Dynamic Atomic Force Microscopy: the quest of the - Iramis
Transcription
Dynamic Atomic Force Microscopy: the quest of the - Iramis
Dynamic Atomic Force Microscopy: from nonlinear regime to linear operation 7th of July 2011, LBB, ETH Zürich Jérôme Polesel Maris, PhD CEA Saclay, France [email protected] 7th of July 2011 | J. Polesel Maris | Page 1 Outline • A. • B. • C. Introduction Elements for dynamic AFM Dynamic AFM modes – C.1. – C.2. – C.3. AM-AFM PM-AFM FM-AFM • D. Dynamic AFM in Liquids • Outlooks A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 2 A. Introduction A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 3 Atomic Force Microscopy (AFM) or Surface Force Microscopy (SFM) Electrostatic Forces (until micron) Delayed Dispersive Forces (hundred of nm) Dispersive Forces (tens of nm) Chemical Forces (some Angströms) Repulsive Forces (D<0) Apex<10nm A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 4 CNT on gold electrodes Living Cells Force Spectroscopy Transmembrane proteins Graphene foils A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 5 The first SPM by G. Binnig, C. Quate and Ch. Gerber (1986) Nanosurf (2002) Omicron (2000) IMT-UniBaselNanosurf (2008) JPK (2005) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 6 Contact Mode AFM PET in silica matrix Topography G. Meyer, 1988, IBM Rüschlikon Friction But contact mode AFM could be perturbative for soft matter or isolated objects (polymers, cells, proteins, …) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 7 Towards dynamic AFM mode AFM mode: Contact dynamique dynamique Polymer latex particles on mica Tip-surface distance: A. Introduction Contact B. Elements for Dynamic AFM 1 nm C. Dynamic AFM Modes D. Dynamic AFM in Liquids 10 nm 7th of July 2011 | J. Polesel Maris | Page 8 Dynamic AFM Surface Forces •Amplitude Tip-surface distance Apex •Phase •Frequency Surface Piezo A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 9 B. Elements for dynamic AFM A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 10 Dynamic equation of the oscillator mz(t ) m0 z(t ) kc z (t ) w(t ) Fint z (t ), z(t ), D Qc w(t)= driving force Fint [z(t),z(t),D]= Force(s) felt by the probe (tip surface interaction, but also effects on the cantilever as in liquids) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 11 (1960) See also Duffing oscillator: http://www.scholarpedia.org/article/Duffing_oscillator A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 12 mz(t ) m0 z(t ) kc z (t ) w(t ) Qc Fint z (t ), z(t ), D L{f(t)} Laplace transform HR 2 6D z (t ) B. Elements for Dynamic AFM S ( p) 1 W ( p) kc p 2 02 F.H.A. F.H.A.= First Harmonic Approximation A. Introduction C ( p) C. Dynamic AFM Modes N s1 S ( p) W ( p) D. Dynamic AFM in Liquids HR 1 3 D 2 s12 1 1 N s1 C ( p) 1 p Qc0 1 3/ 2 Transfer function of the AFM !!! 7th of July 2011 | J. Polesel Maris | Page 13 Example: Conservative Interaction Let’s consider van der Waals force: nl t H .R 2 6D st with st s1 sinωt First Harmonic Approximation (FHA): S ( p) W ( p) nl t a1 sinωt a1 cosωt 1 1 N s1 C ( p) With ω 2ωπ HR s1 a1 nl t sin ωt dt π 0 3 D2 s 2 1 3 2 N s1 ω 2ωπ a1 nl t cosωt dt 0 π 0 HR 1 3 D2 s 2 1 3 2 J. Polesel-Maris et al., Phys. Rev. B 79, 235401 (2009) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 14 Transfer function of a dynamic AFM in interaction with a van der Waals force: s1 1 j 1 w0 kc 2 HR 1 1 2 j Q0 3kc D 2 s 2 0 1 3 2 Expression of amplitude and phase resonance curves: 0 w0Qc k s c 1 2 2 HR 1 1 2 w0 1 1 4 Q 1 Q c c 2Q 3k k s c c 1 c D2 s 2 1 arctan f 2 HR 1 0Qc 1 f 3k 2 c D2 s 1 0 A. Introduction B. Elements for Dynamic AFM 3 2 2 3 2 C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 15 Attractive interaction 1.0n Force (Newtons) 500.0p 0.0 -500.0p -1.0n -1.5n vdW -2.0n -2.5n -3.0n 1 2 3 4 5 6 Distance (nm) J. Polesel Maris et al., Nanotechnology 14, 1036 (2003) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 16 Access to Hamaker constant analytical experimental HR 1 3kc D 2 A2 3/ 2 → Integration on one period of the interaction • Hamaker constant H of dipolar coupling 1eV J. Polesel Maris et