Tesis Daniela Rivera final - Repositorio UC
Transcription
Tesis Daniela Rivera final - Repositorio UC
ORGANIZACIÓN SOCIAL DE Octodontomys gliroides (Gervais y d'Orbigny, 1844) Y SUS IMPLICANCIAS SOBRE EL ORIGEN Y EVOLUCIÓN DE LA SOCIABILIDAD EN ROEDORES OCTODÓNTIDOS i PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE CIENCIAS BIOLÓGICAS PROGRAMA DOCTORADO EN CIENCIAS BIOLÓGICAS MENCIÓN ECOLOGÍA ORGANIZACIÓN SOCIAL DE Octodontomys gliroides (Gervais y d'Orbigny, 1844) Y SUS IMPLICANCIAS SOBRE EL ORIGEN Y EVOLUCIÓN DE LA SOCIABILIDAD EN ROEDORES OCTODÓNTIDOS Por DANIELA SUZANA RIVERA ROCABADO Tesis presentada a la Facultad de Ciencias Biológicas de la Pontificia Universidad Católica de Chile para optar al grado académico de Doctor en Ciencias Biológicas con mención en Ecología. Dirigida por: Luis A. Ebensperger PhD. R. Eduardo Palma PhD. Septiembre, 2013 Santiago, Chile ii RESUMEN…………………………...………………………………………………….. ix INTRODUCCIÓN GENERAL………………...…………………………………...……… 1 MARCO TÉORICO……………………………...………………………………………… 2 Modelo de estudio, Hipótesis y predicciones……….…………………………..... 6 REFERENCIAS……………………………………………………………………..……. 10 CAPÍTULO I PHYLOGEOGRAPHY AND GENETIC STRUCTURE OF THE ANDEAN DEGU, OCTODONTOMYS GLIROIDES (RODENTIA: OCTODONTIDAE) .………......... 19 ABSTRACT……………………...…………………………………………………….… 20 INTRODUCTION….…………………………………………………............................ 21 METHODS……….………………………………………………………………............ 20 RESULTS…………………..…………………………………………............................ 30 DISCUSSION………………………………………………………………...….............. 34 AKNOWLEDGMENTS………………………………………………………................ 41 REFERENCES…………………………………………………………………………...42 TABLES………………………………………………………………………................. 55 FIGURES…………………………………………………………………..…..……...…. 59 CAPÍTULO II WITHIN BUT NOT BETWEEN VARIATION IN ECOLOGY PREDICT POPULATION DIFFERENCES IN OCTODONTOMYS GLIROIDES GROUPLIVING………………………………………………………………………………….. 70 ABSTRACT……………………………………………………………………………… 71 INTRODUCTION…………………………………………………….............................. 72 iii METHODS…………………………………………………………….............................. 77 RESULTS……………………………………………………………................................ 87 DISCUSSION…………….………………………..…………………………………..… 90 AKNOWLEDGMENTS………..………………………………………............................ 94 REFERENCES…………………………………………….……………..……………….. 95 TABLES………………………………………………….……………………………… 109 FIGURES………………………………….…………………………………………….. 113 CONCLUSIONES GENERALES……………………………………………………….117 iv A mis papás, pilares fundamentales en mi vida, soy lo que soy gracias a ustedes v AGRADECIMIENTOS Esta tesis no hubiera sido posible llevarla a cabo si no hubiera contado con el apoyo de varias personas que en cierto punto, ya sea académico o personal, de lejos o de cerca estuvieron presentes en momentos claves del desarrollo de este trabajo. Es por tanto que en las siguientes líneas tratare de manifestar un agradecimiento general a todos ellos… Al Dr. Luis A. Ebensperger, por la ayuda y confianza que me brindo como asesor de esta tesis, por las ideas, las correcciones e interés que demostró en esta investigación. Por tener siempre el tiempo de leer lo que le enviaba y por sobre todo por enseñarme el mundo de la sociabilidad y de los degus. Al Dr. Eduardo Palma, como cotutor de este trabajo, por abrirme las puertas de su laboratorio y hacer que siempre me sintiera bienvenida, por su constante apoyo y sus comentarios y correcciones a los resultados. A los miembros de mi comisión asesora de tesis integrada por los doctores Rodrigo Vásquez, María Fernanda Pérez y Claudio Latorre, por toda su buena disposición, correcciones y aportes a esta tesis. A Mauricio Lima, quien me dio la oportunidad de poder postular al programa de doctorado. A Pancho Bozinovic por abrirme las puertas de su laboratorio desde el comienzo. A todas y cada una de las fuentes de financiamiento que hicieron posible la presente tesis. A la Organización de Estados Americanos (OEA), la beca con la cual llegue a Chile y con la que inicie mis estudios de doctorado. A Comisión Nacional Científica y Tecnológica (CONICYT), por los dos años de beca doctoral. A la Vicerrectoría de Investigación (VRIUC) y Dirección de Investigación y Postgrado (DIP-UC). Al proyecto FONDECYT 1090302 “A mechanistic model to explain direct fitness consequences of sociality in the rodent Octodon degus”. Al Programa 1 del Centro de Estudios Avanzados en Ecología y vi Biodiversidad (FONDAP 1501–001). Al Animal Behaviour Society (Developing Nations Award) y American Society of Mammalogists por los fondos para cubrir parte de los terrenos. Al Departamento de Ecología de la Facultad de Ciencias Biológicas de la Pontificia Universidad Católica de Chile, en la cual desarrolle mis estudios y pase gran parte de mi tiempo. A todas las instituciones y colegas biólogos que me brindaron y enviaron muestras de tejido para los análisis genéticos: Al Field Museum of Natural History; Sam Noble Oklahoma Museum of Natural History; Colección de Flora y Fauna Profesor Patricio Sánchez Reyes, UC; Instituto de Ecología y Evolución, UACh; Museo de Ciencias Naturales y Tradicional de Mar del Plata "Lorenzo Scaglia"; a Agustina y Ricardo Ojeda de la Colección de Mamíferos del Instituto Argentino de Investigaciones de zonas Áridas (IADIZA), Jorge Jayat y Raúl Sobrero. Al Centro de Biodiversidad y Genética por todo el material de campo. A las comunidades de “Oploca” y “Chusmiza” donde realice el terreno, a tanta gente linda que nos brindaron su ayuda, recibiéndonos con las puertas abiertas. A todos los valientes voluntarios de campo, Ariel, Marco Antonio, Alejo, Mauri, que aguantaron frio, calor, cebar trampas de madrugada y revisarlas varias veces en la noche. A Huber por su valentía y destreza en el campo, por permanecer despierto tantas noches cuidando de que no nos pasara nada y por aguantar dos meses aislado. Por sus conocimientos de botánica y ayuda con la identificación de las especies vegetales. A Gabi Villanueva por ser amiga y un 10 en el campo, por tantos momentos lindos que compartimos despiertas tantas noches durante el trampeo y telemetría. Por su entusiasmo y predisposición, por seguirme en todas mis ocurrencias y por su amistad. vii A Sebas Abades, por sus valiosos aportes para el análisis estadístico de los datos. A Andrés Parada y Juliana Vianna, por su paciencia y ayuda con los programas filogenéticos. A mis compañeros y ex compañeros del lab Ebensperger. A Ricardo Cancino por iniciarme en el mundo de las pipetas y de los PCRs. A Marlene Manzano por ser mi hada madrina de los análisis genéticos y una verdadera amiga. A Sabri, Li, Bea, por tantos lindos momentos. A los grandes amigos que ya migraron a tierras lejanas y otras más cercanas: Ana, Sergio, Claudiña, David, Fernanda, Felipe, Stella gracias por tantos recuerdos. A mis amigos del día a día: Feñita, Felipe, Lore, Sebas y a los amigos que a pesar de la distancia se que están presentes. Al Sr. Fernando y Sra. Daniela por estar siempre preocupados y pendientes de mí. A mi familia, a mis papás por brindarme su apoyo incondicional y darme ánimos cuando más lo necesitaba. A mis hermanos, porque a pesar de la distancia siempre me acompañan y me sacan de apuro. A mi mamá por ser mi pilar y fortaleza y saber transmitirme sus sabios consejos a lo largo de toda mi carrera y formación profesional. A mi abuelita “mămaie” que me dejo durante mi primer año en el programa, pero que siempre me ha acompañado. A mi abuelo “tătaie” que me acompaña a pesar de la distancia. A mi cable a tierra, Fernando Alfaro, por aguantarme y por estar siempre, por su infinita paciencia y por brindarme su apoyo incondicional. Por tantos momentos amargos y dulces compartidos en toda esta etapa. A todos ustedes muchas gracias!!! viii Resumen El comportamiento social es variable entre especies de roedores de la familia Octodontidae, y donde el número de especies sociales es más frecuente en las ramas terminales de este grupo. Determinar si la vida social en las formas más derivadas evolucionó en respuesta a cambios ambientales recientes dependen fundamentalmente de las características de la estructura social de Octodontomys gliroides, el taxón hermano del clado compuesto por la mayoría de las especies sociales. Por lo tanto, la ocurrencia de hábitos solitarios en O. gliroides indicaría que la vida social en la familia Octodontidae es un rasgo derivado. En cambio, la ocurrencia de hábitos sociales en O. gliroides indicaría que este rasgo evolucionó temprano y que la sociabilidad en Octodontidae es el producto de presiones de selección históricas. El objetivo central de esta tesis fue determinar el grado de sociabilidad de O. gliroides, la importancia de factores ecológicos como causas de su posible variación, y las implicancias de esto sobre la evolución de la vida en grupo en Octodontidae. Para ello se realizó un análisis filogeográfico que permitió determinar el grado de estructuración genética de las poblaciones de O. gliroides a lo largo de su rango de distribución. Los resultados indicaron que las poblaciones de esta especie están estructuradas genéticamente. En base a estos resultados, se seleccionaron dos de estas poblaciones genéticamente distintas pero que habitan ambientes con distinta productividad primaria determinada por un gradiente de precipitación. La sociabilidad cuantificada como tamaño de grupo y grado de cohesión social entre individuos del mismo grupo no presentó variación entre las poblaciones estudiadas, a pesar de diferencias marcadas en condiciones ecológicas (distribución de alimento y refugio, riesgo de depredación, costos asociados a excavar madrigueras). En cambio, se registró una asociación entre diferencias ecológicas y la variación en el tamaño de los grupos dentro de estas poblaciones. En conjunto, los resultados son consistentes con que la sociabilidad en esta especie evolucionó en respuesta a las condiciones de aridez en el pasado y que esta se han mantenido relativamente invariable a lo largo del tiempo a pesar de las diferencias ecológicas entre sus poblaciones actuales. Tomando en cuenta la posición filogenética de O. gliroides es posible inferir que la sociabilidad en Octodontidae evolucionó temprano en el clado “social”. ix INTRODUCCIÓN GENERAL 1 MARCO TÉORICO La sociabilidad, definida como la tendencia de los individuos a vivir gran parte de su ciclo vital con otros individuos de la misma especie y a interactuar más frecuentemente con estos (Alexander 1974; Blumstein & Armitage 1998; Lacey & Sherman 2007; Wey et al. 2008), es relativamente común en insectos y otros invertebrados (Seeley 1989; Avilés & Tufiño 1998), así como en peces (Heg et al. 2005; Reddom et al. 2011), aves y mamíferos (Lott 1991; Heinsohn 1992; Brown & Brown 1996; Ebensperger 2001; Lacey & Sherman 2007). La tendencia de los individuos a agruparse puede resultar a partir del estímulo generado por recursos externos a éstos (e.g. refugio y/o alimento), o por una atracción generada entre los propios individuos (Parrish et al. 1997; Ebensperger 2001). Esta tendencia no es un rasgo invariante, tal como lo demuestran estudios que han documentado cambios en el tamaño de grupo, estructura y grado de cohesión social tanto dentro como en diferentes poblaciones de vertebrados (Lott 1984; 1991; Brashares & Arcese 2002; Schradin & Pillay 2005). La ocurrencia de variación en el comportamiento social es evidente incluso dentro de especies con una estructura social cohesionada y permanente (Lott 1991), un aspecto esencial para estudios cuyo objetivo es determinar las causas ecológicas y significancia funcional de la sociabilidad (Lott 1991; Foster 1999, Johnson et al. 2002). En particular, comparaciones entre poblaciones tienen la ventaja de abarcar un rango más amplio de condiciones ecológicas, en particular cuando estas poblaciones están asociadas a diferencias importantes en condiciones ecológicas (Ebensperger et al. 1995; Travis et al. 1995; Shradin & Pillay 2005), lo que sin embargo permite “controlar” otras fuentes de variación como filogenia y nicho ecológico (Clutton-Brock & Harvey 1978; Lott 1991; Maher 1994). A diferencia de los estudios en una sola población, los estudios comparativos a lo largo de gradientes ambientales (i.e., variación entre poblaciones), representan “experimentos naturales” que 2 permitan evaluar la contribución relativa de las condiciones ecológicas sobre la estructura y tamaño de los grupos sociales (Johnson et al. 2002). Así entonces, comparaciones entre poblaciones pueden contribuir a determinar si variación en condiciones ecológicas se han traducido en diferencias en el grado de sociabilidad (Foster 1999; Ebensperger et al. 2012). La variación intraespecífica en el grado de sociabilidad es a menudo atribuida al efecto de diferencias en condiciones ecológicas (e.g., clima, riesgo de depredación, densidad, disponibilidad de lugares para nidificar, calidad, cantidad o distribución de alimento) (Lott 1991), las cuales determinarían los beneficios y costos que emergen de las decisiones de los individuos por asociarse o a abandonar un grupo (Slobodchikoff 1984; Lacey 2000; Brashares & Arcese 2002; Ebensperger et al. 2012). Entre los potenciales beneficios que se atribuyen a la formación y mantención de la vida en grupo se incluyen una disminución en el riesgo per cápita de depredación, un incremento en la eficiencia de forrajeo debido a una localización y/o defensa más eficiente de los recursos, así como un incremento en el ahorro energético producto de termorregulación social entre otros (Alexander 1974; Bertram 1978; Armitage 1981; Krebs & Davies 1993; Ebensperger 2001; Lacey & Sherman 2007). Por otro lado, los costos asociados a la vida en grupo, incluyen un incremento en la trasmisión de parásitos y competencia por recursos entre otros (Alexander 1974; Loehtle 1995; Altizer et al. 2003). Son numerosos los estudios que han documentado una relación estrecha entre el grado de sociabilidad y variación en factores ecológicos asociados a beneficios de la vida en grupos. Por ejemplo, hembras del venado de cola blanca (Odocoileus virginianus) que habitan ambientes abiertos y de mayor susceptibilidad a depredadores forman grupos más numerosos comparados con grupos de la misma especie en ambientes más cerrados (Hirth 1977; Lott 1991). Por otra parte, la distribución de recursos críticos es uno de los 3 principales agentes ecológicos de la conducta social. En particular, recursos que se encuentran distribuidos de manera heterogénea en espacio y tiempo pueden promover la vida en grupo debido a que los grupos más numerosos son más eficientes en localizar o defender recursos de alta calidad (Slobodchikoff 1984; Travis et al. 1995; Brashares & Arcese 2002; Maher & Burger 2011). Por ejemplo, la rata topo común (Cryptomys hottentotus hottentotus) forma colonias más numerosas en ambientes áridos donde el alimento está distribuido en forma heterogénea que en ambientes más húmedos donde el alimento está distribuido en forma más uniforme. Un mayor número de individuos en ambientes áridos determina una localización y defensa más eficiente de estos recursos (Spinks & Plagányi 1999; Spinks et al. 2000). De manera similar, los perritos de la pradera de Gunnison (Cynomys gunnisoni) incrementan el tamaño de grupo y solapamiento de sus ámbitos de hogar cuando los recursos se encuentran más dispersos en espacio y tiempo (Verdolin 1999). Además de la distribución, la abundancia de los recursos también parece tener algún efecto sobe la tendencia a formar grupos. Así por ejemplo, variación en el tamaño de grupo durante la actividad de forrajeo en mamíferos carnívoros (Canis lupus, Crocuta crocuta) está asociada a diferencias estacionales o temporales en la disponibilidad de presas (Mech 1970; Kruuk, 1972). En contraste con un escenario en el cual las condiciones ecológicas son atribuidas como causas de la evolución de la vida en grupo, diferencias en el grado de sociabilidad entre especies dentro de un clado también pueden representar rasgos heredados a partir de formas ancestrales. En este escenario, los rasgos pueden permanecer invariantes a pesar de diferencias entre los ambientes de las formas ancestrales y actuales. Es decir, el rasgo o estado del rasgo en las formas actuales representarían inercia filogenética. Esta hipótesis es apoyada por comparaciones entre especies. Por ejemplo, la vida social en miembros de la 4 super-familia Cavioidea ha sido atribuida a los efectos filogenéticos dentro de este grupo, es decir, que el rasgo social habría estado presente también en las formas ancestrales, independiente de diferencias en los ambientes usados por estas especies (Rowe & Honeycutt 2002). Del mismo modo, la organización social y espacial en especies de caballos salvajes (familia Equidae) es uniforme a pesar de diferencias ambientales y demográficas, lo que apoya que la estructura social observada sería un rasgo ancestral y un caso de inercia filogenética (Linklater2000). En aves se ha enfatizado el posible rol de factores ecológicos (e.g., depredación, dispersión limitada) como causa evolutiva de la vida social. Sin embargo, existe evidencia que apoya que la vida social es el estado ancestral en varias familias de aves, lo que no descarta un componente filogenético (Arnold & Owens 1998; 1999; Covas & Griesser 2007). Además, estudios en los que inicialmente se atribuyó el efecto de causas ecológicas a la sociabilidad han sido re-evaluados encontrando un fuerte componente filogenético. Por ejemplo, Van Schaik & Van Noordwijk (1986) indicaron que diferencias en riesgo de depredación serían la causa de diferencias en el tamaño de grupo en poblaciones de macacos de cola larga (Macaca fascicularis). Sin embargo, la evidencia más reciente a partir de estudios comparados es más consistente con que la sociabilidad en especies del género Macaca estarían está vinculada a inercia filogenética (Thierry et al. 2000). En conjunto, estos estudios indican que no es claro en qué medida la variación social observada en poblaciones de especies actuales es el resultado de adaptación a variación en condiciones ecológicas o el legado de formas ancestrales. Por otra parte, un escenario de inercia también puede ser evaluado indirectamente a partir de compasiones intraespecíficas. En particular, una ausencia de variación social en poblaciones genéticamente distintas y asociadas a condiciones ambientales diferentes sería más consistente con un escenario de inercia. Solo un estudio reciente ha examinado esta 5 posibilidad en el tejón europeo (Meles meles), y donde una ausencia de variación social está vinculada con variación ecológica significativa. Modelo de estudio, Hipótesis y predicciones El orden Rodentia constituye un grupo de especies particularmente apropiado para examinar los roles de condiciones ecológicas y de inercia filogenética en el origen y evolución de la sociabilidad. En particular, en este orden prevalecen clados monofiléticos bien sustentados y donde las especies exhiben una gran diversidad ecológica y morfológica (Nedbal et al. 1994; Rowe & Honeycutt 2002). Es así, que la vida social en este taxón se ha registrado en no menos de 70 especies, representantes de 39 géneros y 18 familias ampliamente distribuidas (Lacey & Sherman 2007). El orden Rodentia está representado por tres grupos taxonómicos: los sciurognatos, los miomorfos y los hystricognatos (Wilson & Reeder 2005). Los hystricognatos sudamericanos (degus, cururos, cobayos, ratas vizcachas, tuco-tucos) incluyen especies que varían morfológica y fisiológicamente y que se han adaptado a diferentes modos de vida (e.g., sociales, escansoriales, fosoriales, semifosoriales), pudiendo encontrarse en casi todo tipo de ambientes (Contreras et al. 1987; Mares & Ojeda 1982; Eisenberg & Redford 1999). Estos patrones de diversidad morfológica, fisiológica y ecológica tienden a covariar con patrones de organización social y comportamiento, donde la estructura social varía entre especies solitarias y/o especies altamente sociales y gregarias (Ebensperger & Cofré 2001; Lacey & Ebensperger 2007; Ebensperger et al. 2008). Dentro de los hystricognatos sudamericanos, los octodontidos (Octodontidae) corresponden a uno de los grupos más característicos en ambientes áridos y semiáridos del cono sur de Sudamérica (Contreras et al. 1987; Lacey & Ebensperger 2007; Honeycutt et al. 2007). Los Octodontidae constituyen 6 un grupo monofilético (Honeycutt et al. 2003; Lessa et al. 2008) con 13 especies divididas en siete géneros (Aconaemys, Octodon, Octodontomys, Octomys, Spalacopus, Tympanoctomys y Pipanacoctomys; Wilson & Reeder 2005; Ojeda et al. 2013). Al mismo tiempo, se trata de un grupo ecológicamente diverso que incluye especies con hábitos de vida escansorial, semisubterráneos y subterráneos (Redford & Eisenberg 1992; Lacey & Ebensperger 2007; Ebensperger et al. 2008). Estas especies se encuentran distribuidas a lo largo de la Cordillera de los Andes desde los 16° S a 41° S, especialmente en las laderas occidentales (Contreras et al. 1987; Ojeda et al. 1996; Verzi 2001), ocupando una gran diversidad de ambientes que incluyen pastizales abiertos, bosques ralos y bordes de salares extremadamente áridos (Redford & Eisenberg 1992; Lacey & Ebensperger 2007). Si bien la información disponible sobre la estructura social para la mayoría de las especies de octodóntidos es poco conocida, se ha establecido que el clado chileno compuesto por las especies Octodon degus (Fulk 1976; Lacey & Ebensperger 2007), Spalacopus cyanus (Reig 1970; Lacey & Ebensperger 2007), Aconaemys fuscus (Reise & Gallardo 1989) y O. lunatus (Sobrero 2013) serían sociales. Por otra parte, las especies del clado argentino: Tympanoctomys barrerae, Octomys mimax y Pipanacoctomys aureus presentan hábitos solitarios (Mares et al. 1997; Ebensperger et al. 2008). Se ha planteado que este patrón de diversificación podría haber evolucionado en respuesta a cambios climáticos (Reig 1986; Ojeda & Tabeni 2009). La evaluación de esta hipótesis depende fundamentalmente de la estructura social de la especie Octodontomys gliroides (soco, choschori, rata cola de pincel o degu Andino), un aspecto completamente desconocido hasta ahora. Diversas observaciones sugieren que la historia evolutiva de O. gliroides pudo estar marcada por respuestas a variación en las condiciones ecológicas de los ambientes usados 7 por estos animales. Se trata e una especie que se encuentra en la región tropical de Sudamérica (Gallardo et al. 2007), en ambientes con características climáticas y geográficas contrastantes (e.g., desiertos extensos, montañas elevadas, extensos salares) (Ojeda et al. 2000). La distribución geográfica actual de esta especie coincide con un gradiente de precipitación de este a oeste creado por el efecto de “sombra de lluvia” de los Andes. La evidencia disponible apoya que esta zona se caracteriza por una historia compleja de cambios asociados con períodos secos-húmedos que ocurrieron en el Pleistoceno-Holoceno (Nester et al. 2007; Santoro & Latorre 2009). Esta variación climática ha causado cambios en la distribución de la flora local y la localización de zonas andinas xéricas donde O. gliroides se encuentra en la actualidad (Ribichich 2002; Teta & Ortiz 2002; Barquez et al. 2006). Por otra parte, la mayoría de las reconstrucciones filogenéticas recientes sitúan a O. gliroides como el taxón hermano del clado compuesto por la mayoría de las especies sociales (Honeycutt et al., 2003; Gallardo et al. 2004; Opazo 2005; Rowe et al. 2010). Por lo tanto, la ocurrencia de hábitos solitarios en O. gliroides apoyaría que la vida social en Octodontidae sería un rasgo derivado, y potencialmente en respuesta a condiciones eclógicas recientes. En contraste, la ocurrencia de hábitos sociales en O. gliroides indicaría que este rasgo evolucionó temprano en Octodontidae y que es el resultado de presiones de selección históricas. De esta manera, el objetivo central de esta tesis fue determinar el grado de sociabilidad de O. gliroides, examinando la importancia de factores ecológicos (e.g., distribución de recursos, riesgo de depredación) como posibles causas, así como sus implicancias sobre la evolución de la vida en grupo en el resto de los octodóntidos sociales. Para esto, se realizó primero un análisis filogeográfico que permitió determinar el grado de diferenciación genética entre poblaciones de O. gliroides a lo largo de su rango de 8 distribución. En base a estos resultados, se seleccionaron dos poblaciones genéticamente distintas pero que ocurren en ambientes con distinta productividad primaria determinada por un gradiente de precipitación. En ambas poblaciones se evaluó la importancia de diferentes factores ecológicos, en particular, la distribución de recursos, riesgo de depredación y costos asociados a cavar madrigueras como predictores de la variación en el grado de sociabilidad dentro y entre poblaciones. 