工具機動力學講義-誤差補償(2008/10/22上傳)
Transcription
工具機動力學講義-誤差補償(2008/10/22上傳)
OUTLINE • • • • • • Introduction of Geometrical Errors for a Machine Tool and Error Compensation Technology J. J. Junz Wang ME NCKU ME, NCKU Induction of machining quality of productions Error sources of machine tool Definition and evaluation of errors Measurements of geometrical errors Measurements of geometrical errors Error compensation technology Variance of analysis 1 2 Conventional Machine Tools Conventional Machine Tools • Among the basic machine tools: – Lathe, shaper, planer and milling machine, drilling , p ,p g , g and boring, grinders, saws. Induction of Machining Quality of Induction of Machining Quality of Productions • Lathe • Oldest and most common type of turning machine, holds and rotates metal or wood while cutting tool holds and rotates metal or wood while cutting tool shapes material. 3 4 Conventional Machine Tools Conventional Machine Tools Conventional Machine Tools contd Conventional Machine Tools‐contd. • CNC milling machines ( 5 axis) – The manual programming or command generation p g g g is nearly impossible. – Thus, they are practically always programmed Thus they are practically always programmed with CAM. • Computer‐Aided Computer‐Aided Manufacturing Manufacturing is the software used is the software used to generate the instruction codes for a CNC machine in order for it to cut out a shape designed in a Computer‐ p g p Aided Design (CAD) system. Cylinder Head manufacture using 5-axis CNC machine 5 6 7 8 Micro‐EDM Process Si bevel gear Si S S-shaped shaped beam Which quality of work is the most important? Microgripper jaw with force sensor Steel micropropeller Error Budget in a Machine Tool Error Budget in a Machine Tool Error Sources for a Machine Tool 9 Machine Tool Performance Testing Machine Tool Performance Testing Source: Ramesh et al., Int. J Mach, Tools Manuf., 40, 1235‐1256 10 Machine Tool Performance Testing contd Machine Tool Performance Testing‐contd. • Th The error motion of spindle has to be measured ti f i dl h t b d dynamically. • The response of the machine to internal heat sources The response of the machine to internal heat sources such as spindles and axes drives has to be measured. • The contouring capability of the machine tool has to be measured using as many axes as possible. (Ex: circle test) d i ibl (E i l ) • The cutting performance (in case of machining centers) has to be measured using specified cutting tests has to be measured using specified cutting tests. • The short‐term reliability of the machine must also be measured. • Th The response of the machine to the installation f h hi h i ll i environment has to be measured (Vibrations, Temperature Variation Error etc ) Temperature Variation Error etc.) • Linear positioning errors at key locations have to be measured. • Angular positioning errors at key locations have to be measured. • The critical machine alignments have to be measured (i.e., squareness and parallelism) 11 12 Uncertainty of Nominal Differential Expansion (UNDE) Thermal Error Index Thermal Error Index • Th The thermal error index (TEI) for a machine and its h l i d (TEI) f hi di environment has two components – the uncertainty of nominal differential expansion the uncertainty of nominal differential expansion (UNDE) – the temperature variation error (TVE) the temperature variation error (TVE) • The UNDE is a measure of the machine to make accurate parts in its environment due to an ‘incorrect’ parts in its environment due to an incorrect mean mean temperature. • The TVE is a measure of positional drift due to p environmental temperature changes. • The length (or size) of mechanical parts is defined by international law at a temperature of 20 oC (68 oF) • The thermal expansion coefficients of materials have uncertainties of approximately 1 ppm. • Correction to the defined temperature therefore co a s u ce a es a us be ecog ed a d contains uncertainties that must be recognized and quantified. 13 Drift Test Drift Test Temperature Variation Error (TVE) Temperature Variation Error (TVE) • It It is also known as the is also known as the “drift” drift test. • The structural loop of a The str ct ral loop of a machining center responds to changes in the ambient to changes in the ambient temperature and gradients, causing unmeasured changes causing unmeasured changes in relative position of tool and workpiece. p • This test is performed over a p period of time to measure these errors. 