al., Nanotechnology 14, 1036 (2003) J. Polesel Maris et al., Nanotechnology 15, S24 (2004) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 17 Repulsive interaction 1.0n Force (Newtons) 500.0p 0.0 -500.0p -1.0n -1.5n Morse -2.0n -2.5n -3.0n 1 2 3 4 5 6 Distance (nm) M. H. Korayema and N. Ebrahimi, J. Appl. Phys. 109, 084301 (2011) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 18 Both Attractive and Repulsive interaction 1.0n Force (Newtons) 500.0p 0.0 -500.0p -1.0n -1.5n Morse+vdW -2.0n -2.5n -3.0n 1 2 3 4 5 6 Distance (nm) L. Wang, Appl. Phys. Lett. 73, 3781 (1998) M. H. Korayema and N. Ebrahimi, J. Appl. Phys. 109, 084301 (2011) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 19 Master Equations, general treatment: Expression of amplitude and phase resonance curves: 2 2 Qc w0 Qc w0 Qc 1 14 2 1 k s 2Q kc s1 c c 1 2 2 f f0 f arctan f 2 f 0Qc 1 f 0 J. Polesel-Maris et al., Phys. Rev. B 79, 235401 (2009) General treatment of the forces: s1kc 2 / F s(t ), Dsint dt Conservative part int 0 Qc 1 s1kc 2 / F s(t ), Dcost dt Dissipative part int 0 A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 20 C.1. AM-AFM A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 21 AM-AFM (Amplitude Modulation), also called Tapping AFM • For a constant excitation frequency and a constant drive signal • Tracking of the amplitude modulation w(t)=w0.cos(2.π.fexc.t) A. Introduction B. Elements for Dynamic AFM s(t)=A(t).cos( 2.π.fexc.t+φ(t) ) C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 22 AM-AFM Light Source Photodiode Lock-In A Frequency Generator Drive Out ADC A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 23 40 -/2 32 - amp. exp. 0nma amp. exp. 2nma amp. exp. 4nma amp. exp. 6nma amp. exp.8nma amp. exp. 10nma amp. exp. 12nma amp. exp. 14 nma amp. exp. 16nma amp. exp. 120nmr A (nm) 24 16 8 0 -10 (radians) 0 48 -/4 48 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -/2 10 Df (Hz) 44 -3/4 40 A (nm) 36 From resonance curves to… Distance curves 32 28 24 20 0 A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 8 16 24 DD-120Hz (nm) 32 7th of July 2011 | J. Polesel Maris | Page 24 Hysteresis between net attractive and net repulsive regime 0.6 0.4 0.0 -0.2 -0.4 -0.6 0.990 0.992 0.994 0.996 0.998 1.000 1.002 Phase (radians) A0=3nm D=3nm Q=400 k=25N/m 0.2 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 1.004 NC = Non Contact regime, <attractive>T IC = Intermittent Contact regime, <repulsive>T normalized Frequency 0.6 0.4 0.2 0.0 IC -0.2 -0.4 -0.6 NC -0.8 fdown=0. 99144 -1.0 0 1 1.0 normalized Amplitude 0.8 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Phase (radians) normalized Amplitude 1.0 2 0.8 0.6 0.4 0.2 0.0 IC -0.2 -0.4 -0.6 NC -0.8 0 Distance (D/A0) A. Introduction B. Elements for Dynamic AFM fdown=0. 99744 -1.0 1 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Phase (radians) normalized Amplitude 0.8 2 Distance (D/A0) C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 25 Hysteresis effect and non-linearity Contact mode AFM (Force curve) AM-AFM Due to adhesion forces ! Due to nonlinearities ! A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 26 Nonlinearity and AM-AFM imaging 1 L state 2 3 H state 1 2 L state 3 Instabilities due to the non-linear behavior of the oscillator R. Garcia et al., Phys. Rev. B 61, 13381 (2000) and not to a bad tip ! R. Garcia et al., Surf. Sci. Rep.47, 197 (2000) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 27 0.2 0.0 -0.2 -0.4 -0.6 0.990 0.992 0.994 0.996 0.998 1.000 1.002 0.6 0.4 -0.2 -0.4 -0.6 -0.8 -1.0 0.0 -0.4 -0.6 0.990 0.992 0.994 0.996 0.998 1.000 1.002 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 1.004 B. Elements for Dynamic AFM 0.6 0.4 0.2 -0.2 normalized Frequency A. Introduction 0.8 0.0 Phase (radians) A0=10nm D=8nm Q=400 k=25N/m -0.2 1.5 C. Dynamic AFM Modes 2.0 2.5 Change frequency → change NC/IC distance normalized Amplitude normalized Amplitude 0.6 0.0 1.0 1.0 0.8 0.2 0.5 Distance (D/A0) normalized Frequency 0.4 fdown=0. 