9 REFERENCIAS Alexander, R. D. 1974. The evolution of social behavior. Ann. Rev. Ecol. Syst. 5: 325-383. Altizer, S., Nunn, C. L., Thrall, P. H., Gittleman, J. L., Antonovics, J., Cunningham, A. A., Dobson, A. P., Ezenwa, V., Pedersen, A. B., Poss, M. & Pulliam, J. R. C. 2003. Social organization and parasiterisk in mammals: integrating theory and empirical studies. Annual Review of Ecology, Evolution and Systematics, 34: 517-547. Armitage, K.B. & Woods, B.C. 2003. Group hibernation does not reduce energetic costs of young yellow-bellied marmots. Physiological and Biochemical Zoology 76: 888–898. Arnold, K. E. & Owens, I.P.F. 1998. Cooperative breeding in birds a comparative test of the history hypothesis. Proc. R. Soc. Lond. B 265:739-745. Arnold, K. E. & Owens, I. P. F. 1999. Cooperative breeding in birds: the role of ecology. Behav. Ecol. 10: 465- 471. Avilés, L. & Tufiño, P. 1998. Colony size and individual Wtness in the social spider Anelosimus eximius. American Naturalist 152: 403–418. Barquez, R. M., Díaz, M. M. & Ojeda, R. 2006. Mamíferos de Argentina. Sistemática y Distribución. Sociedad Argentina para el Estudio de los Mamíferos (SAREM).Tucuman, Argentina. 359 pp. Bertram, B. C. R. 1978. Living in groups: predators and prey. In: Behavioural ecology: and evolutionary approach (Krebs, J. R. & Davies, N. B., eds). Blackwell Scientific Publications, Oxford, UK, pp. 64-96. Blumstein, D.T. & Armitage, K.B. 1998. Life history consequences of social complexity a comparative study of ground-dwelling sciurids. Behavioral Ecology 9: 8-19. Brashares, J. S. & Arcese, P. 2002. Role of forage, habitat and predation in the behavioural plasticity of a small African antelope. Journal of Animal Ecology, 71: 626-638. 10 Brown, C. R. & Brown, M. B. 1996. Coloniality in the Cliff Swallow: the Effect of Group Size on Social Behavior. University of Chicago Press, Chicago. Cahan, S. H, Blumstein, D. T., Sundström, L., Liebig, J. & Griffin, A. 2002. Social trajectories and the evolution of social behavior. Oikos 96: 206–216. Clutton-Brock, T. H. & Harvey, P. H. 1978. Mammals, resources and reproductive strategies. Nature 273: 191-195. Clutton-Brock, T. H., Gaynor, D., McIlrath, G. M., Maccoll, A. D., Kansky, R., Chadwick, P., Manser, M., Skinner, J. D. & Brotherton, P. N. M. 1999. Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. Journal of Animal Ecology 68: 672-683. Contreras, L.C., Torres-Mura, J. C. & Yánez., J.L. 1987. Biogeography of octodontid rodents: an eco-evolutionary hypothesis. In: Patterson B.D., Timm, R.E. (Eds.): Studies of Neotropical Mammalogy. Essays in honor of P. Herskovitz. Fieldiana, Zoology (new series). 39. Chicago Field Museum, Chicago, IL, pp. 401–411. Covas, R. & Griesser, M. 2007. Life history and the evolution of family living in birds. Proceedings of the Royal Society B. 274: 1349–1357 Ebensperger, L. A. 2001. A review of the evolutionary causes of rodent group-living. Acta Theriologica 46: 115-144. Ebensperger, L. A. & Cofré, H. 2001. On the evolution of group-living in the New World cursorial hystricognath rodents. Behavioral Ecology 12: 227-236. Ebensperger, L. A. & Hurtado, M. J. 2005. On the relationship between herbaceous cover and vigilance activity of degus (Octodon degus). Ecology 111: 593-608. Ebensperger, L. A. & Blumstein, D. T. 2006. Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behavioral Ecology 17:410-418. 11 Ebensperger, L..A., Sobrero, R., Campos V. & S.M. Giannoni. 2008. Activity, range areas, and nesting patterns in the viscacha rat, Octomys mimax: implications for its social organization. Journal of Arid Environments 72: 1174–1183. Ebensperger, L.A. & Hayes. L.D. 2008. On the dynamics of rodent social groups. Behavioural Processes 79: 85–92. Ebensperger, L. A., Castro, R. A., Sobrero, R., Quirici, V., Burger, J. R, Quispe, R., Villavicencio, C., Vásquez, R. A., Soto-Gamboa, M. & Hayes, L. D. 2012. Ecological drivers of groupliving in two populations of the communally rearing rodent, Octodon degus. Behavioral Ecology and Sociobiology 66: 261-274 Eisenberg, J. F. & Redford, K. H. 1999. Mammals of the Neotropics. The central Neotropics: Ecuador, Peru, Bolivia, Brasil. Vol. 3. The University of Chicago Press. Foster, S.A. & Endler, J. A. 1999. Geographic variation in Behavior: Perspectives on evolutionary mechanisms. Oxford University Press, Inc. NY. 308 pp. Fulk, G. W. 1976. Notes on the activity, reproduction, and social behavior of Octodon degus. J Mammal 57:495–505. Gallardo, M. H., Kausel, G., Jiménez, A., Bacquet, C., González, C., Figueroa, J., Köhler, N. & Ojeda, R. 2004. Whole‐genome duplications in South American desert rodents (Octodontidae). Biological Journal of the Linnean Society 82: 443-451. Gallardo, M. H., Ojeda, R. A., Gonzalez C. A. & Rios. C. A. 2007. The Octodontidae revised. Pp. 695-720 In: Kelt, D.A., E.P. Lessa, J.Salazar Bravo & J.L.Patton (eds). The Quintessential Naturalist: Honoring in Life and Legacy of Oliver P.Pearson. University of California Publications in Zoology 134:1- 981. Heg, D., Brouwer, L., Bachar, Z. & Taborsky, M. 2005. Large group size yields group stability in the cooperatively breeding cichlid Neolamprologus pulcher. Behaviour 142: 11-12. 12 Heinsohn, R. G. 1992. Cooperative enhancement of reproductive success in white-winged choughs. Evolutionary Ecology 6: 97–114. Hirth, D. H. 1977. Social behavior of white-tailed deer in relation to habitat. Wildlife Monographs. 33: 1-55 Honeycutt, R. L., Rowe, D. L. & Gallardo, M. H. 2003. Molecular systematics of the South American Caviomorph rodents: relationships among species and genera in the family Octodontidae. Molecular Phylogenetics and Evolution 26: 476-489. Isvaran, K. 2007. Intraspecific variation in group size in the blackbuck antelope: the roles of habitat structure and forage at different spatial scales. Oecologia 154: 435-444 Johnson, D. D., Baker, S., Morecroft, M. D. & Macdonald, D. W. 2001. Long-term resource variation and group size: a large-sample field test of the resource dispersion hypothesis. BMC Ecology 1: 2-2. Johnson, D. D. P., Kays, R., Blackwell, P. G. & MacDonald, W. 2002. Does the resource dispersion hypothesis explain group-living? Trends in Ecology and Evolution 17: 563-570. Krebs, J. R. & Davies, N. B. 1993: An introduction to behavioural ecology. Blackwell Scientific Publications, Oxford, UK. Kruuk, H. 1972. The spotted hyena: a study of predation and social behavior. Chicago, IL: University of Chicago Press. 335 pp. Lott, D. F. 1991. Intraespecific variation in the social systems of wild vertebrates. Cambriges University Press. Lacey, E. A. & Sherman, P. W. 1997. Cooperative breeding in naked mole rats: Implications for vertebrate and invertebrate sociality. In Cooperative breeding in mammals, ed. N. G. Solomon and J. A. French, 267–301. Cambridge: Cambridge University Press. 13 Lacey, E. A. 2000. Spatial and social systems of subterranean rodents. In Life underground: The biology of subterranean rodents, ed. E. A. Lacey, J. L. Patton, and G. N. Cameron, 257–96. Chicago: University of Chicago Press. Lambin, X. 1994. Natal philopatry, competition for resources, and inbreeding avoidance in Townsend’s voles (Microtus townsendii). Ecology 75: 224-235. Lessa, E.P, Vassallo, A. I., Verzi, D. H. & Mora, M. S. 2008. Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biological Journal of the Linnean Society 95: 267–283. Linklater, W. L. 2000. Adaptative explanation in social-ecology: lessons from the Equidae. Biol. Rev. 75: 1-20. Loehle, C. 1995. Social barriers to pathogen transmission in wild animal populations. Ecology 76: 326-335. Mares, M. A., Braun, J. K., Channell, R. 1997. Ecological observations on the octodontid rodent, Tympanoctomys barrerae, in Argentina. Southwestern Naturalist 42: 488–504. Maher, C. R. 1994. Pronghorn male spatial organisation: population differences in degree of nonterritoriality. Canadian Journal of Zoology 72: 455-464. Maher, C. R. & Burger, J. R. 2011. Intraspecific variation in space use, group size, and mating systems of caviomorph rodents. Journal of Mammalogy 92: 54-64. Mech, L.D. 1970. The wolf. Nat. Hist. Press (Doubleday): New York. 389 pp. www.wolf.org Mulder, R. A. 1995. Natal and breeding dispersal in a cooperative, extra-group mating bird. Journal of Avian Biology 26: 234-240. Nester, P. L., Gayó, E., Latorre, C., Jordan, T. E. & Blanco, N. 2007. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Sciences 104: 19724-19729. 14 Ojeda, R. A. & Tabeni, S. 2009. The mammals of the Monte Desert revisited. Journal of Arid Environments 73: 173- 181. Ojeda, A. A., Novillo, A., Ojeda, R. A. & Roig-Juñent, S. 2013. Geographical distribution and ecological diversification of South American octodontid rodents. Journal of Zoology 289: 285–293. doi: 10.1111/jzo.12008. Parrish, J. K., Hamner, W. M. & Prewitt, C. T. 1997. Introduction – From individuals to aggregations: unifying properties, global framework, and the holy grails of congregation. In: Animal groups in three dimensions (Parrish, J. K. & Hamner, W. M., eds). Cambridge University Press, Cambridge, UK. 1-13. Reddon, A. R., Balk, D. & Balshine, S. 2011. Sex differences in group-joining decisions in social fish. Animal Behaviour 82: 229-234. Redford, K.H. & Eisenberg, J.F. 1992. Mammals of the Neotropics Vol. 2: The Southern Cone. The University of Chicago Press. Chicago, IL., EUA. Reig, O. A. 1970. Ecological Notes on the Fossorial Octodont Rodent Spalacopus cyanus (Molina). Journal of mammalogy Vol. 51, No. 3, pp. 592-601 Reig, O. A. 1986. Diversity patterns and differentiation of High Andean Rodents. Pp. 404 - 439. In: Vuilleumier F. & M. Monasterio. High Altitude Tropical Biogeography. Oxford University Press. New York. Reise, D. & Gallardo, M. H.1989. An extraordinary occurrence of the tunduco Aconaemys fuscus (Waterhouse, 1841) (Rodentia, Octodontidae) in the central valley, Chillán, Chile. Medio Ambiente 10: 67-69. Roberts, G. 1996. Why individual vigilance declines as group size increases. Animal Behaviour 51: 1077-1086. 15 Rowe, D. L. & R. L. Honeycutt. 2002. Phylogenetic relationships, ecological correlates, and molecular evolution within the Cavioidea (Mammalia, Rodentia). Molecular Biology and Evolution 19: 263–77. Rowe, D. L., Dunn, K. A., Adkins, R. M. & Honeycutt, R. L. 2010. Molecular clocks keep dispersal hypotheses afloat: evidence for trans‐Atlantic rafting by rodents. Journal of Biogeography 37: 305-324. Santoro, C. M. & Latorre, C. 2009. Propuesta metodológica interdisciplinaria para poblamientos humanos Pleistoceno tardío/Holoceno temprano, precordillera de Arica, Desierto de Atacama Norte. Andes 7: 13-35. Seeley, T. D. 1989. The honey bee colony as a superorganism. American Scientis 77: 546–553 Schradin C., Pillay, N. & Solomon, N. G. 2005. Intraspecific variation in the spatial and social organization of the african striped mouse. Journal of Mammalogy 86: 99-107. Slobodchikoff, C. N. 1984. Resources and the evolution of social behavior. In A new ecology: novel approaches to interactive systems (Ed. By P. W. Price, C. N. Slobodchikoff & W. S. Gaud), pp. 227-251. New York, USA: John Wiley. Sobrero, R. 2013. Correlatos neuroanatómicos de la complejidad del hábitat y la vida social en roedores. Ph.D. thesis, Pontificia Universidad Católica de Chile. Spinks, A. C. & Plaganyi, E. E. 1999. Reduced starvation risks and habitat constraints promote cooperation in the common mole-rat, Cryptomys hottentotus hottentotus: a computersimulated foraging model. Oikos 435-444. Spinks, A. C., Bennett, N. C. & Jarvis, J. U. M. 2000.Comparative patterns of philopatry and dispersal in two common mole-rat populations: implications for the evolution of mole-rat sociality. Journal of Animal Ecology 69: 224-234. 16 Teta, P. & Ortiz P. E. 2002. Micromamíferos andinos Holocenicos del sitio arqueologico Inca Cueva 5, Jujuy, Argentina: Tafonomía, zoogeografía y reconstrucción paleoambiental. Estudios Geol 58: 117-135 Thierry, B., Iwaniuk, A. N. & Pellis, M. 2000. The influence of phylogeny on the social behavior of macaques (Primates: Cercopithecidae, genus Macaca). Ethology 106: 713-728 Travis, S. E., Slobodchikoff C. N. and Keim P. 1995. Ecological and demographic effects on intraspecific variation in the social system of prairie dogs. Ecology 76: 1794-1803. Van Schaik, C.P. & van Noordwijk, M. A. 1985. Evolutionary Effect of the Absence of Felids on the Social Organization of the Macaques on the Island of Simeulue (Macaca fascicularis fusca, Miller 1903) Folia Primatol 44: 138-147 Verdolin, J. L. 2009. Gunnison’s praire dog (Cynomys gunnisoni): testing the resource dispersion hypothesis. Behavioral Ecology and Sociabiology, 63: 789-799. Verzi, D.H. 2001. Phylogenetic position of Abalosia and the evolution of the extant Octodontinae (Rodentia, Caviomorpha, Octodontidae). Acta Theriologica 46: 243-268. Wey T, Blumstein, D.T., Shen, W. & Jorda, F. 2008. Social network analysis of animal behaviour: a promising tool for the study of sociality. Animal Behaviour 75: 333-344. 17 CAPITULO I Phylogeography and genetic structure of the Andean degu, Octodontomys gliroides (Rodentia: Octodontidae) Daniela S. Rivera1 *Juliana A. Vianna2Luis A. Ebensperger1and R. Eduardo Palma1 18 To be summited to Journal of Evolutionary Biology Phylogeography and genetic structure of the Andean degu, Octodontomys gliroides (Rodentia: Octodontidae) Daniela S. Rivera1 * Juliana A. Vianna2 Luis A. Ebensperger1 and R. Eduardo Palma1 1 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile 2 Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile Short title: Phylogeography of Octodontomys gliroides *Correspondence: Address: Daniela S Rivera, Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago. Chile. Phone: (56-2) 686 2950 Email: [email protected] 19 Abstract The Andean degu, Octodontomys gliroides constitutes the only species of the family Octodontidae inhabiting pre-Andean Prepuna and Puna environments of tropical South America. To gain insights into its phylogenetic relationships, phylogeographic patterns, and origin, 21 populations of O. gliroides across its entire distributional range were studied through a 579-bp fragment of the mitochondrial DNA control region. We evaluated the intraspecific genealogy, the population structure, the demographic history as well as the reconstruction of the ancestral distributionof the species, by means of different Likelihood, Bayesian, Network and Statistical Dispersal-Vicariance analyses.Our results showed that O. gliroides is characterized by a geographical structure, which is in agreement with major geographical barriers (e.g., rivers, salt flats, deserts and mountain systems). The haplotype network analysis inferred three haplogroups along the distribution of O. gliroides, the same that were corroborated by the population structure analysis. The mismatch distributions and neutrality test along with Bayesian Skyline Plots suggested contrasting histories for different cluster of populations, with some cluster showing demographic stability and no significant departures from neutrality. Others were fitted more with a contraction-expansion model coincident with dry-wet events during Pleistocene. Finally, we suggest that one possible ancestral area in the diversification of O. gliroides populations which includes the Andean Puna-Prepuna ecoregion. Keywords: Andean degu; Octodontomys gliroides; historical demography; phylogeography; Andean Puna- Prepuna. 