyakis_triacontahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group A5 : Rhombicosidodecahedron / Deltoidal Hexecontahedron http://en.wikipedia.org/wiki/Rhombicosidodecahedron http://en.wikipedia.org/wiki/Deltoidal_hexecontahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces Rotation Group Dn Rotation Groups A4 and S4 Rotation Group A5 Rotation Group A5 : Snub Dodecahedron / Pentagonal Hexecontahedron http://en.wikipedia.org/wiki/Snub_dodecahedron http://en.wikipedia.org/wiki/Pentagonal_hexecontahedron Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Starting with the Belyı̆ maps 64 z 3 (z 3 − 1)3 − (8 z 3 + 1)3 108 z 4 (z 4 − 1)4 φ(z) = (z 8 + 14 z 4 + 1)3 1728 z 5 (z 10 − 11 z 5 − 1)5 20 (z + 228 z 15 + 494 z 10 − 228 z 5 + 1)3 consider the composition ψ ◦ φ : P1 (C) → P1 (C) in 2 −(w − 1) /(4 w ) 3 (4 w − 1) /(27 w ) 1/w (4 − w )3 /(27 w 2 ) ψ(w ) = 4 (w 2 − w + 1)3 / 27 w 2 (w − 1)2 (w + 1)4 / 16 w (w − 1)2 7496192 (w + θ)5 3 25 (3 + 8 θ) w 88 w − (57 θ + 64) for the tetrahedron i.e. A4 , for the octahedron i.e. S4 , for the icosahedron i.e. A5 ; terms of the Belyı̆ maps is is is is is is a a a a a a rectification, truncation, birectification, bitruncation, rhombitruncation, rhombification, is a snubification, where θ2 − (7/64) θ + 1 = 0. Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Is There a Moduli Space Interpretation? Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Modular Curve Interpretation: Formulas for the Tetrahedron X (3) X0 (3) X (1) z / P1 (C) ρ / P1 (C) j / P1 (C) z(τ ) =?? ρ(τ ) = 729 " j(τ ) = 1 + 240 ∞ X n=1 η(3τ ) η(τ ) 12 #3 ," σ3 (n) q n q ∞ Y # 1−q n 24 n=1 where q = e 2πiτ . Since Aut X (3)/X (1) ' A4 , we have the identities ρ(τ ) = j(τ ) = 27 z(τ )3 1 − z(τ )3 3 3 ρ(τ ) + 3 ρ(τ ) + 27 27 8 z(τ )3 + 1 =− 3 ρ(τ ) z(τ )3 z(τ )3 − 1 Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Modular Curve Interpretation: Formulas for the Octahedron X (4) X (2) X (1) z λ j / P1 (C) z(τ ) = 2 / P1 (C) λ(τ ) = " / P (C) 1 j(τ ) = 1 + 240 η(τ ) η(2τ ) 2 η(4τ ) η(2τ ) 4 8 η(τ )3 1 16 η(τ /2) η(2τ )2 ∞ X n=1 #3 ," σ3 (n) q n q ∞ Y # 1−q n 24 n=1 where q = e 2πiτ . Since Aut X (4)/X (1) ' S4 , we have the identities λ(τ ) = j(z) = 4 z(τ )2 z(τ )2 + 1 2 3 3 256 λ(τ )2 − λ(τ ) + 1 16 z(τ )8 + 14 z(τ )4 + 1 = 2 4 λ(τ )2 λ(τ ) − 1 z(τ )4 z(τ )4 − 1 Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Modular Curve Interpretation: Formulas for the Icosahedron X (5) X0 (5) X (1) z / P1 (C) µ / P1 (C) j / P1 (C) η(5τ ) η(τ )1/5 6 η(5τ ) µ(τ ) = 125 η(τ ) # " # 3 ," ∞ ∞ X Y n 24 n 1−q j(τ ) = 1 + 240 σ3 (n) q q z(τ ) = − n=1 n=1 where q = e 2πiτ . Since Aut X (5)/X (1) ' A5 , we have the identities 125 z(τ )5 − 11 z(τ )5 − 1 3 µ(τ )2 + 10 µ(τ ) + 5 j(τ ) = µ(τ ) µ(τ ) = = z(τ )10 z(τ )20 + 228 z(τ )15 + 494 z(τ )10 − 228 z(τ )5 + 1 5 z(τ )5 z(τ )10 − 11 z(τ )5 − 1 Number Theory Seminar 3 From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Modular Curve Interpretation: Constructing Archimedean/Calatan Solids X (2, 4) X (2) X0 (2) X (1) k λ w J / P1 (C) k(τ ) = 4 / P1 (C) η(τ ) η(4τ )2 η(2τ )3 8 η(τ /2) η(2τ )2 λ(τ ) = 16 η(τ )3 24 η(2τ ) w (τ ) = −64 η(τ ) " #3 ," # ∞ ∞ X Y n 24 n J(τ ) = 1 + 240 1728 q 1−q σ3 (n) q / P1 (C) / P1 (C) n=1 w − 1 τ 4 =− λ(τ ) − 1 4 λ(τ ) 2 4 w (τ ) − 1 J(τ ) = 27 w (τ ) 1 1 = w − 2τ w (τ ) w 7→ − 3 Number Theory Seminar n=1 (w − 1)2 4w (4 w − 1)3 27 w 1 w→ 7 w w 7→ rectification truncation birectification From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Modular Curve Interpretation: Constructing Archimedean/Calatan Solids X (2, 4) X (2) X0 (2) X (1) k λ w J / P1 (C) / P1 (C) / P1 (C) / P1 (C) k(τ ) = 4 η(τ ) η(4τ )2 η(2τ )3 8 η(τ /2) η(2τ )2 η(τ )3 24 η(2τ ) w (τ ) = −64 η(τ ) #3 ," # " ∞ ∞ X Y n n 24 1728 q J(τ ) = 1 + 240 σ3 (n) q 1−q λ(τ ) = 16 n=1 J 4 3 4 − w (τ ) 1 − = 2τ 27 w (τ )2 3 4 λ(τ )2 − λ(τ ) + 1 2 27 λ(τ )2 λ(τ ) − 1 4 k(τ ) + 1 τ w = 2 1−τ 16 k(τ ) k(τ ) − 1 J(τ ) = Number Theory Seminar n=1 w 7→ (4 − w )3 27 w 2 bitruncation w 7→ 4 (w 2 − w + 1)3 27 w 2 (w − 1)2 rhombitruncation w 7→ (w + 1)4 16 w (w − 1)2 rhombification From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Big Question Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Motivating Question Revisited Fix Belyı̆ maps φ, ψ : P1 (C) → P1 (C) as before. For each z in the inverse image of the thrice punctured sphere −1 1 ψ◦φ P (C) − {0, 1, ∞} ⊆ P1 (C) form the elliptic curve E : y2 = x3 + 2 3 x+ ψ ◦ φ (z) − 1 ψ ◦ φ (z) − 1 where j(E ) = 1728 . ψ ◦ φ (z) What are the properties of this elliptic curve? PSL2 (Z/n Z) ,→ Gal Q(ζn , z)/Q(ζn , j) for n = 3, 4, 5. Since ψ ◦ φ (z) has lots of symmetries, how does this translate into properties of the torsion elements on E ? When ψ(w ) = w , we see L K = Q(ζn , z) = K (E [n]x ) contains the splitting field L of many q(x) = x n + A x n−3 + · · · + B x + C over K = Q(ζn ). Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids Dessin d’Enfants Examples due to Magot and Zvonkin Moduli Spaces X (3), X (4), and X (5) X0 (2), X (2), and X (2, 4) Torsion on Elliptic Curves Thank You! Questions? Number Theory Seminar From Klein’s Platonic Solids to Kepler’s Archimedean Solids