99744 f0=1 fup=1.00256 0.2 0.0 Phase (radians) A0=3nm D=3nm Q=400 k=25N/m 0.4 A0=3nm -0.4 -0.6 -0.8 -1.0 0.0 0.5 1.0 1.5 6.0 5.5 5.0 4.5 4.0 3.5 A0=10nm 3.0 2.5 A0=5nm 2.0 A0=3nm 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 2.0 2.5 Phase (radians) 0.6 normalized Amplitude normalized Amplitude 0.8 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 1.004 0.8 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Phase (radians) 1.0 Distance (D/A0) Change drive amplitude → change NC/IC regime ratio D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 28 <Repulsive>T = IC <Attractive>T = NC <Repulsive>T <Attractive>T R. Garcia et al., Phys. Rev. B 60, 4961 (1999) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 29 Some advices to optimize AM-AFM • The choice of the excitation frequency and also the driving amplitude is critical to obtain stable conditions of imaging • Only A(D) cannot give the net repulsive or net attractive regime of the interaction → We need the phase φ(D) ! • Use the phase signal to optimize your setpoint for imaging ! • The choice of an excitation frequency lower than f0 contribute to stable imaging in liquid with no destroying of soft materials (e.g. cells) • Noncontact (NC) operation in liquids is more difficult than in air ambient due to weak van der Waals interaction → check the phase φ(D) to be in IC ! A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 30 How to convert dynamic data into force values ? A. J. Katan et al., Nanotechnology 20, 165703 (2009) J. E. Sader and S. P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004) with: with (for ωd = ωc): kc : spring constant ωd : Excitation frequency ωc : resonance frequency Qc : quality factor ad : Excitation amplitude afree : free amplitude at ωc a(d) : amplitude vs. distance φ(d): phase vs. distance ΩAM : normalized frequency shift And also for the dissipated energy: F. Montagne, J. Polesel-Maris et al., Langmuir 25, 983 (2009) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 31 Calibration is necessary to quantify forces and energy • Amplitude calibration – Force curve, but be careful to the bandwith ! (DC and AC response) – A(d) curves but with high A0, high Q factor (in air, not in liquid), stiff surface 4.0 0.8 3.5 0.6 3.0 0.4 2.5 0.2 0.0 2.0 -0.2 1.5 -0.4 1.0 -0.6 0.5 -0.8 -1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.0 2.0 Phase (radians) normalized Amplitude 1.0 Distance (D/A0) • Spring constant calibration 1 1 k . T K . z (t ) – Thermal noise analysis (in air !) : 2 B 2 2 – Cleveland method, reference cantilever method, geometrical determination E.w.t 3 K A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes 3.L3 D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 32 Conclusions for AM-AFM Good: • Very easy instrumentation • Very easy to set (only one loop: ADC) Drawbacks: • Bi-stabilities non-linear jump • Limited to low Q factor operation (τ=Q/π.f0) • No direct access to conservative and dissipative contributions of the tip-surface forces A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 33 C.2. PM-AFM A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 34 PM-AFM (Phase Modulation) • For a constant excitation frequency and a constant oscillation amplitude • Tracking of the phase shift between w(t) and s(t) w(t)=K.(A(t)-A0).cos( 2.π.fexc.t ) A. Introduction B. Elements for Dynamic AFM s(t)=A(t).cos( 2.π.fexc.t+φ0+Δφ(t) ) C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 35 PM-AFM Light Source Photodiode Lock-In D AGC Dissipation . Drive Out ADC AGC= Automatic Gain Controller A. Introduction Frequency Generator B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 36 Linearization by constant amplitude operation arctan . 