20 INTRODUCTION Octodontidae (degus, cururos, viscacha rats) is an endemic family of Hystricognath rodents distributed along South America (Reig, 1981; Mares & Ojeda, 1982). Interestingly, these rodents include species that are ecologically diverse, includingcursorial, rock-dwelling, semi-subterranean and truly subterranean forms (Lacey & Ebensperger, 2007), that occur in a wide array of habitats.They also show variation in social behavior with species ranging from solitary-living to highly gregarious species (Mares & Ojeda, 1982; Reig, 1986; Contreras et al., 1987; Lacey & Ebensperger, 2007). Octodontid rodents represent one of the most characteristic groups in the arid lands of southern South America (Ojeda, 2010), ranging along both sides of the Andes in Argentina, Bolivia and Chile between 15° and 40°S (Ojeda et al., 2013). Within this narrow geographical range, the Octodontidae occurs in a great array of habitats, including coastal areas in central Chile, pre-Andean and Andean regions, desert and semi-desert scrublands, and extremely arid salt flats (Contreras et al., 1987; Mares & Ojeda, 1982; Redford & Eisenberg, 1992; Gallardo et al., 2007). Living Octodontidae contains 13 recognized species (Woods & Kilpatrick, 2005) assigned to six monotypic and two polytypic genera (Ojeda et al., 2013). Eight of the 13 species occur exclusively in the Andes of Chile, while four of them inhabit extremely arid salt flats in Argentina and a single species (Octodontomys gliroides) occupies simultaneously the Andean region of northern Argentina and Chile, and central-southern Bolivia (Contreras et al., 1987; Ojeda et al., 2013). O. gliroides (the Andean degu) is the only octodontid living in tropical South America, in environments with contrasting climatic and geographical characteristics, ranging from the north mesic Puna in Bolivia, to the northern boundary of the Atacama 21 Desert in Chile (Ojeda et al., 2000). The current geographical distribution of O. gliroides matches with a rainfall gradient from east to west created by the rain shadow effect of the Andes. While, the Quaternary history of the rest of octodontids has been punctuated by a sequence of glacial advances and retreats that resulted in extreme environmental changes from Andean Puna to Tierra del Fuego (Verzi et al., 2002; Verzi & Quintana, 2005; Gallardo et al., 2013), recent evidence suggests that actual distribution of O. gliroides could be associated to a complex history of dry-wet periods during the Pleistocene-Holocene in the central Andean Puna (Nester et al., 2007; Placzek et al., 2011). In particular, because extensive flood cycles in the last 0.02 Mya produced large paleo-lakes that divided the western and eastern sides of Andean Puna (Placzek et al., 2013), affecting the local climate on this region, which in turn affected the distribution of vegetation. How these changes in climate and connectivity in the Andean Puna have affected the current distribution of populations and phylogeographic history of O. gliroides, it has never been evaluated. To clarify aspects of population differentiation it is critical to elucidate the historical and geographical context in which the evolution of the O. gliroides took place. Phylogeography is an excellent approach to gain further insights to investigate the historical factors that have shaped current diversity patterns and to document the evolution and biogeography of this unique species. Therefore, in the present study, we examine the genetic structure and phylogeographic patterns of O. gliroides. To achieve this objective, we sequenced the mitochondrial DNA (mtDNA) control region from specimens of this species across its entire distributional range. We used the latter mtDNA marker because it does have a number of advantages such as the lacking of recombination (Avise, 2000; Rokas et al., 2003), its maternally inherited property, and it does a lower effective population size compared to nuclear markers. Therefore it takes less time for 22 polymorphisms to become fixed in a population and evolves relatively fast which allows greater resolution at intra-specific scale (Brown et al., 1979; Moore, 1995; Avise, 2000). In addition, we analyzed the biogeographic history that shaped the current distribution of living populations of O. gliroides, to propose a potential scenario for inferring the past environment in which O. gliroides evolved. METHODS Study area and sample collections Specimens were collected in the field from 11 localities along the entire range of the species across northern, central and southern Bolivia. Skulls, skins and tissues from Bolivia localities were deposited at the collection of the Colección Boliviana de Fauna, La Paz, Bolivia and the Museo de Historia Natural Alcides d’Orbigny, Cochabamba, Bolivia. This study followed the American Society of Mammalogists guidelines (Animal Care and Use Committee, 1998; Gannon et al., 2007; Sikes et al., 2011) and adhered to Bolivian and Chilean laws (permit number MMAyA-VMA-DGBAP N 0937/11 by the Dirección General de Biodiversidad y Áreas Protegidas, and by the authorization number 1-62-2012 [2373] by the ServicioAgrícola y Ganadero, Chile). All procedures that involved handling of live animals were approved by the Bioethic Committee of the Faculty of Biological Sciences at Pontificia Universidad Católica de Chile (CBB-040-2011). Additionally, to optimize the number of samples and cover the full geographic range of the species, tissues and/or skin were requested from Collections and Museums of Argentina (Museo de Ciencias Naturales y Tradicional de Mar del Plata "Lorenzo Scaglia"; Colección de Mamíferos del Instituto Argentino de Investigaciones de zonas Áridas , IADIZA and Catálogo de campo de Jorge Pablo Jayat), Chile (Colección de Flora y Fauna Profesor 23 Patricio Sánchez Reyes, Pontificia Universidad Católica de Chile and Instituto de Ecología y Evolución, Universidad Austral de Chile) and the United States (Field Museum of Natural History, Chicago, Illinois and the Sam Noble Oklahoma Museum of Natural History, The University of Oklahoma). All samples are listed and documented in Table 1. Extraction of DNA, amplification, and sequencing Genomic DNA extractions were performed using the phenol-chloroform method (Sambrook et al., 1989). An 800-base pair (bp) fragment of the mitochondrial DNA control region (CR) was amplified by the polymerase chain reaction technique (PCR) from 97 individuals using primers FVAL (5’ GAA AAC AAA CTC CTC AAA TGA AG 3’) – and H191 (5’ ATT ATG CGG GCT AAG GGA ACT G 3’), designed to amplify the same mtDNA region for the sister species of O. gliroides, Tympanoctomys barrerae (Ojeda, 2010) and Octodon degus (Valladares, 2009), respectively. Amplifications were performed using a thermal cycler (Applied Biosystems 2720) with the following parameters: initial denaturation at 94°C for 3 minutes; 30 cycles of 45 s at 94°C; 1 minute at 50°C; 1 minute at 72°C and a final extension for 5 minutes at 72°C. All amplifications, including positive and negative controls were checked in a 2% agarose gelwith TAE buffer, using the proper molecular weight ladder and gels were visualized in a UV transiluminator. Double-stranded PCR products were purified with Wizard SV gel Gel and PCR Clean-Up System (Promega). All PCR products weresequenced by Macrogen Inc. (Seoul, South Korea; www.macrogen.com). 24 Sequence analyses Sequences were aligned manually using CodonCode Aligner v. 1.5.1 (Codon Code Corporation, Dedham, MA) and collapsed into haplotypes using the FaBox package (Villesen, 2007) (http://users-birc.au.dk/biopv/php/fabox/). Analyses were performed across populations, which corresponded to:, (Llacasa, Bo1; Eucaliptus, Bo2; Villa Ventilla, Bo3; Jirira, Bo4; Hara, Bo5; Castilluma, Bo6; Uyuni, Bo7; Oploca, Bo8; Tupiza, Bo9; Villa Abecia, Bo10; Cieneguillas, Bo11; Iscayachi, Bo12; Putre-Murmutani, Ch1; PutreChungará, Ch2; Camiña-Chusmiza, Ch3; Chusmiza, Ch4; Pucara del Tilcara, Ar1; Susques, Ar2; San Antonio de los Cobres, Ar3; Santa Victoria, Ar4; and Cachi, Ar5, see Fig. 1). Analyses were also performed across two major ecogeographic ecoregions: the Andean Puna and the Andean Prepuna (Table 1). For the subdivision into ecoregions the elevation was taken into consideration. In this way, for the Andean Puna we considered elevations between 3400 and 4500 m (Cabrera, 1957; 1968; Cabrera & Willink, 1973; Fernández & Busso, 1999; Aagesen et al., 2009), whereas for the Andean Prepuna we considered altitudes of 2000 to 3400 m (Cabrera & Willink, 1973; López & Beck, 2002; López et al., 2006; Aagesen et al., 2009). Additionally, we followed to Beck, (1985); Cabrera, (1968); Davis et al., (1997); Ortuño et al., (2011) and subdivided the Andean Puna considering the rainfall gradient from north to south and from east to west of Andes into: Northern Puna or Moist Puna, Central Puna and Southern Puna or Dry Puna (Table 1). A single sequence for each haplotype was used for further phylogenetic analyses. The output from FaBox was then used as the input file for the DnaSP v5.0 program (Librado & Rozas, 2009) and for ARLEQUIN (Excoffier et al., 2005) to estimate levels of genetic diversity, including numbers of haplotypes (H), haplotype diversity (Hd), nucleotide diversity (π) and the number of polymorphic sites (PS). At this point, we 25 combined different sampling localities based on geographic proximity, similarity of habitats and sample sizes (Table 1). Population Genetic Analyses To evaluate the presence of population structure for O. gliroides, we used the program GENELAND v.4.0.3 (Guillot et al., 2005a, b) in the R-Package, a Bayesian approach which estimates the number of classes (genetic clusters) present in the data set and incorporates the geographical coordinates of the individuals to detect and locate genetic discontinuities (Guillot et al., 2005a). The number of clusters was determined by running MCMC (Markov chain Monte Carlo) iterations five times, allowing K (i.e., the most probable number of populations) to vary, with the following parameters: 5 × 106 MCMC iterations, maximum rate of the Poisson process fixed to 100 (equal to sample size as recommended by Guillot et al., 2005a). The minimum K fixed to 1 and maximum K fixed to 10, the maximum number of nuclei in the Poisson-Voronoi tessellation was fixed to 300 (roughly three times the sample size as suggested by Guillot et al., 2005a). After inferring the number of populations in the data set from these five runs, the MCMC was run 30 times with K fixed to the inferred number of clusters, with the other parameters the same as above. We ranked the models by mean logarithm of posterior probability and conducted post-processing analyses for the three runs with the highest values. We used a burn-in period of 1000 x 100 iterations, a spatial domain of 400 pixels along the X-axis and 200 pixels along the Y-axis and checked the runs visually for consistency. Relationship between haplotypes and geography in order to infer the historical processes that shaped the sample populations were examined in a haplotype network. The network was built using the median-joining approach implemented in Network 4.6.1.1 26 software (http://www.fluxus-technology.com), with all characters weighted equally. The median-joining method uses a maximum parsimony (MP) approach to search for the shortest phylogenetic trees (Bandelt et al., 1999). MP is particularly suitable for interpreting intraspecific phylogenies because they explicitly allow for the co-existence of ancestral and descendant haplotypes in a sample (Posada & Crandall, 2001). Historical Demography and Biogeographic Analysis Sudden demographic history of expansion (Rogers & Harpending, 1992) and spatial expansion (Excoffier 2004) models of the resulting GENELAND cluster analysis were fitted to the observed mismatch distribution using 1000 bootstrap and the sum of square deviations (SSD) between observed mismatch distribution and simulated data as a test statistic (i.e., test of goodness of fit; Schneider & Excoffier, 1999; Excoffier, 2004) implemented in ARLEQUIN software (Excoffier & Lischer 2010). This analysis assumes that signatures in the distribution of pairwise nucleotide differences result from episodes of population growth and decline. Thus, when a population has undergone sudden demographic expansion, it should display an unimodal and smooth distribution, whereas a population that either is subdivided or in demographic equilibrium is expected to exhibit a multimodal or random and rough distribution (Rogers & Harpending, 1992). Tajima’s D neutrality statistic (Tajima, 1989) and Fu’s FS values (Fu, 1997) were calculated to detect deviations from a neutral Wright-Fisher model of mutation-drift equilibrium. These neutrality tests assume that the population has been in mutation-drift balance for a long period of evolutionary time (Nei & Kumar, 2000). When the population is not under mutation-drift equilibrium due to sudden expansion, these indexes tend to have significantly negative values and an excess of polymorphisms at low frequency can be 27 expected. By contrast, positive values reflect the elimination of rare alleles after genetic bottlenecks (Ramos-Onsins & Rozas, 2002). Although D, Fs and mismatch distributions are able to provide insights into whether or not population growth has been expansive, they are not able to provide information about the shape of population growth over time. For example, a no significant negative values of D and Fs should indicate that populations have not undergone expansive growth (i.e., population stability). However, such values are agnostic as to whether population are expanding slowly, are contracting or remaining relatively constant size (Fontanella et al., 2008). Therefore, to estimate the shape of population growth through time we constructed a Bayesian Skyline Plot (BSP) as implemented in the software BEAST v 1.7.4 (Drummond & Rambaut, 2007). This Bayesian approach incorporates the uncertainty in the genealogy by using Markov chain Monte Carlo integration under a coalescent model, providing information about effective population sizes through time (Drummond et al., 2005). The best-fit substitution model for each cluster was estimated in MODELGENERATOR 0.85 (Keane et al., 2006). BSP was performed for each of the clusters recovered with GENELAND. The running conditions include 3.0 x 107 iterations, of which the model parameters were sampled every 1000 steps under a relaxed lognormal molecular clock with a fixed rate calibration and uniformly distributed priors. The first 10% of the steps were discarded to allow for burn-in. To assess the robustness of parameter estimates, 2 independent chains were run with identical settings. Log-files were visualized using Tracer v1.5 (Drummond & Rambaut, 2007). If population sizes are constant through time then the slope of skyline plot should not be significantly different than zero. 28 Divergence time In order to estimate divergence we used a Bayesian analysis in BEAST 2.0.2 (Drummond & Rambaut, 2007). This software relies on a Bayesian Markov chain Monte Carlo (MCMC) method to infer a relaxed phylogenetic topology that allows us to co-estimate phylogeny and divergence times (Drummond et al., 2006). Because no fossils or reliable geological evidence were available to calibrate a local molecular clock for populations of Octodontomys we used external calibrations of that put the origin of crown Octodontidae dates back to the late Miocene: 9 (6.7, 11.6) Mya. And we follow Opazo (2005) estimations that put the divergence of O. gliroides and Octodon + Spalacopus + Aconaemys genera have occurred around 6.07 ± 1.3 Mya. As outgroups we used mtDNA control region sequences from seven species of the family Octodontidae from GenBank: Aconaemys fuscus (AY836575); Octodon degus (GQ168717); Octomys mimax (GQ168718); Spalacopus cyanus (AY836572) and Tympanoctomys barrerae (GQ168701), and other sequenced by us: Octodon lunatus and Pipanacoctomys aureus. Phylogenetic estimates were constructed using the best-fitting model selected using the AIC criterion implemented in MODELGENERATOR 0.85 (Keane et al., 2006). To estimate the mutation rate, an uncorrelated lognormal relaxed molecular clock model was used to allow rate variation among branches (Drummond et al., 2006) and the Yule speciation process which is more appropriate when considering sequences from different species (Drummond & Rambaut, 2007). Both normal prior calibrations had a mean of 9.0, with standard deviations of 1.4 for the first calibration of Upham & Patterson (2012) and 6.04 and 0.6 for the second calibration of Opazo (2005). Analyses were run for 2 x 107 generations, with parameters logged every 1000 generations following a pre burn-in of 5000 generations. Multiple runs were conducted to check for stationarity and that independent runs were converging on a 29 similar result. Output from BEAST was examined in Tracer 1.5 with 10% burn-in and the tree results were summarized using TreeAnnotator 1.7 (included in the BEAST package). The tree was visualized using FIGTREE 1.3.1 (Rambaut, 2010). Biogeographic Analysis To reconstruct ancestral area distributions we performed a Statistical Dispersal-Vicariance Analysis (S-DIVA) analysis implemented in the program RASP (Reconstruct Ancestral State in Phylogenies) 2.1 alpha (Yu et al., 2010; 2011). For this, the combined output from three BEAST runs (62499 trees) served as the input file. To account for uncertainties in phylogeny, we used all of the post burn-in trees obtained with BEAST for the combined dataset. Distribution areas of sister species of O. gliroides were assigned to geographical region as defined by Ojeda et al., (2013). For population of O. gliroides we distinguish between two major phytogeographic ecoregions: Andean Puna and Andean Prepuna. The number of maximum areas allowed at the nodes was kept as either three or two whereas outgroups distributions were not considered. Ten Markov chains were run with the default setting for 5 x 105 generations, sampling every 100 generations and discarding a bur-in of 100 samples. RESULTS Mitochondrial DNA Sequence Variation Amplification and sequencing of the mtDNA control region yielded a minimal consensus of 579 bp for 101 individuals of O. gliroides. Sequences comparisons yielded a total of 24 variable sites including 3 singletons and 21 parsimony informative sites, which determined 27 haplotypes (Table 2, Fig. 1). The CR mtDNA sequences of O. gliroides showed a 30 pattern of high haplotype diversity (0.921 ± 0.01) but moderate nucleotide diversity (π) (0.0059 ± 0.0005, Table 2). At the population level, the highest estimates haplotype and nucleotide diversity were found in combination of population Bo11 and Bo12 (CI) and Ar1 and Ar4 (ArgN) whereas the lowest values of haplotype and nucleotide diversity was found in Bo5 and Bo1 populations respectively (Table 2). Five populations, Bo4, Bo6, Bo9, Ch1 and Ch2, were invariant (Table 2). Among subdivisions into phytogeographic regions the Andean Prepuna presented the lowest values of haplotype diversity, whereas Andean Puna showed the highest value of nucleotide diversity (Table 2). Most of the 27 haplotypes were restricted to a single phytogeographic ecoregion (81% private haplotypes); only five haplotypes (H3, H6, H8, H9 and H10) were shared among two or more region. The most widely distributed haplotypes in the entire sample were H3, H8 and H10. H3 was restricted to Andean Puna at Bolivia and Chile (Central and Southern Puna) and Andean Prepuna at Chile. H8 also vas restricted to Andean Puna occurring in both Central and Southern Puna. H10 was present in three regions and was restricted principally at Andean Prepuna and in a low proportion at Andean Puna (Central and Southern Puna). The Median-joining network topology generated three geographically wellstructured haplogroups among the entire range of O. gliroides distribution (Fig. 2). Only haplogroup III, which contains sequences from Argentina and only a sequence of southern Bolivia are clearly isolated and separated by a six mutational steps from the rest of haplogroups. Haplogroups I and II were separated only by one mutation step, with a single shared haplotype (H20). Two of the most widely distributed haplotype (H3 and H10) were found in haplogroup I, whereas H8 was found in haplogroup II. Our results did not illustrate a clear phytogeographic region separation indicated the existence of admixture haplotypes in this level between all of the three haplotype groups (Fig. 2). 31 Along with this, the population structure for O. gliroides estimated by the GENELAND program inferred three most probable genetic clusters (k = 3, Fig. 3a), that were congruent with the network analysis in recognizing the same three major groups. Although haplogroup I and II was only separated by one mutational step, and also we identified one shared haplotype between both groups the GENELAND analysis appaeared to confirm the separation of these groups. Cluster I (haplogroup I) comprised all samples from northern Chile (Ch1 to Ch4), central and southern Bolivia (Bo6, Bo7, Bo8, Bo9, Bo10 and Bo12) and the northernmost population of Argentina (Ar4, Fig. 3b). The second cluster (haplogroup II) joined sequences representing the northernmost population of Bolivia (Bo1) and four populations from central Bolivia (Bo2, Bo3, Bo4 and B5, Fig. 3c). The third cluster (haplogroup III) comprised the four southernmost populations from Argentina (Ar1, Ar2, Ar3 and Ar5) and one population of southern of Bolivia (Bo11, Fig. 3d). Similarly to network topology, GENELAND analysisi did not illustrate a clear phytogeographic region separation. Population demographic history Neutrality test were performed to detect evidence of population growth expansion. Results for the entire sample Fu´s Fs test of neutrality was statistically negative (Fs = -11.93, P = 0.001), suggesting a demographic range expansion process. In contrast, the Tajima´s D- test did not reveal a signal of demographic range expansion for entire samples level. At the haplotype group level, we found a signal of population range expansion only in haplogroups I and III (Fs = -5.78, P = 0.003 and Fs = -3.027, P = 0.012). Similarly, signals of population expansion were not detected in any of all three haplogroups using Tajima’s D-test (Table 3). The discrepancy between D and Fs test is likely due to the decreased 32 statistical power of D in detecting significant changes in population sizes (Ramos-Onsins & Rozas, 2002). These results suggest that the historical demographic processes of range expansion for some areas differed within the distribution of O. gliroides. We found signals of stability only for haplogroup II. The mismatch distribution of pairwise nucleotide differences for all entire sample level and for each haplogroups was roughly multimodal (Fig. 4 left) and we did not found departures from an equilibrium model (Table 3), suggesting constant population size or structuring or stable or shrinking population. Similarly, mismatch distributions for each cluster no showed evidence of sudden expansion model (see pSSD and pSSD* in table 3). Finally the Bayesian skyline plots (BSP) suggested relatively stable population size for all entire sample level and for each haplogroup over the last (0.1 – 0.3 Mya). Congruent with the mismatch analyses, BSP for all entire sample level showed an increase in the effective population size starting about 0.03 Mya (Fig. 4b), about 0.025 Mya for the cluster I and III (although the pattern is not very clear for the latter, Fig 4d, h respectively). After this population expansion, a recent decrease of Ne occurred when all cluster are considered (Fig. 4b) and in a low proportion in cluster I (Fig. 4d). This pattern of expansion was not evident in cluster II (Fig. 4f). Clade-dating Divergence dating indicates that the genus Octodon split up from the O. gliroides during Early Pliocene approximately 4.70 Mya (95% CI = 3.18-6.28 Mya). The most recent common ancestor for the main lineages of O. gliroides was estimated to live during Early Pleistocene around 2.43 Mya (95% CI = 0.98-4.03 Mya). the divergence estimations 33 obtained for the remaining lineages, suggested that thye appeared during the Middle Pleistocene (Fig. 5) Biogeographic Analysis Reconstruction of ancestral biogeography using S-DIVA analysis implemented in RASP suggests one possible ancestral area for the most recent common ancestor of Octodontomys population (node 48 in Fig. 7) which includes Andean Puna-Prepuna ecoregions (AB) with a support value of 100%. This analysis also showed that dispersal had more influence on lineage diversification than vicariance (17 events compared to 7, Fig. 6). DISCUSSION Haplotype and nucleotide diversity This study is the first to assess the phylogeography of unknown Andean degu over its entire range distribution yielding important insights into the evolutionary history of this species. The network topology and GENELAND analyses showed that O. gliroides is characterized by geographical subdivision of variation in mtDNA. This translates into three well resolved haplotype groups or clusters along O. gliroides entire range distribution: haplogroup I comprises populations from northern slopes of the Chile Andean Puna, Andean Puna and Prepuna population from southern Bolivia and northernmost Andean Prepuna population of Argentina. Haplogroup II is formed by northern and central Andean Puna and Prepuna populations of Bolivia. Finally the third group comprises populations of Argentina Andean Puna and Prepuna and one Andean Prepuna population of southern Bolivia. 