Hawkes Learning Systems: College Algebra Section 2.3: Quadratic Equations in One Variable
Transcription
Hawkes Learning Systems: College Algebra Section 2.3: Quadratic Equations in One Variable
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. Hawkes Learning Systems: College Algebra Section 2.3: Quadratic Equations in One Variable HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Objectives o Solving quadratic equations by factoring. o Solving “perfect square” quadratic equations. o Solving quadratic equations by completing the square. o The quadratic formula. o Interlude: gravity problems. HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Quadratic Equations A quadratic equation in one variable, say the variable x is an equation that can be transformed into the form ax 2 bx c 0 Where a , b , and c are real numbers and a 0 . Such equations are also called second-degree equations, as x appears to the second power. The name quadratic comes from the Latin word quadrus, meaning “square”. HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Solving Quadratic Equations by Factoring Zero –Factor Property Let A and B represent algebraic expressions. If the product of A and B is 0, then at least one of A and B itself is 0 . That is, AB 0 A 0 or B 0 For example, x x 1 0 x 0 or x 1 0 HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Solving Quadratic Equations by Factoring o The key to using factoring to solve a quadratic equation is to rewrite the equation so that 0 appears by itself on one side of the equation. o If the trinomial ax bx c can be factored, it can be written as a product of two linear factors A and B. 2 o The Zero-Factor Property then implies that the only way for ax 2 bx c to be 0 is if one (or both) of A and B is 0. HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 1: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. 3x 2 x 5 5 2 Step 1: Multiply both sides by 5 . Step 2: Subtract 2 from both sides so 0 is on one side. Step 3: Factor and solve the two linear equations. 5 x 2 3x 2 5 x 2 3x 2 0 (5 x 2)( x 1) 0 5x 2 0 2 x 5 or x 1 0 or x 1 HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 2: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. x 2 16 8 x x 2 8 x 16 0 x 4 x40 2 0 or x40 x4 In this example, the two linear factors are the same. In such cases, the single solution is called a double solution or a double root. HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 3: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. 6 x 2 18 x 0 6 x( x 3) 0 6x 0 x0 x3 0 x 3 HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Solving “Perfect Square” Quadratic Equations In some cases where the factoring method is unsuitable, the solution to a second-degree polynomial can be obtained by using our knowledge of square roots. If A is an algebraic expression and if c is a constant: A c implies A c 2 If a given quadratic equation can be written in the 2 form A c we can use the above observation to obtain two linear equations that can be easily solved. HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. Example 4: “Perfect Square” Quadratic Equations Solve the quadratic equation by taking square roots. (5 x 2)2 3 Step 1: Take the square root of each side. Step 2: Subtract 2 from both sides. Step 3: Divide both sides by 5. 5x 2 3 5 x 2 3 2 3 x 5 HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 5: “Perfect Square” Quadratic Equations Solve the quadratic equation by taking square roots. x 7 2 25 0 x 7 2 25 x 7 25 x 7 5i x 7 5i In this example, taking square roots leads to two complex number solutions. HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. Solving Quadratic Equations by Completing the Square Method of Completing the Square Step 1: Write the equation ax 2 bx c 0 in the form ax 2 bx c. Step 2: Divide by a if a 1 , so that the coefficient of x 2 b c 2 is 1: x x . a a Step 3: Divide the coefficient of x by 2 , square the result, and add this to both sides. Step 4: The trinomial on the left side will now be a perfect square. That is, it can be written as the square of an algebraic expression. HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. Example 6: Completing the Square Solve the quadratic equation by completing the square. 2 x 2 8 x 10 0 Step 1: Move the constant term to the other side 2 x 2 8 x 10 of the equation. Step 2: Divide by 2 , the x2 4 x 5 coefficient of x. 2 x 4x 4 5 4 Step 3: Add 4 to both sides. Step 4: Factor the trinomial, ( x 2)2 9 and solve. x 2 3 x 2 3 x 5, 1 HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 7: Completing the Square Solve the quadratic equation by completing the square. 2 x 2 24 x 216 0 2 x 2 24 x 216 x 2 12 x 108 x 2 12 x 36 108 36 x 6 144 x 6 12 x 6 12 x 6, 18 2 HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists The Quadratic Formula The method of completing the square can be used to derive the quadratic formula, a formula that gives the solution to any equation of the form ax 2 bx c 0. Step 1: Move the constant to the other side of the equation. Step 2: Divide by a . b Step 3: Divide a by 2 square the result, and add it to both sides of the equation. ax 2 bx c 0 ax 2 bx c b c x x a a 2 2 2 b b c b x2 x 2 2 a 4a a 4a HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. The Quadratic Formula Deriving the quadratic formula (cont.). 2 Step 4: Factor the b 4ac b 2 trinomial, and x 2 2 2a 4a 4a solve for x . 2 2 b b 4ac x 2 2 a 4 a b b 2 4ac x 2a 2a b b 2 4ac x 2a HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists The Quadratic Formula The solutions of the equation ax 2 bx c 0 are: b b 2 4ac x 2a Note: • The equation has real solutions if b2 4ac 0. • The equation has a double solution if b2 4ac 0. • The equation has complex solutions (which are conjugates of one another) if b2 4ac 0 . HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 8: The Quadratic Formula Solve using the quadratic formula. 4 x 2 7 x 15 c a2 b 4x 7 x 15 0 b b 2 4ac x 2a x 7 7 289 x 8 7 17 x 8 5 x 3, 4 7 4 4 15 2 4 2 HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 9: The Quadratic Formula Solve using the quadratic formula. t 2 22t 96 0 t 22 222 4 1 96 2 1 22 100 t 2 22 10 t 2 t 6, 16 HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. Interlude: Gravity Problems o When an object near the surface of the Earth is moving under the influence of gravity alone, its height above the surface of the earth is described by a quadratic polynomial in the variable t where t stands for time and is usually measured in seconds. o In some applications involving this formula, one of the two solutions must be discarded as meaningless in the given problem. HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. Interlude: Gravity Problems If we let h represent the height at time t , 1 2 h gt v0t h0 , 2 where g , v0 , and h0 are all constants: 2 2 g gravitat ional fo r ce (32.2 f t/s , or 9.81 m /s ) • • v0 initial velocity • h0 initial height • t time, measured in seconds HAWKES LEARNING SYSTEMS Copyright © 2010 Hawkes Learning Systems. All rights reserved. math courseware specialists Example 1: Gravity Problems Luke stands on a tier of seats in a baseball stadium, and throws a ball out onto the field with a vertical upward velocity of 60 ft/s. The ball is 50 ft above the ground at the moment he releases it. When does the ball land? 0 16t 2 60t 50 0 8t 2 30t 25 t Since we know the answer cannot be negative, this solution is discarded. 30 30 2 4 8 25 2 8 30 10 17 t 16 t 0.70,4.45