2 Q0 1 2 0 And the driving force: w0 s1kc 1 Q 0 sin to maintain the amplitude S1 constant , = constant for a given distance D, with s1=A0 → no longer nonlinearities !!! Example with pure conservative van der Waals interaction: arctan 2 1 0Qc 1 f HR f 3kc D 2 s 2 1 0 B. Elements for Dynamic AFM C. Dynamic AFM Modes Constant oscillation amplitude (PM-AFM, FM-AFM) Constant drive force (AM-AFM) A. Introduction 3 2 D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 37 PM-AFM imaging Y. Sugawara et al., Appl. Phys. Lett. 90, 194104 (2007) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 38 10.0n 5.0n 0.0 -5.0n A0=10nm A0=3nm -10.0n -15.0n -20.0n 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 2.4 Phase (radians) Force (Newtons) Approach curves in PM-AFM Distance (D-A0) • Higher is A0, lower is the phase shift • Bi-stabilities have disappeared (smooth transition) • Phase curves “resembles” to the Force curves, but… A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 39 How to convert dynamic data into force values ? The same equations as for AM-AFM ! Keep in mind: Phase shift approach curves mixes conservative and dissipative parts of the interaction … Not so easy analytical treatment … A. J. Katan et al., Nanotechnology 20, 165703 (2009) J. E. Sader and S. P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 40 Conclusions for PM-AFM Good: • Easy instrumentation • Easy to set (two loops: AGC, ADC) • No instabilities of the signal (linearization with A=constant) • “Instantaneous” change of phase shift Δφ for a change in Force → Fastest dynamic AFM, ready for “video rate AFM” !!! • More sensitive than AM-AFM following “N. Kobayashi et al., Jap. J. Appl. Phys. 45, L793 (2006)” Drawbacks: • No directly accessible on commercial AFM machine (until now!) • No direct access to conservative and dissipative contributions of the tip-surface forces A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 41 C.3. FM-AFM A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 42 FM-AFM (Frequency Modulation), also called non contact AFM • For a constant phase shift (-π/2) and a constant oscillation amplitude A0 • Tracking of the frequency shift Δf(t) w(t)=K.(A(t)-A0).cos( 2.π.(f0+Δf(t)).t-π/2 ) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes s(t)=A(t).cos( 2.π. .( f0+Δf(t)).t ) D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 43 FM-AFM Light Source Photodiode PLL Df AGC Dissipation . PLL= Phase Locked Loop (frequency shift ) Drive Out ADC ADC= Automatic Distance Controller A. Introduction Phase shifter B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 44 Two signals for Conservative/Dissipative parts arctan . 2 Q0 1 2 0 And the driving force: w0 s1kc 1 Q 0 sin to maintain the amplitude S1 constant , = constant for a given distance D, with s1=A0 → no longer nonlinearities !!! 2 02 2.D 02 Q0 tan 0 = tracked by the PLL 2 → Frequency shift proportional to conservative part of the force: D 0 2 B. Elements for Dynamic AFM 2 → Driving force (or damping, dissipation signal) proportional to dissipative part of the force: Ak w0 A. Introduction C. Dynamic AFM Modes D. Dynamic AFM in Liquids 0 c Q 7th of July 2011 | J. Polesel Maris | Page 45 FM-AFM imaging F=0.1 nN <F>=0.3 nN k=0.1N/m F=0.3 nN Contact AFM f0=107kHz, Q=6.2 k=46N/m, A0=0.64 nm <F>= 0.8 nN FM-AFM • FM-AFM operation reduces lateral friction forces and small sensitivity to drift • Very small-amplitude operation overcomes the large frequency noise due to the low Q factor in water • Small amplitude possible only for stiff lever ! kc A Fint Purple membrane in buffer solution B. W. Hoogenboom et al., Appl. Phys. Lett. 88, 193109 (2006) T. Fukuma et al., Appl. Phys. Lett. 87, 034101 (2005) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 46 10.0n 20.0m 18.0m 16.0m 5.0n 14.0m 12.0m 0.0 10.0m 8.0m -5.0n 6.0m A0=10nm A0=3nm -10.0n 4.0m 2.0m 0.0 -15.0n Df/f0 Force (Newtons) Approach curves in FM-AFM -2.0m -20.0n 0.6 -4.0m 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Distance (D-A0) • Higher is A0, lower is the frequency shift • Bi-stabilities have disappeared (smooth transition) • Frequency shift curves is very similar to the Force curves, but… A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 47 How to convert dynamic data into force values ? For any amplitude A: with: D ( z ) 0 T. Uchihashi et al., Appl. Phys. Lett. 85, 3575 (2004) ( z ) ( z ) 2 For small amplitude A~λ (Angströms) : Fsmall z k ( z ' ) dz ' Force gradient constant during one oscillation period z F. Giessibl, Rev. Modern Phys. 75, 949 (2003) J. E. Sader and S. P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004) For large amplitude A>10.