34 All of three genetic haplogroups are in agreement with the major barriers present in the area (i.e., major rivers, salt flats, the Atacama Desert and orogeny formations of the Andes in Bolivia), and have been associated with strong level of genetic differentiation (Fig. 7). The Andean Puna is flanked by high mountains in East Andes Cordillera and by West Andes Cordillera (Fernández & Buso, 1999). These geographic barriers determine that lacustrine and rivers system conform an extensive endorheic basin constituted for Titicaca and Poopo lakes and Coipasa and Uyuni salt flats. Mayor rivers connecting lakes and salt flats are Desaguadero and Lacajahuira (Fig.7). The Titicaca and Poopo lakes are connected by Desaguadero River that flowing permanently, meanwhile, Lacajahuira River connect Poopo Lake with Coipasa salt flat. These two rivers are permanents with large increase in caudal during wet season in austral summer (Roche et al., 1991) and constituted the principal barrier between cluster II and I (Fig. 7). A critical characteristic of these two Andean rivers is the large river-floodplain systems that which advance parallel to the river, in particular, in Desaguadero River that undergoes strong floods when water level increases in Titicaca Lake and floodplain has around 1km of width. Floodplain is constituted by large sand deposits without vegetation, locally known as “arenales”. Therefore these river systems separate the populations of haplogroup II (the northernmost and central Andean Puna population at Bolivia) from haplogroup I (Andean Puna and Prepuna at northern Chile and southern Bolivia populations). On the other hand, the San Juan River originate in high mountains near to Jujuy, Argentina, and flows from northern Argentina to south-west Bolivia through varied environments is the principal barrier that separated Argentina populations of haplogroup III from central and southern Bolivia populations (Fig. 7).The San Juan River is the larger river in the East Andes and is the principal tributary of Pilcomayo River. Additionally, Argentina populations are separated from the Chilean group 35 by presence of the Atacama Desert and also by the high mountain range (more than 4800 m) found in the border to Chile and Argentina (Fig. 7). Another potential barrier is the mountain range of The Cordillera de los Frailes which borders Poopó Lake in the northwest and extends to south in the northeast of the department of Potosi (Montes de Oca, 2005). Our analyses of genetic diversity showed that that O. gliroides has high haplotype diversity for all of three clusters, but low nucleotide diversity for each of the clusters, suggesting recent differentiation with rapid population growth (Grant & Bowen, 1998). This is particularly true for haplogroup III where we obtained the highest haplotype diversity and in haplogroup II where we recovered the lowest nucleotide diversity. A similar pattern of nucleotide and haplotype diversity has been reported for population of Octodon degus (Valladares, 2009), Spalacopus cyanus (Opazo, 2008) and Tymapnoctomys barrerae (Gallardo et al., 2013). This pattern of genetic variability suggests population growth following a period of decrease of effective population size (Grant & Bowen, 1998; Avise, 2000; Cope, 2004). Low genetic divergence among most of O. gliroides populations (i.e., low values of nucleotide diversity among haplotypes) suggests that colonization into recently available ranges occurred rapidly (Grant & Bowen, 1998; Palma et al., 2012). Our analyses consistently show a history of long-term demographic stability for O. gliroides in most of its current distributional range. Neutrality tests indicated that the demographic histories of some areas differed, suggesting that O. gliroides have experimented different demographic events in recent past. In this way, the roughly multimodal mismatch distribution for all entire sample level and haplogroup I (Fig. 4b, d) suggested sudden expansion events. Our analyses of the Fu’s Fs test are consistent with this scenario. BSP analyses for all entire sample level and all of three haplogroups showed that the effective population sizes of O. gliroides seem to have remained constant until a recent increase in 36 population size between 0.03 Mya for the all entire sample level and a more recent expansion period (approximately 0.025 Mya) for haplogroup I. We also found a signal of population range expansion for group III (statistical significant values for the Fu’s Fs test), however while BSP analysis suggests slightly evidence of recent expansion (Fig. 4h) this pattern is not clear probably due to the limited sample size. Our results are in agreement with evidence of other octodontids: Valladares, (2009) and Gallardo et al., (2013) found a similar evidence of recent population expansion in Octodon degus and Tympanoctomys barrerae respectively. Biogeographic scenario Knowledge about the major climatic changes that occurred at the Andean Puna region during Pleistocene wet-dry events (Placzek et al., 2009) may help understand the pattern of demographic expansion occurred in population of O. gliroides. At least three major events associated with dramatic changes in precipitation have been reported for the Andean Puna during the last 0.12 Mya (Risacher & Fritz, 2000; Placzek et al., 2011), which have been associated to important modification of the biota of the area (Placzek et al., 2009) and the primary habitat for O. gliroides. During this period, climatic oscillations contributed to formation of large paleo-lakes that covered endorheic basin of Titicaca and Poopo lakes and Coipasa and Uyuni salt flats (Placzek et al., 2009). Potential causes that be argument for explain this climate changes are attributed to potential role of interannual and millenial scale variability of tropical Pacific sea-surface temperature gradients (Garreaud et al., 2003; Cane, 2005), and recently Plazcek et al., (2013) suggested a critical role of the North Atlantic sea-surface temperature on moisture arriving to Central Andean Puna. The first maximum pale-lake expansion denominated Ouki-Salinas started around 0.12 Mya and 37 ended about 0.08 Mya (Placzek et al., 2013), with ca 80 m of deep (Placzek et al., 2009). After this prorogated period, the lake retreated and the Andean Puna environments were relatively dry and cold during the next 0.04 Mya (Placzek et al., 2006). Posterior, a new shorter wet period took place around 0.02 Mya with formation of the Tauca lake cycle that reached a maximum around 0.015 Mya and resulting in the deepest (ca. 140 m) and largest lake in the basin over the past 0.12 Mya (Placzek et al., 2009). The last period known as the Coipasa lake cycle with ages between 0.013 and 0.011 Mya (Placzek et al., 2006), together, both Tauca and Coipasa lake cycles as referred as the Central Andean Pluvial Event (CAPE) (Quade et al., 2008). Our results support the above biogeographic scenario with relatively stable population size for all clades during the Ouki lake cycles, and a posterior moderate population growth starting around 0.04 Mya in accordance with the drier wet stable period. After this population expansion a relatively recent decrease of population size occurred during CAPE phase (approximately 0.015 Mya). This pattern of expansion and recent decrease was evident only when we considered all three clusters (all entire sample level) and for cluster I. Interestingly, expansion on populations coincides with the inter-lake time (0.08 to 0.025 years) that was the longest period of dry conditions in Andean Puna in last 1.3 Mya (Placzek et al., 2013). Past hydrologic change recorded in two sediment cores (Fornary et al., 2004; Chepstow-Lusty et al., 2005) evidence an increase in vegetation species with presence of Polylepis/Acaena pollen, high abundance of Asteraceae, Chenopodiaceae, Cyperaceae, Myriophyllum and Pediastrum inter alia during this period. 38 Divergence-date estimates Calibration estimates derived from mtDNA control region suggest that the most recent common ancestor between O. gliroides and genus Octodon took place during that the mid Pliocene (4.7 Mya, range 3.18 to 7.22 Mya), whereas the origin of Andean degu is estimated to have occurred at approximately 2.43 Mya. In general, our divergence estimates are slightly earlier than the estimate calculated by Upham & Patterson (2012) in Octodontoidea, using growth hormone receptor and 12S rRNA markers. They are slightly later than estimations reported by Opazo (2005) and are consistent with values reported by Rowe et al., (2010). Ancestral biogeographic reconstruction The contemporary genetic population structure can be strongly influenced by both their history and current ecological conditions (Shaikano et al., 2012). Based on our analysis of optimal S-DIVA reconstruction for the history of O. gliroides we proposed that Andean Puna-Prepuna region as the most likely ancestral area for where Andean degu diversified (node 48, Fig. 7). Our geographical reconstruction of the ancestral area of Andean degu is consistent with reconstruction of ancestral area for South America octodontid rodents (Ojeda et al., 2013). These authors suggested an ambiguous ancestral area for the clade containing Andean degu and Chilean octodontid species: High Monte or “protopuna”, Valdivian Temperate Forest, Central Andean Puna and Central Andean Dry Puna. Given O. gliroides extends its distribution to pre-Andean Prepuna and Puna habitats in northern Argentina, southern Bolivia and north-east Chile (Contreras et al., 1987), and also because the adaptation for arid environment had been proposal for occurred early in the Octodontidae (Honeycutt et al., 2003), we propose that ancestral forms of O. gliroides 39 evolved in aridlands with posterior colonization and diversification to more mesic environments. 40 ACKNOWLEDGMENTS We thank G. Villanueva, H. Villca, M. Orellana and A. Coca for their assistance during data collection. DSR is extremely thankful to F. Alfaro for his continuously assistance. We thanks to R. Ojeda, A. Ojeda, P. Jayat, D. Flores and R. Sobrero for provided tissue samples. We also want to thank the following institutions who collaborated with the shipping and loan of tissue and skin samples: Field Museum of Natural History, Sam Noble Oklahoma Museum of Natural History Instituto de Ecología y Evolución, Universidad Austral de Chile, Colección de Flora y Fauna Profesor Patricio Sánchez Reyes, P. Universidad Católica de Chile, Museo de Ciencias Naturales y Tradicional de Mar del Plata "Lorenzo Scaglia", Mar del Plata and Colección de Mamíferos del Instituto Argentino de Investigaciones de zonas Áridas (IADIZA). DSR is really thankful to personal of Laboratory of Evolutionary Biology of prof. E. Palma and M. Manzano for their laboratory assistance. DSR is also thankful to A. Parada for his assistance with molecular analysis. We thank the Dirección General de Biodiversidad, Bolivia and Servicio Agrícola y Ganadero, Chile for permission to work and capture specimens in Bolivia and Chile respectively. The Centro de Biodiversidad y Genética- Universidad Mayor de San Simón and Laboratorio de Ecología Conductual, Departamento de Ecología-Pontificia Universidad Católica provided traps and field equipment. DSR was supported by the Organización de los Estados Americanos (OEA), Comisión Nacional Científica y Tecnológica (CONICYT), Vicerrectoría de Investigación and Dirección de Investigación y Postgrado-Pontificia Universidad Católica de Chile (VRI-UC and DIP-UC), the Animal Behaviour Society (Developing Nations Award), the American Society of Mammalogists, and the Program 1 of Centro de Estudios Avanzados en Ecología y Biodiversidad (FONDAP 1501–001). LAE and REP were supported by FONDECTY grant (#1090302 and #1100558 respectively). 41 REFERENCES Aagesen, L., Szumik, C. A., Zuloaga, F. O. & Morrone, O. 2009. Quantitative biogeography in the South America highlands—recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25: 295-310. Animal Care and Use Committee. 1998. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. Journal of Mammalogy 79: 1416–1431. Avise, J. C. 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts. Bandelt, H. J., Forster, P. & Rohl, A. 1999. Median-joining network for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48. Barquez, R. M., Díaz, M. M. & Ojeda, R. 2006. Mamíferos de Argentina. Sistemática y Distribución. Sociedad Argentina para el Estudio de los Mamíferos (SAREM).Tucuman, Argentina. Beck, S.G. 1985. Florula ecológica de Bolivia: Puna semiárida en el Altiplano Boliviano. Ecología en Bolivia 6: 1-41. Brown, W. M., J. George, M. & Wilson, A. C. 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Science USA 76: 1967-1971. Cabrera, A. L. 1957. La vegetación de la Puna Argentina. Rev. Invest. Agric. 11: 317-412. Cabrera, A. L. 1968. Ecología vegetal de la Puna. Colloquium Geographicum 9: 91-116. Cabrera, A.L. & Willink, A.W. 1973. Biogeografía de América Latina Serie de Biología OEA. Monografía 13: 1–117. 42 Cane, M. A. 2005. The evolution of El Niño, past and future. Earth and Planetary Science Letters 230: 227-240. Chepstow-Lusty, A., Bush, M. B., Frogley, M. R., Baker, P. A., Fritz, S. C. & Aronson, J. 2005. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quaternary Research 63: 90-98. Contreras, L. C., Torres-Mura, J. C. & Yánez, J. L. 1987. Biogeography of octodontid rodents: an eco-evolutionary hypothesis. In: Fieldiana Zoology (new series) (Ed. by B.D. Patterson & R.E. Timm), pp. 401–411. Chicago, IL: Field Museum of Natural History. Contreras, L. C., Torres-Mura, J. C., Spotorno, A. E. & Catzeflis, E. 1993. Morphological variation in the glans penis of South American octodontid and abrocomid rodents. Journal of Mammalogy 74: 926-935. Contreras, L. C., Torres-Mura, J. C., Spotorno, A. E. & Walker, L. I. 1994. Chromosomes of Octomys mimax and Octodontomys gliroides and relationships of octodontid rodents. Journal of mammalogy, 768-774. Cope, J. M. 2004. Population genetics and phylogeography of the blue rockfish (Sebastes mystinus) from Washington to California. Canadian Journal of Fisheries and Aquatic Sciences 61: 332–342. Davis, S. D., V. H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos & Hamilton, A. C. 1997. Altoandina Argentina, Chile. Centres of plant diversity: A guide and strategy for their conservation, Vol. 3 The Americas. Eds. S.D. Davis, V.H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos and A C. Hamilton IUCN, WWF, Oxford, UK. 43 Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22: 1185-1192. Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88. Drummond, A. J. & Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. Dupanloup, I., Schneider, S. & Excoffier, L. 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11: 2571–2581. Excoffier, L., Smouse, P. E. & Quattro, J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479–491. Excoffier, L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island models. Molecular Ecology 13: 853–864. Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50. Excoffier, L. & Lischer, H. E. L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. Fernández, O. A. & Busso, C. A. 1999. Arid and semi-arid rangelands: two thirds of Argentina. Agricultural Research Institute. Fontanella, F. M., Feldman, C. R., Siddall, M. E. & Burbrink, F. T. 2008. Phylogeography of Diadophis punctatus: Extensive lineage diversity and repeated patterns of 44 historical demography in a trans-continental snake. Molecular phylogenetics and evolution 46: 1049-1070. Fornari, M., Risacher, F. & Feraud, G. 2001. Dating paleolakes in the central Altiplano of Bolivia. Palaeogeography Palaeoclimatology Palaeoecology 172: 269–282. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925. Gallardo, M. H., Bickham, J. W., Honeycutt, R. L., Ojeda, R. A. & Köhler. 1999. Discovery of tetraploidy in a mammal. Nature 40: 341. Gallardo, M.H., Kausel, G., Jiménez, A., Bacquet, C., González, C., Figueroa, J., Köhler, N. & Ojeda, R. 2004. Whole-genome duplications in South American desert rodents (Octodontidae). Biological Journal of the Linnean Society 82: 443–451. Gallardo, M. H., Ojeda, R. A., González, C.A. & Ríos, C.A. 2007. The Octodontidae revised. In The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson (Ed. by D.A. Kelt, E. P. Lessa, J. Salazar-Bravo & J. L. Patton), pp. 695720. University of California Publications in Zoology. Gallardo, M. H., Suárez‐Villota, E. Y., Nuñez, J. J., Vargas, R. A., Haro, R. & Köhler, N. 2013. Phylogenetic analysis and phylogeography of the tetraploid rodent Tympanoctomys barrerae (Octodontidae): insights on its origin and the impact of Quaternary climate changes on population dynamics. Biological Journal of the Linnean Society 108: 453-469. Gannon, W. L. & Sikes, R. S. 2007.Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 88: 809-823. 45 Garreaud, R. D., Vuille, M. & Clement, A. C. 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography Palaeoclimatology Palaeoecology 194: 5–22. Grant, W. A. S. & Bowen, B. W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89: 415–426 Guillot, G., Estoup, A., Mortier, F. & Cosson, J.F. 2005a. A spatial statistical model for landscape genetics. Genetics 170: 1261–1280. Guillot, G., Mortier, F. & Estoup, A. 2005b. Geneland: a computer package for landscape genetics. Molecular Ecology Notes 5: 712–715. Hasegawa, M., Hirohisa K. and Taka-aki, Y. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22.2: 160174. Harpending, H. C. & Rogers, A. R. 2000. Genetic perspectives on human origins and differentiation. Annual Review of Genomics and Human Genetics 1: 361–385. Honeycutt, R. L., Rowe, D. L. & Gallardo, M. H. 2003. Molecular systematics of the South American Caviomorph rodents: relationships among species and genera in the family Octodontidae Molecular Phylogenetics and Evolution 26: 476-489. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6: 29. Kruuk, H. 1972. The spotted hyena. Chicago: University of Chicago Press. 46 Lacey, E. A. & Ebensperger, L. A. 2007. Social structure in Octodontid and Ctenomyid rodents. In: Rodent Societies An Ecological and Evolutionary Perspective. (Ed. by J.O. Wolff & P.W. Sherman), pp. 257-296. Chicago, IL: University of Chicago Press. Librado, P. & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451. López, R.P. & Beck, S.G. 2002. Phytogeographical affinities and life form composition of the Bolivian Prepuna. Candollea 57: 77–96. López, R. P., Alcázar, D. L. & Macía, M. J. 2006. The arid and dry plant formations of South America and their floristic connections: new data, new interpretation. Darwiniana 44: 18-31. Mares, M.A. & Ojeda, R.A., 1982. Patterns of diversity and adaptation in South American hystricognath rodents. Pymatuning Laboratory of Ecology 6: 393–431. Mares, M. A., Braun, J. K. & Channell, R. 1997. Ecological observations on the octodontid rodent, Tympanoctomys barrerae, in Argentina. Southwestern Naturalist 42: 488– 504. Mech, L.D. 1970. The wolf: the ecology and behavior of an endangered species. The Natural History Press, New York. Moore, W. S. 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726. Montes de Oca, I. 2005. Enciclopedia Geográfica de Bolivia. Ed. Atenea. La Paz. 871 pp. Nester, P. L., Gayó, E., Latorre, C., Jordan, T. E. & Blanco, N. 2007. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Sciences 104: 19724-19729. 47 Nei, M. & Kumar, S. 2000. Molecular evolution and phylogenetics. Oxford University Press, Oxford. Ojeda, R. A., Blendinger, P. G. & Brandl, R. 2000. Mammals in South American Drylands: Faunal Similarity and Trophic Structure. Global Ecology & Biogeography 9: 115123. Ojeda, A. A. 2010. Phylogeography and genetic variation in the South American rodent Tympanoctomys barrerae (Rodentia: Octodontidae). Journal of mammalogy 91: 302–313. Ojeda, A. A., Novillo, A., Ojeda, R. A. & Roig-Juñent, S. 2013. Geographical distribution and ecological diversification of South American octodontid rodents. Journal of Zoology 289: 285–293. doi: 10.1111/jzo.12008. Olsson, U., Alström, P., Gelang, M., Ericson, P. G. & Sundberg, P. 2006. Phylogeography of Indonesian and Sino-Himalayan region bush warblers (Cettia, Aves). Molecular Phylogenetics and Evolution 41: 556-565. Opazo, J. 2005. A molecular timescale for Caviomorph rodents (Mammalia, Hystricognathi). Molecular Phylogenetics and Evolution 37: 932-937. Ortuño, T., Ledru, M. P., Cheddadi, R., Kuentz, A., Favier, C. & Beck, S. 2011. Modern pollen rain, vegetation and climate in Bolivian ecoregions. Review of Palaeobotany and Palynology 165: 61-74. Palma, R. E., Boric-Bargetto, D., Torres-Pérez, F., Hernández, C. E. & Yates, T. L. 2012. Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PloS one 7: e32206. 48 Placzek, C., Quade, J. & Patchett, P. J. 2006. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geological Society of America Bulletin 118: 515–532. Placzek, C., Quade, J., Betancourt, J. L., Patchett, P. J., Rech, J. A., Latorre, C., Matmon, A., Homgren, C. & English, N. B. 2009. Climate in the Dry Central Andes over geologic, millennial, and interannual timescales 1. Annals of the Missouri Botanical Garden 96: 386-397. Placzek, C. J., Quade, J. Patchett, P. J. 2011. Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano. Quaternary Research 75: 231–244. Placzek, C. J., Quade, J. & Patchett, P. J. 2013. A 130 ka reconstruction of rainfall from the Bolivian Altiplano. Earth and Planetary Science Letters 363: 97-108. Polzin, T. & Daneshmand, S. V. 2003. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters 31: 12–20. Posada, D. & Crandall, K. A. 2001. Intraspecific gene genealogies: trees grafting into networks. Trends in Ecolology and Evolution 16: 37–45. Posada, D. & Buckley, T. R. 2004. Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793-808. Posada, D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253- 1256. Posada, D. & Crandall, K. A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. 49 Quade, J., Rech, J. A., Betancourt, J. L., Latorre, C. & Fisher, T. 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69: 343–360. Rabassa J, Clapperton CM. 1990. Quaternary glaciations of the southern Andes. Quaternary Science Reviews 9: 153–174. Rabassa J, Coronato AM, Salemme M. 2005. Chronology of the Late Cenozoic Patagonian and their correlation with biostratigraphic glaciations units of the Pampean region (Argentina). Journal of South American Earth Sciences 20: 81–103. Rambaut, A. 2010. FigTree 1.3. 1. Ramos-Onsins, S. E. & Rozas, J. 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19: 2092-2100. Redford, K.H. y Eisenberg, J.F. 1992. Mammals of the Neotropics Vol. 2: The Southern Cone. The University of Chicago Press. Chicago, IL., EUA. Reig, O. A. 1981. Teoría del Origen y Desarrollo de la Faunade Mamíferos de América del Sur. Monographie Naturae, Museo Municipal de Ciencias Naturales ‘Lorenzo Scaglia’. Mar del Plata, Argentina. Reig, O. A. 1986. Diversity patterns and differentiation of High Andean Rodents. Pp. 404 - 439. In: Vuilleumier F. & M. Monasterio. High Altitude Tropical Biogeography. Oxford University Press. New York. Reig, O. A. 1970. Ecological Notes on the Fossorial Octodont Rodent Spalacopus cyanus (Molina). Journal of Mammalogy 51: 592-601. Risacher, F. & Fritz, B. 2000. Bromine geochemistry of Salar de Uyuni and deeper salt crusts, central Altiplano, Bolivia. Chemical Geology 167: 373–392. 50 Roche, M. A., Bourges, J., Cortes, J. & Mattos, R. 1991. Climatología e hidrología de la cuenca del lago Titicaca. El Lago Titicaca, C. Dejoux and A. Iltis. ORSTOM. Paris. 83–104. Rokas, A., Emmanuel, L. & Eleftherios, Z. 2003. Animal mitochondrial DNA recombination revisited. Trends in Ecology and Evolution 18.8: 411-417. Rogers, A. R. & Harpending, H. 1992. Population-growth makes waves in the distribution of pairwise genetic-differences. Molecular Biology and Evolution 9: 552–569. Rowe, D. L., Dunn, K. A., Adkins, R. M. & Honeycutt, R. L. 2010. Molecular clocks keep dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents. Journal of Biogeography 37: 305–324. Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. 2003. DnaSP. DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497. Sambrook, J., Fritsch, E. F., & Maniatis, T. 1989. Molecular cloning (Vol. 2, pp. 14-9). New York: Cold spring harbor laboratory press. Sanmartín, I., Van Der Mark, P. & Ronquist, F. 2008. Inferring dispersal: a Bayesian approach to phylogeny‐based island biogeography, with special reference to the Canary Islands. Journal of Biogeography 35: 428-449. Santoro, C. M. & Latorre, C. 2009. Propuesta metodológica interdisciplinaria para poblamientos humanos Pleistoceno tardío/Holoceno temprano, precordillera de Arica, Desierto de Atacama Norte. Andes 7: 13-35. Schneider, S. & Excoffier, L.1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 1079–1089. 51 Schneider, S., Roessli, D. & Excoffier, L. 2000. Arlequin: a software for population genetic data analysis. Vers. 2.000. Genetics and Biometry Laboratory, University of Geneva, Switzerland. Shikano, T., Shimada, T., Herczeg, G. & Merilä, J. 2010. History vs. habitat type: explaining the genetic structure of European nine‐spined stickleback (Pungitius pungitius) populations. Molecular Ecology 19: 1147-1161. Sikes, R. S. & Gannon, W. L. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 92: 235-253. Small, R. L. & Wendel, J. F. 2000a. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155: 1913-1926. Small, R. L. & Wendel, J. F. 2000b. Phylogeny, duplication, and intraspecific variation of Adh sequences in New World diploid cottons (Gossypium L., Malvaceae). Molecular Phylogenetics and Evolution 16: 73–84. Solbrig, O. T. 1976. The origin and floristic affinities of the South American temperate desert and semidesert regions. In: Goodall, D.W (Ed.). Evolution of desert biota. Austin, London, University of Texas Press. 7-49. Soltis, D. E., Soltis, P. S. & Tate, J. A. 2004. Advances in the study of polyploidy since plant speciation. New Phytologist 161: 173-191. Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts. 52 Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526. Tajima, F. 1989. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123: 585-595. Teta, P. & Ortiz, P. E. 2002. Micromamíferos andinos Holocénicos del sitio arqueológico Inca Cueva 5, Jujuy, Argentina: Tafonomía, zoogeografía y reconstrucción paleoambiental. Estudios Geológicos 58: 117-135. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. 1997. The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. Upham, N. S. & Patterson, B. D. 2012. Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Molecular Phylogenetics and Evolution 63: 417-429. Valladares, J. P. 2009. Variación geográfica de la conducta antidepredatoria del Octodon degus (Molina 1782) bajo un contexto filogeográfico. Ph.D. thesis, Universidad de Chile. Verzi, D. H., Montalvo, C. I. & Vucetich, M. G. 1999. Afinidades y significado evolutivo de Neophanomys biplicatus (Rodentia, Octodontidae) del Mioceno tardio-Plioceno temprano de Argentina. Ameghiniana 36: 83-90. Verzi, D.H. 2001. Phylogenetic position of Abalosia and the evolution of the extant Octodontinae (Rodentia, Caviomorpha, Octodontidae). Acta Theriologica 46: 243268. 53 Verzi, D. H., Tonni, E. P., Scaglia, O. A. & San Cristóbal, J. O. 2002. The fossil record of the desert-adapted South American rodent Tympanoctomys (Rodentia, Octodontidae). Paleoenvironmental and biogeographic significance. Palaeogeography Palaeoclimatology Palaeoecology 179: 149–158. Verzi, D. H. & Quintana, C. A. 2005. The caviomorph rodents from the San Andrés formation, east-central Argentina, and global Late Pliocene climatic change. Villesen, P. 2007. FaBox: an online toolbox for fasta sequences. Molecular Ecology Notes 7: 965–968. Wilson, S.C. & Kleiman, D. G. 1974. Eliciting Play: A Comparative Study American Zoologist 14: 341-370. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 303–320. Wilson, D. E. & Reeder, D. M. 1995. Mammal species of the world. A taxonomic and geographic reference. 3rd ed. Johns Hopkins University Press, Baltimore, Maryland. Woods, C. A. & Kilpatrick, C. W. 2005. Infraorder Hystricognathi. In Mammal Species of the World: a taxonomic and geographic reference (Ed. by D. E. Wilson & D. M. Reeder), pp. 1538-1600. Third edition, Baltimore: John Hopkins University Press. Yu, Y., Harris, A.J. & He, X.-J. 2010. S-DIVA (statistical dispersal–vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56: 848–850. Yu, Y., Harris, A. J. & He, X. J. 2011. RASP (Reconstruct Ancestral State in Phylogenies) 1.1. <http://mnh.scu.edu.cn/soft/blog/RASP>. Zink, R, M. & Barrowclough, G.F. 2008. Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17: 2107–2121. 54 Table1 1. Description of sampling localities of Octodontomys gliroides specimens in Bolivia (Bo), Chile (Ch) and Argentina (Ar). Localities and habitat type as shown in Fig. 1. Some of the localities have been combined and their abbreviations are showed. For all specimens we show the Id code/museum or collection source. Map references Bolivia Bo1 Bo2 Bo3 Bo4 Bo5 Bo6 Bo7 Bo8 Bo9 Bo10 Bo11 Bo12 Chile Ch1 Ch2 Ch3 Ch4 Argentina Ar1 Ar2 Ar3 Locality Llacasa Eucaliptus Villa Ventilla Jirira Hara Castilluma Uyuni Oploca Tupiza Villa Abecia Cieneguillas Iscayachi Abbreviation Latitude Longitude Phytogeographical Id code/Source Haplotypes regions EVva EVva CIb CIb Putre Murmutani Putre Chungará Camiña Chusmiza Chusmiza Pucara del Tilcara Susques San Antonio los Cobres ArgNc ArgSd ArgSd 16°40’S 17°35’S 17°58’S 19°50’S 19°46’S 19°56’S 20°26’S 21°19’S 21°25’S 20°59’S 21°19’S 21°29’S 68°01’W 67°33’W 67°09’W 67°37’W 67°34’W 68°15’W 66°45’W 65°57’W 65°43’W 65°14’W 65°02’W 64°58’W Northern Puna Central Puna Central Puna Southern Puna Southern Puna Southern Puna Southern Puna Prepuna Prepuna Prepuna Prepuna Central Puna DSR DSR FMNH1 DSR DSR DSR DSR DSR DSR DSR FMNH DSR 6, 9, 12, 13 5-9 27 8 8 3 10, 20 - 23 10, 14, 15 10 10, 24 - 26 4 6, 10 18°12’S 18°22’S 18°13’S 19°41’S 69°49’W 69°33’W 69’15’W 69°10’W Central Puna Central Puna Prepuna Prepuna IEEUACH2 IEEUACH IEEUACH SSUC3/DSR 3 3 1, 2 1, 2, 3 23°35’S 24°00’S 24°16’S 65°24’W 66°30’W 66°30’W Prepuna Southern Puna Southern Puna MMPMa4 OMNH5 CMI-RAO6 16, 17 11 19 55 Ar4 Ar5 Santa Victoria Cachi ArgNc ArgSd 22°13’S 25°01’S 65°12’W 66°14’W Prepuna Prepuna JPJ7 OMNH 10 18 1 Field Museum of Natural History, Chicago, Illinois 60605 Instituto de Ecología y Evolución, Universidad Austral de Chile, Valdivia 3 Colección de Flora y Fauna Profesor Patricio Sánchez Reyes, P. Universidad Católica de Chile, Santiago, Chile 4 Museo de Ciencias Naturales y Tradicional de Mar del Plata "Lorenzo Scaglia", Mar del Plata 5 Sam Noble Oklahoma Museum of Natural History, The University of Oklahoma, Norman, Oklahoma 6 Colección de Mamíferos del Instituto Argentino de Investigaciones de zonas Áridas (IADIZA) 7 Catálogo de campo de Jorge Pablo Jayat. a EVv: Eucaliptus-Villa Ventilla; bCI: Cieneguillas - Iscayachi; cArgN: Pucara del Tilcara - Santa Victoria; dArgS: Susques - San Antonio los Cobres -Cachi 2 56 Table 2. Number of sequences, haplotypes, polymorphic sites by population, haplotype diversity (H) and nucleotide (π) from Octodontomys gliroides. Some of the localities have been combined for diversity calculation. Abbreviations of localities are defined in Table 1. Sample locality Bo1 EVv Bo4 Bo5 Bo6 Bo7 Bo8 Bo9 Bo10 CI Ch1 Ch2 Ch3 Ch4 ArgN ArgS Andean Puna Andean Prepuna Total Number of sequences Haplotype Polymorphic Haplotype Standard Nucleotide diversity Standard sites diversity H desviation π (10-3) desviation 12 18 5 7 5 11 6 5 7 3 2 3 2 7 3 4 66 35 101 4 6 1 2 1 5 3 1 4 3 1 1 3 3 3 3 16 14 27 3 8 0 3 0 7 3 0 6 9 0 0 3 3 12 3 19 18 24 0.77 0.82 0.00 0.47 0.00 0.85 0.73 0.00 0.71 1.00 0.00 0.00 0.67 0.67 1.00 0.83 0.88 0.84 0.92 0.07 0.05 0.00 0.17 0.00 0.06 0.15 0.00 0.18 0.27 0.00 0.00 0.31 0.15 0.27 0.22 0.02 0.05 0.01 2.04 3.85 0.00 2.47 0.00 4.90 2.07 0.00 2.96 10.36 0.00 0.00 3.45 1.97 13.82 2.59 5.74 6.01 5.97 0.31 0.70 0.00 0.89 0.00 0.75 0.74 0.00 1.11 4.38 0.00 0.00 1.63 0.76 5.54 0.95 0.58 1.26 0.59 57 Table 3. Characteristics of all three defined groups by Network and GENELAND analysis including the number of sequences (N), number of haplotypes (Hap), polymorphic sites (S), haplotype and nucleotide diversity, values of Tajima’s D and Fu’s FS tests, and Mismatch distribution demographic (SSD) and spatial (SSD*). Tajima’s D Group I II III Geographic N Hap S Haplotype Nucleotide diversity D P (Ds < Dobs) location diversity h π (10-3) 18°12’ - 21°29’ 52 16 14 0.833 (0.04) 3.42 (0.43) -1.354 0.076 16°40’ - 19°50’ 42 11 9 0.827 (0.04) 3.39 (0.38) -0.696 0.251 21°19’ - 25°01’ 7 6 6 0.952 (0.09) 3.78 (0.76) -0.536 0.343 Fu’s Fs F -5.785 -1.545 -3.027 Mismatch distribution P (Fs < Fobs) pSSD pSSD* 0.003 0.251 0.012 0.56 0.16 0.52 0.48 0.20 0.56 58 FIGURE LEGEND Figure 1. Map of Octodontomys gliroides sampling locations along its range distribution (see Table 1 for Abbreviations of localities). Pie charts displaying the frequency of occurrence of each haplotype in each locality; pie chart size is proportional to population size. A total of 27 mtDNA control region haplotypes are represented. Figure 2. Median-joining network (MJN) of the 27 O. gliroides mtDNA control region haplotypes recovered from 21 populations. Each circle represents a different haplotype with size proportional to frequencies, with the largest circles representing the most abundant haplotypes. Shading indicates localities and black small lines denote the number of mutational steps between haplotypes. Absence of black small lines is equivalent to a single mutational event. Small red circles represent missing or unsampled haplotypes. The coloration of each haplotype represents the four major phytogeographical region of O. gliroides distribution. The three dashed circles represent each one of the GENELAND clusters. Figure 3. Map of cluster membership and posterior probability for each cluster based on the GENELAND analysis. a) the estimated cluster membership represent the modal cluster assignment of each pixel, the rest of the inset maps show the posterior probability of individuals of O. gliroides in Argentina, Bolivia and Chile. Region with the greatest probability of inclusion are indicated by light yellow, whereas diminishing probabilities of inclusion are proportional to the degree of red. Black dots represent sampling localities. The three clusters are b) continuous population extending from northern of Chile, central 59 and southern of Bolivia and northern of Argentina, c) northern and central of Bolivia and d) rest of Argentina populations and one population from southern of Bolivia. Figure 4. Pairwise mismatch distribution (left) and Bayesian skyline plots (right) depicting the demographic history for a-b) the entire sample level, c-d) cluster I, e-f) cluster II and gh) cluster III. For the mismatch distributions, white circles represent the observed distribution of Pairwise differences and the black circles represent theoretical expected distribution under a population expansion model. For the skyline plot, black lines represent median estimation and gray lines represent the upper and lower 95% credible intervals. The x-axes of these figures are the time before present and the y-axis is the estimated effective population size. Figure 5. Divergence time estimates in million years (above the branches) and 95% credible intervals (below the braches) for principal nodes for each clade of O.gliroides and other sister species of family Octodontidae. Figure 6. Ancestral areas reconstruction of Andean degu, O. gliroides along its entire distribution range, obtained by Statistical Dispersal-Vicariance Analysis (S-DIVA), using mt-DNA CR. Color legend represents possible ancestral ranges at different nodes; black with asterisk represent other ancestral ranges. Areas: A: Andean Prepuna; B: Andean Puna; C: Valdivian Temperate Forest; D: Chilean Scrublands; E: Dry Chaco; F: Argentina Monte Desert; G: Patagonian Steppe. See Table 1 for Abbreviations of localities. 60 Figure 7. Most important barriers separating the population of O. gliroides when considered each one of the haplogroups or GENELAND clusters 1) and 2) are principal barrier separating cluster II from cluster I 3); 4) and 6) are the principal barrier separating Argentina populations from southern Bolivia and Chilean populations respectively 5) is major barrier separating the northernmost and central Bolivia populations from the rest of southern Bolivia populations. 61 Figure 1. 62 Figure 2. 63 Figure 3. 64 Figure 4. 65 Figure 5. 66 Figure 6. 67 Figure 7. 68 CAPITULO II Within but not between variation in ecology predict population differences in Octodontomys gliroides group-living Daniela S. Rivera1,2* Sebastian Abades1,3 and Luis A. Ebensperger1 69 Within but not between variation in ecology predict population differences in Octodontomys gliroides group-living Daniela S. Rivera1* Sebastian Abades1,2 and Luis A. Ebensperger1 1 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile 2 Centro de Investigación e Innovación para el Cambio Climático (CIICC), Universidad Santo Tomás, Santiago, Chile Short title: Ecological drivers of group-living *Correspondence: Address: Daniela S Rivera, Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago. Chile. Phone: (56-2) 686 2950 Email: [email protected] 70 ABSTRACT Given that variation in sociality is thought to be driven by multiple ecological factors, among and within population comparisons linked to different environmental conditions remain a powerful approach to identify costs and benefits of group-living. We studied two Andean degu, Octodontomys gliroides populations located at two extremes of the climatevegetation gradient across the Andes range. We evaluated how ecological variation in terms of abundance and distribution of resources, predation risk, and burrowing costs predicted intraspecific variation in group size and range area overlap (two proxies of sociality). We found that multiple population differences in ecology (i.e., abundance and distribution of resources, predation, burrowing costs, and Andean degu density) did not relate to variation in sociality. In contrast, within population variation in ecology predicted significant variation in group size, and where larger social groups were in patches with greater density of vegetation patches and density of burrow openings. In addition, more socially cohesive groups (as indicated from higher overlap in same group range areas) used areas with lower soil hardness and density of vegetation patches. Thus, costs and benefits linked to living socially in O. gliroides seem fine tuned to within but not to between population differences in ecology. The social behavior of O. gliroides supports that sociality across octodontids rodents evolved early in the clade and represents historical selection pressures. Thus, an uncoupling between a relatively ancient social phenotype and current day population differences in ecology cannot be ruled out. Keywords: Andean degu; distribution of resources; predation risk; burrowing costs; group size; range area overlap; sociality. 71 INTRODUCTION Intra-specific variation in the number and composition of group members characterizes socially flexible, but also socially cohesive groups in vertebrates (Lott 1991; Maher & Burger 2011). This variation in sociality is thought to be driven by ecological conditions (e.g., weather, predation pressure, density, nest-site availability, and quality, quantity, or distribution of food) (Lott 1991), which in turn determine fitness benefits and costs associated to individuals’ decision to join or leave groups (Ebensperger et al. 2012). Groupliving benefits social individuals through several ways. Individuals in larger groups are known to decrease predation risk, locate and defend food resources more efficiently, decrease costs of burrow or nest construction, decrease thermoregulatory costs, or decrease risk of infanticide (Alexander 1974; Wrangham 1979; Ebensperger 2001; Ebensperger & Cofré 2001; Ebensperger & Blumstein 2006). These benefits typically come to fitness costs, including greater competition over food resources and parasitism (Alexander 1974; Wrangham 1979; Freeland, 1979; Loehle 1995; Altizer et al. 2003). Given that most of these benefits and costs may be influenced by ecological conditions, ecological variation remains a major, ultimate cause of intraspecific variation in social group size (Lott 1991; Slobodchikoff 1984; Brashares & Arcese 2002; Ebensperger et al. 2012). Predation risk remains a commonly reported ecological correlate of variation in the size of social groups (Lott 1991; Brashares & Arcese 2002; Isvaran 2007; Maher & Burger 2011). Individuals in larger groups can reduce per capita predation risk through several mechanisms, including dilution, predator confusion effects, earlier detection and warning, or through cooperative defense (Pulliam & Caraco 1984; Krause & Ruxton 2002; Ebensperger et al. 2006). As a consequence, individuals in groups can spend more time feeding and less time scanning for predators (Alexander 1974; Roberts 1996; Lacey 2000; 72 Ebensperger 2001; Ebensperger et al. 2006). Distribution of critical resources (e.g., food, nest sites, shelter) is an additional ecological driver of social behavior (Johnson et al. 2002). Resources that are patchily (heterogeneously) distributed through space and time promote group-living because larger groups attain preferential access to high-quality resources (Slobodchikoff 1984; Travis et al. 1995; Brashares & Arcese 2002; Maher & Burger 2011). Alternatively, relatively large patches of food may relax intraspecific competition and promote recruitment of individuals, which in turn favor greater sociality without any apparent fitness benefit (Macdonald 1983; Johnson et al. 2002; Verdolin 2009). Other ecological factors have been suggested to explain variation in social systems, including ambient temperature (e.g., group-living decreases thermoregulation costs through huddling) (Berteaux et al. 1996; Canals et al. 1998; Kaufman et al. 2003), or physical conditions that influence the costs of burrow or nest construction (e.g., soil harness to burrowing organisms) (Lacey 2000; Ebensperger 2001; Ebensperger & Cofré 2001). One powerful approach to examine how intraspecific variation in sociality tracks ecological variation is to examine populations facing different environmental conditions. Population comparisons have the advantage of spanning a greater range of ecological conditions, particularly near the extremes of a species’ distribution (Travis & Slobodchikoff 1995; Spinks et al. 2000; Schradin & Pillay 2005). However, recent evidence from these studies has not revealed consistent relationships between ecological variation and groupliving (Ebensperger et al. 2012). For example, the effect on larger group size in populations of cercopithecoid primates living in a gradient of predation risk was greater in populations under high predation risk (Hill & Lee 1998). In contrast, Clutton-Brock et al. (1999) did not find population variation in group size and composition in social groups of mongoose facing different predation regimes. Regarding the effect of food resources, larger social 73 groups of some rodents and ungulates are associated with greater patchiness and abundance food across populations (Travis et al. 1995; Brashares & Arcese 2002). In contrast, studies on European badgers (Meles meles) showed no consistent relationship between territory size and resource dispersion, or between group size and resource richness (Johnson et al. 2001). In another study, Kruuk & Parish (1987) found that a decrease in food availability was followed by territory expansion rather than by the expected group size reduction. However, most of these studies have focused on each of these factors individually (Kruuk & Parish1987; Hill & Lee 1998; Clutton & Brock et al. 1999; Johnson et al. 2001; Hass & Valenzuela 2002) and only a few studies examined simultaneously and quantitatively the link between ecological conditions and social behavior (Brashares & Arcese2002; Isvaran 2007; Ebensperger et al. 2012). Model species, hypotheses and predictions A potentially informative group of model organisms to understand how sociality and social organization tracks ecological conditions is the New World hystricognath (or caviomorph) rodents (Ebensperger 1998, 2001; Lacey & Sherman 2007; Maher & Burger 2011). Caviomorph rodents exhibit relatively large differences in social behavior, with species ranging from solitary living to highly gregarious (Lacey & Ebensperger 2007). This variation also occurs across populations within species (Maher & Burger 2011), providing a natural system to examine the extent to which different ecological conditions influence social behavior (Ebensperger et al. 2012). Within octodontids, the social behavior of Octodontomys gliroides (Andean degu) remains scarcely known, yet this knowledge is critical to determine the extent to which social behavior in these animals is maintained by current ecological conditions. According to phylogenetic hypothesis (Honeycutt et al., 74 2003; Gallardo et al. 2004; Opazo, 2005; Rowe et al. 2010), O. gliroides is basal to Chilean clade composed of more social octodontids (Ebensperger et al. 2004; Gallardo et al. 2007; Lacey & Ebensperger 2007). Therefore, solitary living in O. gliroides would suggest that social living is a more derived trait. On the contrary, if O. gliroides presents social habits, would support that that solitary living evolved rather recently through the clade. The aim of this study was to examine the relative importance of different ecological factors as predictors of variation in group size within and across two populations of O. gliroides. We selected two populations that are genetically similar based on molecular markers (Rivera 2013) but represent two extremes of the characteristic climate-vegetation east to west gradient throughout the distribution of this species across the Andes range. In particular, we assessed how variables linked to resource distribution and food abundance, predation risk, and burrowing costs predicted population variation in group size. Ecological variation faced by O. gliroides suggests differences in the abundance and distribution of food, which in turn predict an effect on social behavior in this species. The geographic distribution of Andean degu faces an east to west gradient of decreasing precipitation caused by a rain shadow effect across the Andes Mountains. This area is characterized by a complex history of changes associated with dry-wet periods that took place in the Pleistocene-Holocene (Nester et al. 2007; Santoro & Latorre 2009). This variation has driven changes in the distribution and cover of the local flora used of xeric Andean regions (Puna, Prepuna, Monte and high Andes) used by O. gliroides (Ribichich 2002; Teta & Ortiz 2002; Barquez et al. 2006). In particular, O. gliroides burrows in patches of columnar and ground-level cacti and/or shrubs where these rodents feed on the vegetation, hide from predators, and rear their offspring (Rivera 2013). Because resources in arid or semi arid ecosystems such as food and shelter are distributed in a mosaic of 75 patches with high plant cover interspersed in a low-cover matrix (Sala & Aguilar 1996; Aguilar & Sala 1999), larger groups would be expected in patches with relatively low plant cover (Ebensperger 2001). Even though the role of predation risk as a driver of social behavior in O. gliroides has not been examined, its influence cannot be ruled out. Population studies in the sister species Octodon degus indicated predation risk influences the size of foraging groups (Ebensperger & Wallem 2002; Ebensperger et al. 2006; 2012). In addition, vegetation overhead cover has been shown to influence predation risk (Ebensperger & Hurtado 2005). Thus, the ecological variation in the distribution and cover of the local flora faced by Andean degus may have influenced variation in social behavior of these animals. Given that predation risk is thought to increase in areas with relatively low shrub cover because shrubs provide overhead protective cover (Vásquez et al. 2002; Ebensperger & Hurtado 2005; Taraborelli 2009), larger social groups would be expected in patches with lower plant overhead cover. In addition, we considered predation risk to increase with distance to the nearest burrow system, and decrease with density of burrow openings (i.e., abundance of safe havens) (Ebensperger et al. 2012). Thus, larger groups would be expected in the population with greater distance between burrow systems and with greater density of burrow openings. Given that burrowing is energetically expensive and this cost generally increases with soil harness (Ebensperger & Bozinovic 2000), we also examined the prediction of larger groups using patches with increasing soil hardness. To summarize, we examined the above predictions to determine the relative contribution of different ecological factors in driving the size of Andean degu social groups. The observation of larger social groups and range area overlap (two proxies of 76 sociality) in the population holding more clumped resources would support resource abundance and distribution is a driver of Andean degu sociality. The observation of larger social groups and greater range area overlap in the population with greater overhead cover would support a role for predation risk. Finally, larger social groups and greater range area overlap in the population with harder soil conditions would support burrowing costs are relevant to Andean degu sociality. METHODS Study populations We examined two Andean degu populations located 400 km apart in two habitats with extreme differences in ecology. The Oploca population (hereafter Oploca) was located in southwest Bolivia (21°20´S 65°50´W; 3,121 m of altitude); the Chusmiza population (hereafter Chusmiza) was located in the high Andean plateau of northern Chile (19°40´S 69°10´W; 3,460 m of altitude). Differences in rainfall between these populations lead to further differences in vegetation types and plant cover (HilleRisLambers et al. 2001; Schradin 2005). Oploca ecosystem is characterized by dry climate with rainfall ranging from 200 to 650 mm; most rain falls during summer months (November–February), and mean temperature ranges from 14 to19° C (López 2003; SENAMHI 2012). The study area of this population was characterized by xerophytic vegetation, where the succulent Trichocereus tacaquirensis, Oreocereus celsianus, Opuntia boliviensis and the thorn scrub Acacia feddeana, Cercidium andicola, and Prosopis ferox were the most common species (Ibisch et al. 2003; López 2000; 2009; 2010). In contrast, Chusmiza population exhibits an arid climate, with a mean annual precipitation of 101 mm (Ministerio de Obras Públicas, MOP 2012) that 77 concentrates during the austral summer months (January- March; "invierno boliviano") (Garreaud et al. 2009). Mean ambient temperature ranges from -0.2 to 6.8° C (Ministerio de Obras Publicas, MOP 2012). Vegetation at the study site was dominated by small bushes and cacti of Tarapacá Precordillera (Atriplex sp., Bacharis boliviensis, Senna birostris, Lophopappus tarapacanus, Corryocactus brevistylus, Oreocereus leuvotrichus, Trichocereus atacamensis, Opuntia soehrensii, Opuntia camachoi) (Philippi 1941; Villagran et al. 1999; Moreira-Muñoz 2011). Trapping and marking of animals The study was conducted in both populations during the spring-summer transition (i.e., before the rainy season). Thus, Oploca was examined during October through December 2011, and Chusmiza was studied during November 2012-January 2013. We trapped Octodontomys using a combination of Tomahawk (Tomahawk Live Trap Co., Tomahawk, Wisconsin) and locally produced medium and large sized Sherman traps, all baited with mixture of tuna’s fruit (Opuntia fus-indica) and grated apple. We set traps at previously identified burrow systems. Occupancy was based on the presence of finger prints, "paths", fresh droppings or fresh brands of consumption of cacti leaves or seedpods in the vicinity of burrows. We placed a total of 220 traps at Oploca and 160 traps at Chusmiza. The total area examined for both populations was similar and reached 11 ha. A similar combination of Sherman and Tomahawk traps were distributed at each burrow systems. The number of traps used per day at each burrow systems averaged 8 ± 0.2 at Oploca and 6 ± 0.0 at Chusmiza. The total number of burrow systems trapped at Oploca was 45 and 40 at Chusmiza. These burrows were found primarily on the base of shrubs, columnar, and ground-level cacti at Oploca, but were associated only to columnar cacti at Chusmiza. 78 We trapped Andean degus during 26 consecutive days at Oploca and 18 consecutive days at Chusmiza. Traps were opened during most daylight hours and checked approximately every 2 hours. Traps were closed between 11:00 until 16:30 to prevent individuals dying through overheating. The sex, body mass, and reproductive condition (e.g., whether females were perforated, pregnant or lactating and males had descended testes) were recorded for all animals captured. Upon first capture, individuals were given a unique identification with the use of metal ear tags coded with numbers (National Band and Tag Co. Newport, USA). In addition, a small sample of ear tissue was taken first caught subjects for subsequent genetic analyses. To characterize spatial relationships among individuals, all adult sized individuals (≥ 140 g) caught during this trapping period were fitted with 6-7 g radio-collars (AVM Instrument Co., USA). Weight of radio-collars represented 4-5% of study subjects’ body weight. At the end of data collection (see below) all radio-collared animals were recaptured and transmitters were removed. This study followed the American Society of Mammalogists guidelines (Animal Care and Use Committee 1998; Gannon et al. 2007), and adhered to Bolivian and Chilean laws (permit number MMAyA-VMA-DGBAP N 0937/11 by the Dirección General de Biodiversidad y Áreas Protegidas and by the permit number 1-62-2012 [2373] by the Servicio Agrícola y Ganadero). All procedures that involved handling of live animals were approved by the Faculty of Biological Sciences at Pontificia Universidad Católica de Chile (CBB-040-2011). 79 Temporal activity and range area The Andean degu has been presumed to be active at nighttime by some (Ipinza et al. 1971; Nowak 1991; Pedreros & Valenzuela 2009), but diurnally active by others (Mann 1978). Therefore, we first needed to confirm this discrepancy and examined patterns of temporal activity. We used the homing technique (Kenward 2001) to follow all radio-collared animals with the use of LA 12-Q receivers and hand held, and 3-element Yagi antennas (tuned to 150.000-151.999 MHz; AVM Instrument Co., USA). In particular, two observers, each holding a receiver and an antenna, tracked all radio-collared animals every two hours during nighttime and daytime. Once located, the position of each animal was marked with coded flags. Each fixing location was then geo-referenced with a Garmin portable GPS (Garmin International Inc., Olathe, Kansas, USA). The rugged micro-topography of both study sites caused frequent signal bounce and precluded the use of long-range radio-fixings (i.e., triangulation) (Kenward 2001). To prevent observers affecting the movements of animals and disrupt their behavior, each observer was trained to avoid stepping loudly when near each radio-collared subject, and to left swiftly once its location was confirmed. Daily patterns of activity were then characterized from how activity varied with time of night and day on both populations. Social group identification Given that activity of Andean degu rats concentrated their activity mostly during night time, the criterion to assign Andean degu rats to social groups was based on the sharing of burrow systems (in which they rest and interact) during day-time (e.g., Hayes et al. 2009). During a total of 10 days we determined resting locations at burrows systems three times per day: in the morning (09:30 to 11:30 h), afternoon (12:30 to 14:30 h) and before sunset 80 (15:30 to 17:30 h). This effort has been adequate to determine group membership in other octodontids rodents (Ebensperger et al. 2004). The determination of group composition required the compilation of a symmetric similarity matrix of pairwise association of the burrow locations of all adult Andean degus during daytime telemetry (Whitehead 2008). We determined the association (overlap) between any two individuals by dividing the number of days that these two animals were tracked with telemetry to the same burrow system by the number of days that both individuals were tracked with telemetry on the same day (Ebensperger et al. 2004). We determined group composition using the SOCPROG software (Whitehead 2009). We performed hierarchical cluster analysis of the association matrix. We confirmed the fit of data with the cophenetic correlation coefficient, a correlation between the actual association indices and the levels of clustering in the diagram. Under this procedure, values above 0.8 would indicate that hierarchical cluster analysis has provided an effective representation of the data (Whitehead 2008). We chose maximum modularity criteria (Newman 2004) to cut off the dendrogram and define social groups. Group size was then calculated as the number of Andean degus assigned to a same social group. Range areas and overlap To determine whether Andean degus assigned to the social unit formed a socially cohesive group when active above ground, we used night radio locations to monitor patterns of space use. Location of radio fixes for each individual were first transferred to an X-Y system of coordinates, and then mapped using the 95% minimum convex polygon algorithm (MCP) with the software Ranges VI (Kenward et al. 2003). Pairwise estimates of percentage range 81 area overlap among individuals and nesting associations were also calculated using Ranges VI (Ebensperger et al. 2006; Kenward et al. 2003). Ecological differences across populations At the level of population, availability of food resources was estimated based on abundance of ground-level cacti biomass. We previously determined that Octodontomys gliroides feeds principally on ground-level cacti at Chusmiza, but on cacti and shrubs (Prosopis flexuosa) at Oploca (Villanueva 2013). One 100 m transect was established randomly in each study population: each transect was then divided into ten 10 x 2 m plots. Within each plot we used from 1 to 7 0.25 m2 quadrants at Oploca and from 4 to 13 0.25 m2 quadrants per plot at the Chusmiza to quantify the abundance of cacti leaves. From each 0.25 m2 quadrant we randomly removed five leaves that were stored inside paper bags, and transported to the laboratory. All cacti leaf samples were oven-dried at 60° C for 10 consecutive days to determine its dry mass (biomass in g). A second measure of food availability was vegetation cover (Reus et al. 2013). We estimated vegetation cover based on ground-level cacti, columnar cacti, and shrubs at each population. To do so, we established other 15 (50 x 2 m) randomly located transects. Vegetation cover was recorded every 10 m using the line point intercept method (Bonham 1989). Percent cover was calculated as the number of hits for each plant species or ground cover class divided by the total number of points per transect. We used Poisson variance-to-mean ratios of distance between patches with groundlevel cacti, columnar cacti, and shrubs to estimate the distribution of resources within each population. To do this, all patches in the total area (11 ha) were georeferenced in each population. We then divided the variance of distance between patches by its mean. Values 82 <1 were indicated a relatively uniform distribution; values >1 were taken to represent a relatively clumped distribution (Travis & Slobodchikoff 1993; Krebs 1999). At the level of populations, predation risk was recorded first from the active burrow entrances at each burrow system. Active burrow entrances were identified from the presence of fresh droppings, urine marks, signs of recent soil digging, or remains of recently consumed cacti leaves. Number of active burrow entrances per square meter at each burrow system was calculated as the number of active burrow openings divided by the area covered by the burrow system (hereafter density of burrow openings). A second measure of predation risk was distance (meters) from each burrow system to the nearest shrub or a cactus (distance to cover). Finally, predation risk was recorded from vegetation overhead cover as suggested by several previous studies (Hill & Dumbar 1998; Jensen et al. 2003; Ebensperger & Hurtado 2005). For Oploca population we considered the groundlevel cacti as cover because we observed that these species of cacti are large enough to provide coverage against predators. On the other hand, in Chusmiza the ground-level cacti were too small to provide any protection, so we did not considered in this analysis. We estimated soil penetrability as an index of soil hardness and therefore, energy costs associated with building burrows (Lacey & Wieczorek 2003; Ebensperger et al. 2012). At the level of the population we established 15 randomly located transects (50 x 2 m). Soil penetrability was recorded twice every 10 m. Soil penetrability was recorded with the use of a hand-held soil compaction meter (Lang Penetrometer Inc., Gulf Shores, AL, USA). 83 Ecological predictors within populations At the level of burrow systems used by Andean degus, distribution of food resources was measured as distance between patches with shrub and/or ground-level and columnar cacti and density of vegetation patches. Both, distance between patches and density of vegetation patches were calculated as the distance and number of locations with shrub and/or groundlevel or columnar cacti on an area of 1 ha around each burrow systems used by varying number of these rodents. To examine predation risk, we considered the density of burrow openings (number of active burrow entrances per m2), overhead vegetation cover, and distance (meters) from each burrow system used to the nearest overhead shrub or cacti. In the context of energy costs associated with burrow digging, we recorded the soil penetrability around burrow systems of social groups. Soil penetrability was recorded five times in each of four points located in north, east, west, and south orientation and on the perimeter of each burrow systems used by Andean degus. The five measures per point were averaged for subsequent analyses. Andean degu abundance We used data from burrow trapping to calculate the abundance of Andean degu assuming a closed population (no emigration, immigration, death or birth). We restricted this analysis to the first 18 days of burrow trapping at each population. These analyses were performed using the CAPTURE software (Otis et al. 1978; White et al. 1982; Rexstad & Burnham 1991). 