λ : 1 d( z ' ) 1 Flarge z .k. A03 / 2 dz ' dt 2 z'-z z Dissipated Energy: A. Introduction with: kA02 w0 ( z ) kA02 ( z ) E z 1 1 Q w0 () Q () B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids z k. A03 / 2 ( z ) 2 A.A. Farell et al., Phys. Rev. B 72, 125430 (2005) 7th of July 2011 | J. Polesel Maris | Page 48 Conclusions for FM-AFM Good: • Direct access to conservative and dissipative contributions of the tip-surface forces • Adapted for high quality factor (τ=1/f0) • No instabilities of the signal (linearization with A=constant) Drawbacks: • Heavy instrumentation • Not so easy to set (three loops: AGC, PLL, ADC) • Delayed response for Δf (electronics) … • Instabilities of the signal (double solution for Δf) … A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 49 D. Dynamic AFM in Liquids A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 50 Resonance determination in liquid Acoustic excitation spectrum Thermal noise spectrum The thermal noise spectrum analysis allows to focus on the correct resonance peaks of the cantilever. But, what to do if cantilever peak is inside the liquid cell peaks ? → Change liquid cell configuration, Active driving, Q Control A. Maali et al., Appl. Phys. Lett. 88, 163504 (2006) T. E. Schäffer et al., J. Appl. Phys. 80, 3622 (1996) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 51 Effects of the added mass of liquid f Damping Thermal noise, in water (I) D=41.6 um, f0=27.134 kHz, Q=3.45 (II) D=1.2 um, f0=23.506 kHz, Q=1.4 (IV) D=0.025 um, f0=19.967 kHz, Q=1.09 Effects of the fluid: • Lowering of the resonance frequency • Reducing of the quality factor A. Maali et al., J. Appl. Phys. 99, 024908 (2006) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 52 Ways for analytical treatment for liquid AFM Shear stress 20 um Surface M. H. Korayem et al., J. Appl. Phys. 109, 084301 (2011) S. Basak et al., J. Appl. Phys. 99, 114906 (2006) New force term in dynamic equation: Fint z(t ), z(t ), D Ftipsamplez(t ), z(t ), D Fliquid[ x, t ] To obtain : 2 wx, t wx, t Such as: Fliquid[ x, t ] a c a t 2 t 2 liq 3 2 b With: a liqb 12 4 and: Added mass of liquid A. Introduction B. Elements for Dynamic AFM s1kc 2 / F int sin t dt 0 Q 1 c s1kc 2 / F int cost dt 0 3 b3 ca 3 b 2 liq 4 H x, t Free hydrodynamic damping Surface Squeezing damping C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 53 Conclusions for dynamic AFM in liquid Good: • Use High frequency and the smallest cantilever with long tip to reduce the hydrodynamics and squeezing force (↘ ρa and ↘ ca ) • Active excitation of the cantilever • Very small amplitude operation increase the SNR… but needs stiff lever Drawbacks: • Optical artefacts and limitations (interfringes, non-transparent solution, diffraction limit to ~5um for cantilever dimension, problem with photosensitive samples) A. Introduction B. Elements for Dynamic AFM C. Dynamic AFM Modes D. Dynamic AFM in Liquids 7th of July 2011 | J. Polesel Maris | Page 54 Outlooks • Why not to implement self-sensing cantilevers ! 1 um Caltech 1 MHz piezoresistive self-sensing SPM cantilever with tip (M.L.. Roukes, 2006) Tuning fork with tip (CEA Saclay, J. Polesel, 2010) 7th of July 2011 | J. Polesel Maris | Page 55 Last question ? (A) (B) 7th of July 2011 | J. Polesel Maris | Page 56 Suggestions for reading: • L. Nony et al., "Nonlinear dynamical properties of an oscillating tip– cantilever system in the tapping mode", J. Chem. Phys. 111, 1615 (1999) • F. Giessibl, "Advances in atomic force microscopy ", Rev. Modern Phys. 75, 949 (2003) • M. Lantz et al., "Dynamic Force Microscopy in Fluid", Surf. Interface Anal. 27, 354-360 (1999) • M. H. Korayem et al., "Nonlinear dynamics of tapping-mode atomic force microscopy in liquid", J. Appl. Phys. 109, 084301 (2011) • B. Gotsmann et al., "Conservative and dissipative tip-sample interaction forces probed with dynamic AFM", Phys. Rev. B 60, 11051 (1999) 7th of July 2011 | J. Polesel Maris | Page 57 Thank you for you attention ! And I’m sure that you have many questions ;-) [email protected] 7th of July 2011 | J. Polesel Maris | Page 58 7th of July 2011 | J. Polesel Maris | Page 59