84 Statistical analysis Unless stated differently, statistical analyses were performed using Statistica 9.0 (StatSoft Inc., Tulsa, Oklahoma, USA). We used General Linear Models (GLM) when data did not violate the assumptions of normal distribution and homogeneity of variances, or could be transformed to meet these assumptions. Percentage values were arcsine square-root transformed (Zar 1996). Alternatively, we used Generalized Linear Model (GZLM) assuming a Poisson distribution and a log link function. To examine how group size varied between populations, we used GZLM with population entered as a categorical factor (Oploca vs. Chusmiza) and group size entered as the dependent variable. To examine range area overlap, we used a GLM where population was entered as a categorical factor (Oploca vs. Chusmiza), group size was entered as a covariate, and range area overlap was the dependent variable. For descriptive purposes, we also used GLM approach to examine the effects of population (Oploca vs. Chusmiza), sex (males vs. females), and population by sex interaction on the size of range areas. To determine differences in ecological conditions between populations we used GZLM with Poisson distribution. During these analyses population was entered as a categorical factor and ecological predictors (i.e., measures of food availability, Poisson variance to mean ratio, predation risk, and, soil hardness) represented dependent variables. To quantify how variation in ecology predicted variation in sociality within populations we used two different and complementary approaches, including partial least squares regression analysis (PLSR; Abdi 2007), and regression commonality analysis (Kraha et al. 2012). Both techniques are robust to relatively low sample sizes, a relatively high number of predictors, or to relatively high degree of correlation between predictor variables (i.e., multi-collinearity) (Carrascal et al. 2009; Kraha et al. 2012). The PLSR 85 analysis reduced the set of ecological predictor variables of resource distribution and predation risk to a few components that exhibit maximum covariance with the dependent variables. We performed separate PLSR analyses for group size and range area overlap as dependent variables but used all same ecological predictors: distance between patches and density of vegetation patches as measures of resource distribution; density of burrow openings, vegetation cover and distance to cover as measures of predation risk; soil hardness as a measure of borrowing costs. Additionally, we consider population level as categorical factor for both analyses. Only components that were significant after a fivefold validation procedure were retained (Carrascal et al. 2012). Prior to PLSR analyses, we transformed predictor and dependent variables in order to make their distributions be fairly symmetrical. We followed Wold et al. (2004) and log-transformed variables whose range of values spanned over ten orders of magnitude. Variables whose values spanned over less than ten orders of magnitude were fourth rooted transformed. All PLSR analyses were performed with both dependent and explanatory variables centered and standardized. The Regression Commonality Analysis partitions the total explained variance accounted for by the full regression model (R2) into unique and non-unique contributions made by each ecological predictor variables (Mood 1969; 1971; Newton & Spurrell 1967), a procedure that makes collinearity assessment an informative part of the analysis instead of a methodological nuisance. We implemented Regression Commonality Analysis after fitting a full model to both group size and range area overlap with all ecological predictors. We focused on the extent to which R2 was partitioned into unique, common and total contributions of each predictor to the overall fit of the model, as a way to estimate the partial contribution of each variable to the total variance explained (Kraha et al. 2012). 86 Regression Commonality Analysis was conducted with the of “yhat” module (Interpreting Regression Effects) of R package, version 1.0-5 (Nimon & Roberts 2012). Data are reported as mean ± SE. Statistical significance was determined at P < 0.05. RESULTS Population differences in sociality At Oploca we monitored 6 females and 9 males, representing a total of 5 social groups. At Chusmiza we monitored 5 females and 6 males, and determined 5 additional social groups. Social group sizes at Oploca (3.0 ± 0.32 adults) and Chusmiza (2.2 ± 0.2 adult) were not statistically different (GZLM: χ21 = 0.61, P = 0.435; Fig. 1a). Group size ranged from 2 to 4 adults at Oploca and from 2 to 3 adults at Chusmiza. Of these, the number of adult females ranged from 1 to 2 individuals at Oploca. Social groups at Chusmiza always had only one adult female (Fig. 1b, c). Andean degus from same social groups at both populations always used one burrow system as resting and hiding place. Individual range areas of Andean degus in the Chusmiza (0.37 ± 0.07 ha) were significantly larger than range areas at the Oploca (0.12 ± 0.03 ha) (GLM: F1,22 = 20.652, P < 0.001). In addition, range areas varied significantly with sex (GLM: F1,22 = 7.62, P < 0.011). Male range areas (0.29 ± 0.06) were larger than those of females (0.14 ± 0.03). There was not a statistically significant population by sex interaction on range areas (GLM: F1,22 = 0.25, P < 0.620). Range area overlap among same group members (50.9 ± 6.9%) was greater than overlap among individuals from different social groups (0.6 ± 0.4%) at Chusmiza (GZLM: χ21 = 56.96, P < 0.001; Fig. 2). Likewise, overlap among same group members (32.8 ± 8.9%) was greater than overlap among individuals from different social groups (0%) at 87 Oploca (Fig. 2). Overlap of range areas among same group members at Oploca (32.8 ± 8.9%) and Chusmiza (50.9 ± 6.9) did not differ when group size was controlled for (GLM: F1,7 = 1.64, P = 0.242 and F1,7 = 0.02, P = 0.896, respectively). Abundance of Andean degus The abundance of Andean degus was greater at Chusmiza than at Oploca. There were 23 ± 4 adults at Chusmiza, and 19 ± 4 adults at Oploca. Ecological differences between populations Abundance of ground-level cacti biomass (GZLM: χ21 = 358.27, P < 0.001) and vegetation cover (GLM: F1,28 = 4.55, P = 0.042), two measures of food availability, were higher at Oploca than at Chusmiza (Table 2). Regarding the distribution of food resources, the Poisson variance to mean ratio of distance between patches was higher at Chusmiza than at Oploca (GZLM: χ21 = 314.8, P < 0.001; Table 2), implying a more clumped distribution of resources at Chusmiza. Two out of the three measures of predation risk examined differed between populations. Distance to overhead cover (GLM: F1,665 = 192.27, P < 0.001) was greater at Chusmiza than at Oploca, but the overhead vegetation cover was higher at Oploca than at Chusmiza (GLM: F1,28 = 21.71, P < 0.001) (Table 2). Even though the absolute number of active burrow entrances per burrow system was greater at Bolivian Prepuna (5.4 ± 0.89) compared with Chilean Prepuna (1.62 ± 0.14), density of burrow openings (number of burrow entrances per m2) was similar between populations (GZLM: χ21 = 0.1, P = 0.749; Table 2). 88 There was a statistically significant difference in soil hardness (GZLM: χ21 = 7.11, P < 0.001), in which soil was harder at Oploca compared with Chusmiza (Table 2). Ecological predictors of sociality The PLSR analysis revealed that group size was explained by two partial least regression components that accounted for 75% of the variation in this measure of sociality (Table 2). However, only Component 1 was statistically significant and explained 47.9% of the total variance. Component 1 associated variation in group size to density of vegetation patches and density of burrow openings. Therefore, larger social groups were using areas with greater density of vegetation patches and greater density of burrow openings. Regarding the effects of ecological predictors on overlap in range areas, the PLSR analysis revealed two components, accounting for 31.69%, a relatively low proportion of the original variance. Only Component 1 was significant and explained 25.3% of variance in this additional measure of group-living (Table 2). The most influential ecological factors were soil hardness and density of vegetation patches. Greater range overlap within social groups was associated with low soil hardness and with low density of vegetation patches. The Regression Commonality Analysis revealed an overall significant fit for group size (R2 = 0.87, F6,39 = 52.51, P < 0.001), but not for overlap in range areas (R2 = 0.099, F6,39= 0.72, P = 0.636). In particular, density of vegetation patches and density of burrow openings showed the highest total contribution to variation in group size. In contrast, distance between vegetation patches, vegetation cover, distance to cover, and soil hardness were less important (Table 3). 89 DISCUSSION General findings Our study revealed ecological differences between populations. First, preferred food resources (ground-level cacti biomass) were more abundant at Oploca than at Chusmiza. Similarly, vegetation cover as a second measure of food abundance based on ground-level cacti, columnar cacti, and shrubs at each population was higher at Oploca. A measure based on the Poisson variance to mean ratio indicated that preferred food and other resources (e.g., hiding or resting places) were patchier at Chusmiza. In addition, amount of distance to cover was higher at Chusmiza, and overhead vegetation cover was greater at Oploca, implying that refuge against predators was less abundant, yet more patchily distributed, at Chusmiza. Thirdly, soil hardness was higher at Oploca suggesting that burrowing costs to degus from this population were higher. Fourthly, Andean degu abundance was higher at Chusmiza than at Oploca. Taken together, ecological conditions in terms of Andean degu abundance, resource distribution and predation risk were more challenging at Chusmiza, but the opposite was true in terms of burrowing costs, and food abundance. These population differences did not translate into social differences in terms of mean group size, a raw measure of sociality, and within group range area overlap, a measure of social cohesion during activity. In contrast, within population variation in ecology predicted significant variation in group size, and where larger social groups were in locations with greater density of vegetation patches and density of burrow openings (number of burrow entrances per m2). However, more socially cohesive groups (as indicated from higher overlap in same group range areas) used areas with lower soil hardness and density of vegetation patches. 90 Within vs. between population variation in ecological conditions Intra and inter-specific variation in the number and composition of group members characterizes more socially cohesive groups in vertebrates (Lott 1991; Maher & Burger 2011), and both sources of variation should reflect trade-offs between current fitness benefits and costs that emerge from individuals' decisions to join or leave groups (Ebensperger et al. 2012). Thus, variation in sociality should mirror within and between population differences in ecology. While both sources of variation have been frequent subjects of previous studies, these are rarely addressed simultaneously (Brashares & Arcese 2002; Isvaran 2007; Ebensperger et al. 2012). Unexpectedly, our study on O. gliroides revealed group size and range area overlap within groups did not vary with population differences food abundance and distribution, predation risk, or burrowing costs. Thus, costs and benefits linked to living socially in O. gliroides are not fined tuned to current day population differences in ecology. This lack of social variation may need further examination on the basis of a larger number of social groups and populations, yet our current findings imply a small effect size if any. In contrast, variation in group size within populations was coupled to spatial variation in density of vegetation patches and density of burrow openings. In addition, range area overlap among group members was associated to soil hardness and density of vegetation patches. The lack of population level differences in sociality departs from what has been recorded in other social octodontids (Ebensperger et al. 2012), other social rodents (Travis et al. 1995, Schradin & Pillay 2005), and other social mammals (e.g., ungulates) (Rowe-Rowe et al. 1992; Brashares & Arcese 2002). Very likely, the evolution of octodontids, including O. gliroides, has been shaped by changes in the landscape and habitat fragmentation in response to Andean uplift and increasing aridity about 7.8 Mya (Reig 1986; Contreras et al. 1987; Honeycutt et al. 2003). 91 However, a lack of covariation between population differences in ecology and social behavior in O. gliroides could suggest that group-living in current day populations reflects historical but not current day selective pressures. We lack direct evidence to support this possibility, yet patterns of sociality across Octododontids provide some indirect support. According to phylogenetic hypothesis (Honeycutt et al. 2003; Gallardo et al. 2004; Opazo 2005; Rowe et al. 2010), O. gliroides is basal to social-Chilean clade (Ebensperger et al. 2004; Lacey & Ebensperger 2007) of living octodontids. The observation that O. gliroides exhibit group-living supports that sociality in O. gliroides and the Chilean clade octodontids evolved early in the clade and represents historical selection pressures. Thus, an uncoupling between a relatively ancient social phenotype and current day population differences in ecology cannot be ruled out. Within population predictors of group-living O. gliroides Overall, our results support multiple factors may be important in explaining variation in sociality within populations of Andean degus. Resource availability in particular may predispose some organisms to adopt social living (Rolland et al. 1998; Beauchamp 2002) through benefits derived from the collective defense of resources (Travis et al. 1995; Brashares & Arcese 2002), or through mutual attraction to resources per se with no benefits involved (Carr & Macdonald 1986; Johnson et al. 2001). Either way, the size of social groups is expected to increase with increasing abundance, quality and distribution heterogeneity of food resources (Travis et al. 1995; Brashares & Arcese 2002; Verdolin 2007). Within populations of O. gliroides, group size was positively and range area overlap negatively associated with density of vegetation patches, implying that resource distribution (food, shelter) remains a driver of group-living at Andean degus. This findings supports 92 previous studies based on within population correlates other mammals (Taber & Macdonald 1992; Brashares & Arcese 2002; Isvaran 2007). Within population variation in predation risk also had an influence on group size of Andean degu at Oploca. Larger (yet not more socially cohesive) social groups were recorded in locations with greater density of burrow openings, implying that larger groups decrease predation risk through building more safe heavens. The abundance of safe havens has been noted to decrease vulnerability to predators of other ground-dwelling rodents (Bonenfant & Kramer 1996; Ebensperger & Hurtado 2005). Thus, results from our study converge upon studies on other social mammals (rodents) in that predation risk remains a driver of sociality within populations (Asher et al. 2004; Ebensperger & Wallem 2002; Hayes et al. 2007), but also provide unique evidence on a social enhancement of safe heaven abundance. Burrow systems play an important role in the life of many rodent species in arid environments (Shenbrot et al. 2002). Since the construction and maintenance of burrows systems is energetically costly (Ebensperger & Bozinovic 2000), animals may be forced to live in groups to minimize these costs (Ebensperger 2001). Indeed, active burrow digging has been linked to the evolution of group-living of New World histricognath rodents (Ebensperger & Cofré 2001; Ebensperger & Blumstein 2006). The results of this study do not provide strong support to this hypothesis. Within population variation in group size was unrelated to spatial variation in soil hardness. Moreover, social cohesion within social groups (as evidence from range area overlap) decreased in patches with harder soil conditions, and this association had a relatively low effect size. 93 ACKNOWLEDGMENTS We thank G. Villanueva, H. Villca, A. Galarza and M.A Jaldin for their assistance during data collection. DSR is extremely thankful to F. Alfaro for his continuously assistance. We thank to Oploca and Chusmiza community who welcomed us and facilitated our study. We thank the Dirección General de Biodiversidad, Bolivia and Servicio Agrícola y Ganadero, Chile for permission to work and capture specimens in Bolivia and Chile respectively. Comments and suggestions made by L. Hayes and helped us to improve an early version of this article. The Centro de Biodiversidad y Genética- Universidad Mayor de San Simón and Laboratorio de Ecología Conductual, Departamento de Ecología-Pontificia Universidad Católica provided traps and field equipment. DSR was supported by the Organización de los Estados Americanos (OEA), Comisión Nacional Científica y Tecnológica (CONICYT), Vicerrectoría de Investigación and Dirección de Investigación y Postgrado-Pontificia Universidad Católica de Chile (VRI-UC and DIP-UC), the Animal Behaviour Society (Developing Nations Award), the American Society of Mammalogists, and the Program 1 of Centro de Estudios Avanzados en Ecología y Biodiversidad (FONDAP 1501–001). LAE was supported by FONDECTY grant (#1090302). 94 REFERENCES Abdi, H. 2007. Partial least square regression (PLS regression). In: Encyclopedia of measurement and statistics. (Ed. by N.J. Salkind), pp 740-744. Sage, Thousand Oaks. Aguilar, M. R. & Sala, O. E. 1999. Patch structure, dynamics and implications of the functioning of arid ecosystems. Trends in Ecology and Evolution, 14, 273-277. Alexander, R. D. 1974. The evolution of social behavior. Annual Review of Ecology, Evoution and Systematics, 5, 325-383. Altizer, S., Nunn, C. L., Thrall, P. H., Gittleman, J. L., Antonovics, J., Cunningham, A. A., Dobson, A. P., Ezenwa, V., Pedersen, A. B., Poss, M. & Pulliam, J. R. C. 2003. Social organization and parasiterisk in mammals: integrating theory and empirical studies. Annual Review of Ecology, Evolution and Systematics, 34, 517547. Animal Care and Use Committee. 1998. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. Journal of Mammalogy, 79, 1416-1431. Asher, M., Spinelli de Oliveira, E. & Sachser, N. 2004. Social system and spatial organization of wild guinea pigs (Cavia aperea) in a natural population. Journal of Mammalogy, 85, 788-796. Barquez, R. M., Díaz, M. M. & Ojeda, R. 2006. Mamíferos de Argentina. Sistemática y Distribución. Sociedad Argentina para el Estudio de los Mamíferos (SAREM).Tucuman, Argentina. 95 Berteaux, D., Bergeron, J. M., Thomas, D.W. & Lapierre, H. 1996. Solitude versus gregariousness: do physical benefits drive the choice in overwintering meadow voles? Oikos, 76, 330-336. Beauchamp, G. 2002. Higher-level evolution of intraspecific flock-feeding in birds. Behavioral Ecology and Sociobiology, 51, 480-487. Bonenfant, M. & Kramer, D. 1996: The influence of distance to burrow on flight initiation distance in the woodchuck, Marmota marmota. Behavioral Ecology, 7, 299-303. Bonham, C.D. 1989. Measurements for Terrestrial Vegetation. Wiley, New York. Brashares, J. S. & Arcese, P. 2002. Role of forage, habitat and predation in the behavioural plasticity of a small African antelope. Journal of Animal Ecology, 71, 626-638. Canals, M., Rosenmann, M., Novoa, F. F. & Bozinovic, F. 1998. Modulating factors of the energetic effectiveness of huddling in small mammals. Acta Theriologica, 43, 337-348. Carrascal, L. M., Galván, I. & Gordo, O. 2009. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos, 118, 681-690. Carrascal, L. M., Villén-Pérez, S. & Seoane, J. 2012. Thermal, food and vegetation effects on winter bird species richness of Mediterranean oakwoods. Ecological research, 27, 293-302. Carr, G. M. & Macdonald, D. W. 1986. The sociality of solitary foragers: a model based on resource dispersion. Animal Behaviour, 34, 1540-1549. Clutton-Brock, T. H., Gaynor, D., McIlrath, G. M., Maccoll, A. D., Kansky, R., Chadwick, P., Manser, M., Skinner, J. D. & Brotherton, P. N. M. 1999. 96 Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. Journal of Animal Ecology, 68, 672-683. Contreras, L. C., Torres-Mura, J. C. & Yánez, J. L. 1987. Biogeography of octodontid rodents: an eco-evolutionary hypothesis. In: Fieldiana Zoology (new series) (Ed. by B.D. Patterson & R.E. Timm), pp. 401-411. Chicago, IL: Field Museum of Natural History. Ebensperger, L. A. 1998. Sociality in rodents: the New World fossorial hystricognaths as study models. Revista Chilena de Historia Natural, 71, 65-77. Ebensperger, L. A. & Bozinovic, F. 2000. Communal burrowing in the hystricognath rodent, Octodon degus: a benefit of sociality? Behavioral Ecology and Sociobiology, 47, 365-369. Ebensperger, L. A. 2001. A review of the evolutionary causes of rodent group-living. Acta Theriologica, 46, 115-144. Ebensperger, L. A. & Cofré, H. 2001. On the evolution of group-living in the New World cursorial hystricognath rodents. Behavioral Ecology, 12, 227-236. Ebensperger, L. A. & Wallem, P. K. 2002. Grouping increases the ability of the social rodent, Octodon degus, to detect predators when using exposed microhabitats. Oikos, 98, 491-497. Ebensperger, L. A., Hurtado, M. J., Soto-Gamboa, M., Lacey, E. A. & Chang, A. T. 2004. Communal nesting and kinship in degus (Octodon degus). Naturwissenschaften, 91, 391-395. Ebensperger, L. A. & Hurtado, M. J. 2005. On the Relationship between Herbaceous Cover and Vigilance Activity of Degus (Octodon degus). Ethology, 111, 593-608. 97 Ebensperger, L. A. & Blumstein, D. T. 2006. Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behavioral Ecology, 17, 410-418. Ebensperger, L. A., Hurtado, M. J. & Ramos-Jiliberto, R. 2006. Vigilance and collective detection of predators in degus (Octodon degus). Ethology, 112, 879-887. Ebensperger, L. A., Sobrero, R. Campos, V. & Giannoni, S. M. 2008. Activity, range areas, and nesting patterns in the viscacha rat, Octomys mimax: implications for its social organization. Journal of Arid Environments, 72, 1174-1183. Ebensperger, L. A., Castro, R. A., Sobrero, R., Quirici, V., Burger, J. R, Quispe, R., Villavicencio, C., Vásquez, R. A., Soto-Gamboa, M. & Hayes, L. D. 2012. Ecological drivers of group-living in two populations of the communally rearing rodent, Octodon degus. Behavioral Ecology and Sociobiology, 66, 261-274. Freeland, W. J. 1979. Primate social groups as biological islands. Ecology, 60,719-728. Gallardo, M. H., Kausel, G., Jiménez, A., Bacquet, C., González, C., Figueroa, J., Köhler, N. & Ojeda, R. 2004. Whole‐genome duplications in South American desert rodents (Octodontidae). Biological Journal of the Linnean Society 82: 443451. Gannon, W. L. & Sikes, R. S. 2007.Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 88, 809-823. Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. 2009.Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 180195. Hass, C. C. & Valenzuela, D. 2002. Anti-predator benefits of group-living in white-nosed coatis (Nasua narica). Behavioral Ecology and Sociobiology, 51, 570-578. 98 Hayes, L. D., Chesh, A. S. & Ebensperger, L. A. 2007. Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology, 113, 155-165. Hayes, L. D., Chesh, A. S., Castro, R. A., Tolhuysen, L. O., Burger, J. R., Bhattacharjee, J. & Ebensperger, L. A. 2009. Fitness consequences of group living in the degu Octodon degus, a plural breeder rodent with communal care. Animal Behaviour, 78, 131-139. Hill, R. A. & Dunbar, R. I. M. 1998. An evaluation of the roles of predation rate and predation risk as selective pressures on primate grouping behavior. Behaviour, 411430. Hill, R. A. & Lee, P. C. 1998. Predation risk as an influence on group size in cercopithecoid primates: implications for social structure. Journal of Zoology, 245, 447-456. HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H. & de Kroon, H. 2001. Vegetation pattern formation in semi-arid grazing systems. Ecology, 82, 5061. Honeycutt, R. L., Rowe, D. L. & Gallardo, M. H. 2003.Molecular systematics of the South American Caviomorph rodents: relationships among species and genera in the family Octodontidae. Molecular Phylogenetics and Evolution, 26, 476-489. Ibisch, P. L., Beck, S. G., Gerkmann, B. & Carretero, A. 2003. La diversidad biológica: ecorregiones y ecosistemas. In: Biodiversidad: La Riqueza de Bolivia (Ed. by P.L. Ibisch & G. Mérida), pp. 47-88. Santa Cruz: Fundación Amigos de la Naturaleza (FAN). 99 Ipinza, J., Tamazo, M. & Torrmann, J. 1971. Octodontidae in Chile. Noticiario Mensual, Boletín del Museo Nacional de Historia Natural (Santiago), 16, 3-10. Isvaran, K. 2007. Intraspecific variation in group size in the blackbuck antelope: the roles of habitat structure and forage at different spatial scales. Oecologia, 154, 435-444. Jensen, S. P., Grey, S. J. & Hurst, J. J. 2003: How does habitat structure affect activity and use of space among house mice? Animal Behaviour, 66, 239-250. Johnson, D. D., Baker, S., Morecroft, M. D. & Macdonald, D. W. 2001. Long-term resource variation and group size: a large-sample field test of the resource dispersion hypothesis. BMC ecology, 1, 2-2. Johnson, D. D. P., Kays, R., Blackwell, P. G. & MacDonald, W. 2002. Does the resource dispersion hypothesis explain group-living? Trends in Ecology and Evolution, 17, 563-570. Kaufman, A.S., Paul, M.J., Butler, M.P. & Zucker, I. 2003. Huddling, locomotor, and nest-building behaviors of furred and furless Siberian hamsters. Physiology and Behavior, 79, 247-256. Kenward, R. E. 2001. A Manual for Wildlife Radio Tagging.Academic Press, San Diego, CA, USA. Kenward, R. E., South, A. B. & Walls, S. S. 2003. Ranges 6, Version 1.2: For the Analysis of Tracking and Location Data. Online Manual. Anatrack Ltd., Wareham, United Kingdom. Kraha, A., Turner, H., Nimon, K., Zientek, L. R. & Henson, R. K. 2012. Tools to support interpreting multiple regression in the face of multicollinearity. Frontiers in psychology, 3. Krause, J. &Ruxton, G. D. 2002. Living in groups. Oxford University Press, Oxford 100 Krebs, C. J. 1999. Ecological Methodology, 2nd ed. Menlo Park, CA: Longman. Kruuk, H. & Parish, T. 1987.Changes in the size of groups and ranges of European Badger (Meles meles L.) in an area in Scotland. Journal of Animal Ecology, 56, 351-364 Lacey, E. A. 2000. Spatial and social systems of subterranean rodents. In: Life underground. The biology of subterranean rodents. (Ed. by E. A. Lacey, J. L. Patton & G. N. Cameron), pp. 257-296. Chicago and London: The University of Chicago Press. Lacey, E. A. & Wieczorek, J. R. 2003. Ecology of sociality in rodents: a ctenomyid perspective. Journal of Mammalogy, 84, 1198-1211. Lacey, E. A. & Ebensperger, L. A. 2007. Social structure in Octodontid and Ctenomyid rodents. In: Rodent Societies An Ecological and Evolutionary Perspective. (Ed. by J.O. Wolff & P.W. Sherman), pp. 257-296. Chicago, IL: University of Chicago Press. Lacey, E. L. & Sherman, P. W. 2007. The ecology of sociality rodents. In: Rodent societies: An ecological & evolutionary perspective (Ed. by J.O. Wolff & P.W. Sherman), pp. 243-254. Chicago, IL: University Chicago Press, USA. Loehle, C. 1995. Social barriers to pathogen transmission in wild animal populations. Ecology, 76, 326-335. López, R. P. 2000. La Prepuna boliviana. Ecología en Bolivia, 34, 45-70. López, R. P. 2003. Soil seed banks in the semiarid Prepuna of Bolivia. Plant Ecology, 168, 85-92. 101 López, R. P., Larrea-Alcázar, D. M. & Ortuño, T. 2009. Positive effects of shrubs on herbaceous species richness across several spatial scales: evidence from the semiarid Andean subtropics. Journal of Vegetation Science, 20, 728-734. López, R. P., Larrea-Alcázar, D., & Zenteno-Ruiz, F. 2010. Spatial pattern analysis of dominant species in the Prepuna: Gaining insight into community dynamics in the semi-arid, subtropical Andes. Journal of Arid Environments, 74, 1534-1539. Lott, D.F. 1991. Intraespecific variation in the social systems of wild vertebrates. Cambriges University Press, Cambridge. Macdonald, D. W. 1983. The ecology of carnivore social behavior. Nature, 301, 379-384. Maher, C. R. & Burger, J. R. 2011. Intraspecific variation in space use, group size, and mating systems of caviomorph rodents. Journal of Mammalogy, 92, 54-64. Mann, F. G. 1978. Los pequeños mamíferos de Chile (marsupiales, quirópteros, edentados y roedores). Gayana Zoología, 40, 1-342. Mares, M. A., Braun, J. K. & Channell, R. 1997. Ecological observations on the octodontid rodent, Tympanoctomys barrerae, in Argentina. Southwestern Naturalist, 42, 488-504. Ministerio de Obras Públicas (MOP). 2012. Datos temperaturas período 1989–2011. In Departamento de Hidrología, Dirección General de Aguas. Ministerio de Obras Públicas, Santiago, Chile. Mood, A. M. 1969. Macro-analysis of the American educational system. Operations Research, 17, 770-784. Mood, A. M. 1971. Partitioning variance in multiple regression analyses as a tool for developing learning models. American Educational Research Journal, 8, 191-202 102 Moreira-Muñoz, A. 2011. Plant geography of Chile. Plant and Vegetation, vol.5. Springer Science, Business Media. Nester, P. L., Gayó, E., Latorre, C., Jordan, T. E. & Blanco, N. 2007. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Sciences, 104, 19724-19729. Nedbal, M. A., Allard, M. W. & Honeycutt, R. L. 1994. Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Mol. Phylogenet. Evol. 3:206–220. Newman, M. E. J. 2004. Analysis of weighted networks. Physical Review E, 70, 056131. Newton, R. G. & Spurrell, D. J. 1967. A development of multiple regression for the analysis of routine data. Applied Statistics, 16, 51-64. Nimon, K. & Roberts, J. K. 2012.yhat: Interpreting Regression Effects. R package version 1.0-5. http://CRAN.R-project.org/package=yhat Nowak, R. M. 1991. Walker's Mammals of the World. 5th edn, Vol. 1.J- Hopkins University Press, Baltimore. Ojeda, A. A. 2010. Phylogeography and genetic variation in the South American rodent Tympanoctomys barrerae (Rodentia: Octodontidae). Journal of Mammalogy, 91, 302-313. Opazo, J. 2005. A molecular timescale for Caviomorph rodents (Mammalia, Hystricognathi). Molecular Phylogenetics and Evolution 37: 932-937. Otis, D. L., Burnham, K. P., White, G.C., & Anderson, D. R. 1978. Statistical inference from capture data on closed populations. Wildlife Monographs, 62, 1-135. Pedreros, A. M. & Valenzuela, J. Y. 2009. Mamíferos de Chile. CEA ediciones. Santiago, Chile. 103 Pennycuick, C. J. 1988: Conversion Factors: SI Units and Many Others. Univ. Chicago Press, Chicago, IL. Philippi, B. R. A. 1941. Notas sobre aves observadas en la provincia de Tarapacá. Boletín Museo Nacional Historia Natural, 19, 43-77. Pulliam, H.R. & Caraco, T. 1984. Living in groups: is there an optimal group size? In: Behavioural ecology: an evolutionary approach (Ed. by J.R. Krebs & J.B. Davies), pp. 122-147. Sunderland, MA: Sinauer Associates. Reig, O. A. 1986. Diversity patterns and differentiation of High Andean Rodents. In: High Altitude Tropical Biogeography (Ed. by F. Vuilleumier & M. Monasterio), pp. 404439. New York: Oxford University Press. Reus, M. L., Peco, B., de los Ríos, C., Giannoni, S. M. & Campos, C. M. 2013. Trophic interactions between two medium-sized mammals: the case of the native Dolichotis patagonum and the exotic Lepus europaeus in a hyper-arid ecosystem. Acta Theriologica, 1-10. Rexstad, E. & Burnham, K. P. 1991. User’s guide for interactive program CAPTURE. Abundance estimation of closed populations. Colorado State University, Fort Collins, Colorado, USA. Ribichich, A. M. 2002. El modelo clásico de la fitogeografía de Argentina: un análisis crítico. Interciencia, 27, 669-675. Rivera, D. S. 2013. Organización social de Octodontomys gliroides (Gervais y d'Orbigny, 1844) y las implicaciones sobre el origen y evolución de la sociabilidad en roedores octodóntidos. Ph.D. thesis, Pontificia Universidad Católica de Chile. Roberts, G. 1996. Why individual vigilance declines as group size increases. Animal Behaviour, 51, 1077-1086. 104 Rolland, C., Danchin, E. & Fraipont, M. D. 1998. The evolution of coloniality in birds in relation to food, habitat, predation, and life-history traits: a comparative analysis. The American Naturalist, 151, 514-529. Rowe-Rowe, D. T., Everett, P. S. & Perrin, M. R. 1992.Group sizes of oribis in different habitats. South African Journal of Zoology, 27, 140-143. Rowe, D. L., Dunn, K. A., Adkins, R. M. & Honeycutt, R. L. 2010. Molecular clocks keep dispersal hypotheses afloat: evidence for trans‐Atlantic rafting by rodents. Journal of Biogeography 37: 305-324. Sala, O. E. & Aguiar, M. R. 1996.Origin, maintenance, and ecosystem effect of vegetation patches in arid lands. In Range lands in a Sustainable Biosphere (Proceedings of the Fifth International Rangeland Congress (Ed. by N. West), pp. 29-32. Denver: Society for Range Management. Santoro, C. M. & Latorre, C. 2009. Propuesta metodológica interdisciplinaria para poblamientos humanos Pleistoceno tardío/Holoceno temprano, precordillera de Arica, Desierto de Atacama Norte. Andes, 7, 13-35. Schradin, C. 2005. When t olive alone and when t olive in groups: ecological determinants of sociality in the African striped mouse (Rhabdomys pumilio, Sparrman, 1784). Belgian Journal of Zoology, 135, 77-82. Schradin, C., Pillay, N. & Solomon, N. G.2005.Intraspecific variation in the spatial and social organization of the african striped mouse. Journal of Mammalogy, 86, 99107. 105 SENAMHI, E.2012. El Servicio Nacional de Meteorología e Hidrología (SENAMHI) http://www.senamhi.gob.bo/ Shenbrot, G., Krasnov, B., Khokhlova, I., Demidova, T. & Fielde, L. 2002.Habitatdependent differences in architecture and microclimate of the burrows of Sundevall´sjird (Meriones crassus) (Rodentia: Gerbillinae) in the Neveg Desert, Israel. Journal of Arid Environments, 51, 265-279. Slobodchikoff, C. N. 1984. Resources and the evolution of social behavior. In A new ecology: novel approaches to interactive systems (Ed. By P. W. Price, C. N. Slobodchikoff & W. S. Gaud), pp. 227-251. New York, USA: John Wiley. Spinks, A. C., Bennett, N. C. & Jarvis, J. U. M. 2000.Comparative patterns of philopatry and dispersal in two common mole-rat populations: implications for the evolution of mole-rat sociality. Journal of Animal Ecology, 69, 224-234. Taber, A. B. & Macdonald, D. W. 1992. Spatial organization and monogamy in the mara Dolichotis patagonum. Journal of Zoology (London), 227, 417-438. Taraborelli, P. 2009. Is communal burrowing or burrow sharing a benefit of group-living in the lesser cavy Microcavia australis?. Acta theriologica, 54, 249-258. Teta, P. & Ortiz, P. E. 2002. Micromamíferos andinos Holocénicos del sitio arqueológico Inca Cueva 5, Jujuy, Argentina: Tafonomía, zoogeografía y reconstrucción paleoambiental. Estudios Geológicos, 58, 117-135. Travis, S. E. & Slobodchikoff, C. N. 1993. Effects of food resource distribution on the social system of Gunnison’s prairie dog (Cynomys gunnisoni). Canadian Journal of Zoology, 71, 1186-1192. 106 Travis, S. E., Slobodchikoff, C. N. & Keim, P. 1995. Ecological and demographic effects on intraspecific variation in the social system of prairie dogs. Ecology, 76, 17941803. Upham, N. S. & Patterson, B. D. 2012. Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Molecular Phylogenetics and Evolution, 63, 417-429. Vásquez, R. A., Ebensperger, L. A. & Bozinovic, F. 2002.The influence of habitat on travel speed, intermittent locomotion, and vigilance in a diurnal rodent. Behavioral Ecology, 13, 182-187. Verdolin, J. L. 2009. Gunnison’s praire dog (Cynomys gunnisoni): testing the resource dispersion hypothesis. Behavioral Ecology and Sociabiology, 63,789-799. Villanueva, G. 2013. Evaluación de la dieta de la rata cola de pincel, Octodontomys gliroides (Rodentia Octodontidae) en dos ambientes contrastantes. Bachellor thesis, Universidad Mayor de San Simón. White, G. C., Anderson, D. R., Burnham, K. P. & Otis, D. L. 1982. Capture-recapture and removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos, New Mexico, USA. Whitehead, H. 2008. Analyzing animal societies: quantitative methods for vertebrate social analysis. Chicago University Press, Chicago, IL. Whitehead, H. 2009. SOCPROG programs: analyzing animal social structures. Behavioral Ecology and Sociabiology, 63,765-778 Wold, S., Eriksson, L., Trygg, J. & Kettaneh, N. 2004. The PLS method-partial least squares projections to latent structures and its applications in industrial RDP (research, development, and production). Unea University. 107 Wrangham, R. W. 1979. On the evolution of ape social systems. Social Science Information, 18, 335-368). Zar, J. H. 1996. Biostatistical Analysis, 3rd edn. Prentice Hall, Inc., Upper Saddle River, NJ. 108 Table 1. Mean (±SE) estimates and statistical comparisons of ecological conditions between Oploca and Chusmiza populations. Values in bold indicate statistical significant differences at P < 0.05. Ecological condition/variables Populations Oploca Chusmiza P-value 141.19± 42.48 77.64± 5.82 <0.001 Vegetation cover (%) 46.67 37.19 0.04 Distribution of resources 31.44 ± 0.44 39.21 ± 1.21 <0.001 46.67 24.67 <0.001 27.93 ± 0.43 37.77 ± 0.57 <0.001 0.1 ± 0.02 0.14 ± 0.03 0.749 29.42 ± 0.22 24.36 ± 0.25 <0.001 Food Abundance Abundance of food biomass (g/m2) Poisson variance to mean ratio of distance between patches Predation risk Overhead vegetation cover (%) Distance to cover (m) 2 Density of burrow openings (number/m ) Burrowing costs Soil hardness (Kg/cm2)a a 2 2 2 2 To convert lbf/in into kg/m we used 1 lbf/in = 0.07031 kg/cm (Pennycuick 1988). 109 Table 2. Results of the Partial least squares regression (PLSR) model for most influential variables from three hypotheses explaining two measures of Andean degu sociality (group size, range area overlap); w COMP 1 and 2 represent the weights of each variable in the first and second PLSR components, respectively; R2 is the percentage of variance in the response variable accounted for by each component of the PLSR. PLSR weights whose squares are larger than 0.2 for the significant component are shown in bold. Ecological predictor variable Sociality measure PLSR Group size PLSR Range area overlap w w COMP1 COMP2 w COMP1 w COMP2 Distance between patches 0.2875 0.1765 -0.2557 0.1045 Density of vegetation patches 0.4734 -0.0313 -0.4053 0.2234 Density of burrow openings 0.4656 0.6128 -0.1233 0.7933 Distance to cover (m) 0.0899 -0.0996 -0.0925 0.2974 Vegetation cover -0.1674 0.3062 0.3113 0.4095 Resource Distribution Predation risk Burrowing costs 110 Soil harness 0.2678 -0.6752 -0.4911 0.2316 R2 (%) 47.893 27.126 25.34 6.359 P* * The PLSR model was not significant (P > 0.05). <0.0001 * <0.0001 * 111 Table 3. Results from regression commonality analysis for ecological variables explaining two measures of sociality (group size, range area overlap) in the Andean degu. Values in bold indicate independent predictors whose contribution was larger than 20%, when overall fit of multiple regression model was statistically significant. Hypothesis Sociality measures Group size Range area overlap Unique Common Total %R2 Unique Common Total %R2 Distance between patches 0.0550 0.1010 0.1560 17.871 0.0013 0.0157 0.0170 17.172 Density of vegetation patches 0.3528 0.0278 0.3806 43.602 0.0315 0.0454 0.0769 77.677 Burrow density 0.0009 0.2576 0.2585 29.614 0.0121 -0.0030 0.0091 9.191 Distance to cover (m) 0.0174 -0.0172 0.0002 0.023 0.0012 -0.0011 0.0001 0.101 Vegetation cover 0.000 0.1006 0.1006 11.525 0.0000 0.0248 0.0248 25.050 Soil harness 0.2881 -0.2069 0.0812 9.302 0.0034 0.0470 2 Note: Unique, x’s unique effect; Common, Σ x’s common effects; Total = Unique + Common; % of R = Total/R2 0.0504 50.909 Resource Distribution Predation risk Burrowing costs 112 FIGURE LEGENDS Figure 1. Mean (± SE) (a) total group size, (b) number of female group members, and (c) number of male group members of O. gliroides at Oploca population (white squares) and Chusmiza population (black squares). Figure 2. Mean (± SE) range area overlap among individuals of same social groups at Oploca and Chusmiza. Pie graphs on top of the bars are used to compare range area overlap among individuals from same social groups (white proportion) and overlap among individuals from different social groups (black proportion). There was no overlap in range areas among individuals from different social groups at Chusmiza. 113 Figure 1. Total group size 5 a) 4 3 2 1 0 Chusmiza Oploca Localities Number of females 5 b) 4 3 2 1 0 Oploca Chusmiza Localities Number of males 5 c) 4 3 2 1 0 Oploca Chusmiza Localities 114 Figure 2. Intra-group home range overlap (%) 100 80 60 40 20 0 Oploca Chusmiza Localities 115 CONCLUSIONES GENERALES 116 CONCLUSIONES Los resultados de esta tesis son los primeros en dilucidar las relaciones filogeográficas, comportamiento social y ecología del roedor octodóntido, Octodontomys gliroides. Los resultados indicaron que las poblaciones actuales de O. gliroides presentan una alta estructuración genética, con tres grupos principales y que son congruentes con las principales barreras geográficas postuladas para la distribución de esta especie. Tanto los análisis de diferencias pareadas entre sitios nucleotídicos como las pruebas de neutralidad y BSP señalan historias contrastantes para cada uno de los tres grupos. Por un lado el grupo I, representado por poblaciones al Este y Oeste de la cordillera de los Andes (Chile, Bolivia y Argentina) evidenció una expansión demográfica reciente, la cual estaría asociada a los periodos secos-húmedos que tuvieron lugar durante el Pleistoceno-Holoceno. Por otro lado, el grupo II incluyó a las poblaciones del norte-centro de Bolivia, y el grupo III representando por poblaciones argentinas se caracterizaron por presentar estabilidad demográfica. Mientras que la historia del Cuaternario para el resto de los octodóntidos ha sido asociada a eventos de avance y retraída de ultimo máximo glacial (LGM), los resultados de estas tesis apoyan que la actual distribución de O. gliroides está asociada a una alternancia de periodos secos y húmedos que tuvieron lugar durante el Pleistoceno en la Puna Andina. La reconstrucción del escenario biogeográfico más plausible indica que el nodo de origen de Octodontomys tuvo lugar en un ambiente con características tanto de la Puna como la Prepuna Andina de hace aproximadamente 2.43 millones de años atrás (Plesitoceno), a partir del cual esta especie diversificó. En base a estos resultados, se seleccionaron dos poblaciones genéticamente distintas sometidas a distinta productividad primaria determinada por un gradiente de precipitación 117 Este-Oeste generado por el efecto de “sombra de lluvia” de los Andes. Se determinó y comparó el grado de sociabilidad entre poblaciones de O. gliroides y cómo una posible variación en este aspecto del comportamiento este se relaciona con factores ecológicos en términos de abundancia y distribución de recursos, riesgo de depredación y costos asociados a cavar madrigueras. Los resultados indicaron que la sociabilidad cuantificada a partir del tamaño de grupo y porcentaje de solapamiento de espacial entre individuos del mismo grupo (una medida de cohesión social) no varió significativamente entre las dos poblaciones estudiadas, a pesar de diferencias marcadas en las condiciones ecológicas entra ambas. En cambio, se registró una asociación entre diferencias ecológicas y variación en el tamaño de los grupos dentro de estas poblaciones. En conjunto, los resultados son consistentes con que la sociabilidad en esta especie evolucionó en respuesta a las condiciones de aridez en el pasado y que esta se han mantenido relativamente invariable a lo largo del tiempo a pesar de las diferencias ecológicas entre sus poblaciones actuales. Finalmente, y tomando en cuenta la posición filogenética de O. gliroides, los resultados de esta tesis son consistentes con un escenario donde la sociabilidad en la familia Octodontidae evolucionó temprano en el clado “social”. La verificación de esta hipótesis requiere de un análisis de reconstrucción del estado ancestral en Octodontidae. 118