14 Spindle Test Sphere Table LVDT’s/ Capacitance Gages 15 16 Geometrical Errors in a Machine tool Geometrical Errors in a Machine tool Displacement Accuracy Displacement Accuracy Z yyaw Z straightness of X roll pitch Y Y straightness of X X Three axis machine Linear error 1 x 3 = 3 g Straightness 2 x 3 = 6 Angular error 3 x 3 = 9 Squareness Total • The displacement accuracy is performed with a laser interferometer corrected for atmospheric conditions. • The linear displacement accuracy is essential for correct performance of the machine tool. • The linear positioning accuracy is checked through the center of th the work zone on machining centers. k hi i t • The test is usually performed both uni‐directionally and bi‐ directionally. directionally = 3 21 Linear Position Accuracy 17 18 Straightness Errors Straightness Errors Linear Displacement Accuracy Linear Displacement Accuracy • Straightness errors are caused when a linear axis deviates towards the other two axes when moving along a straight line. 19 20 Angular Errors of Linear Axis Motion Angular Errors of Linear Axis Motion Squareness Error between the Axes Error between the Axes • For a linear axis, squareness is the angular deviation from 90 degrees measured between the best fit lines drawn through two sets of straightness data derived from two orthogonal axes. • When the linear axes move they also rotate move they also rotate through small angles. These angular motions g are known as pitch, yaw and roll. • Angular errors can lead to large positioning errors due to Abbe’s offsets. Y Straightness data Least squares fit Least squares fit θ X 21 22 Definition of Accuracy (By American National Bureau of Standards, NBS) • Accuracy is the ability to tell the truth or: Accuracy is the ability to tell the truth or: – Accuracy can be represented as the difference between the root mean square radius of all bullet holes in a target the root mean square radius of all bullet holes in a target and the radius of the bull’s eye. – Linear, planar, and volumetric accuracy can all be defined Linear, planar, and volumetric accuracy can all be defined for a machine. Definition and Evaluation of Errors 23 24 Definition of Accuracyy‐contd. Definition of Accuracy‐contd. Definition of Accuracy contd • Repeatability (Precision) is the ability to tell the same p y( ) y story over and over again or: • Resolution is how detailed your story is – The error between a number of successive attempts to p move the machine to the same position. – Repeatability is often considered to be the most important parameter of a computer controlled machine (or sensor). – Th The smallest ll discernible change in the parameter of di ibl h i h f interest that can be detected by the instrument, – The smallest The smallest positional increment that can be commanded positional increment that can be commanded of a motion control system, – The smallest programmable step, The smallest programmable step – The smallest mechanical step the machine can make during point to point motion. during point to point motion. 25 26 Accuracy and Repeatability Accuracy and Repeatability 單目標點單向定位及其平均值( 單目標點單向定位及其平均值(mean) ) Accuracy is the ability to tell the truth. And, repeatability (Precision) i h bili is the ability to tell the same story over and over again. As shown in ll h d i h i following figures, poor precision may cause poor accuracy to machine tool when the average radius of bullet holes to target is machine tool when the average radius of bullet holes to target is close to zero. Poor accuracy Poor precision Poor accuracy Good precision After Before correction x 為目標位置 將所有點資料加總後除以樣本個數可 得到所有點資料的平均位置 x Δx 為所有資料的平均偏移量(mean deviation) Good accuracy Good precision After 27 28 單點定位的頻率圖 (frequency plot) (frequency plot) 平均偏移量 (mean deviation)計算 (mean deviation)計算 目標位置 0.1213 (in) Run Deviation(μin) 1 40 2 30 3 20 4 10 5 -10 6 -30 7 -40 Δx 3 60 Deviation (μin ) 40 20 data 0 mean -20 20 Δx 為所有資料的平均偏移量 (mean deviation) ( ) Δx 跟準確度(accuracy)有關 -40 -60 0 0.05 0.1 0.15 Poistion (in) 29 30 標準差 (standard deviation) &重現性 ( t d d d i ti ) &重現性 (repeatability) ( t bilit ) X= • X ′真實位置 ∑ X′ 3σˆ = 3 N ∑(X ′ − X ) N −1 2 • X 真實位置的平均值 • N 取樣次數 • 3σˆ is dispersion on each side of the mean of the mean 31 重現性 (repeatability) 計算 ( t bilit ) 計算 目標位置 0.1213 (in) Run Deviation(μin) 1 40 2 30 3 20 4 10 5 -10 6 -30 7 -40 Δx 3 3σˆ 91 32 單目標點單向定位的準確度 &重現性 多目標點單向定位及其平均值( 多目標點單向定位及其平均值(mean) ) xi為目標位置 將所有點資料加總後除以樣本 個數可得到所有點資料的平均位 置 x i Δxi 為所有資料的平均偏移量 (mean deviation) 1 33 3.9439 7.5601 22.0005 26.4583 1 40 270 -420 370 400 420 2 30 240 -420 370 370 400 3 20 240 -430 430 380 350 390 4 5 10 240 -450 340 350 400 -10 210 -410 360 350 360 Run 13.3727 34 重現性 (repeatability) 600 400 Deviation i i (μin ) 6 -30 210 -470 340 330 360 7 -40 190 -480 310 320 350 Δx 3 229 -440 353 353 383 D e v ia tio n 0.1213 2 2 1 平均偏移量 (mean deviation) 計算 目標位 置 2 1 200 0 -200 -400 1 1 -600 0 5 10 15 20 25 2 1 30 1 Poistion (in ) 2 2 1 2 2 以所有目標位置所對應的重現性當中最大的值 當作多目標點單向定位的重現性 35 36 機器的定位為單向 (Unidirectional) 或 同時考慮兩個單向亦即雙向 (Bidirectional) 單目標點雙向定位及其平均值(mean) 單向: • 得到雙向的點資料,該如何處理平均值? 1 當作一大群單筆資料 1.當作一大群單筆資料 2.將正方向及負方向的點資料分兩群處理 雙向: • ↑ or ↓ ‐ 正方向或負方向 37 38 將雙向的點資料當作一筆資料 處理平均值 (mean value) 將雙向的點資料分別處理 平均值 (mean value) 平均偏移量 (mean deviation) ( d i ti ) 計算 目標位置 50 f r Deviation (μin ) b 0 forward data -50 forward mean reverse data -100 reverse mean -150 b f -200 0 r 0.05 0.1 Poistion 0.15 (in ) x 為目標位置 50 將所有點資料加總後除以樣本 個數可得到所有點資料的平均位 置 xj Deviat ation (μin ) Δx j為所有資料的平均偏移量 ((mean deviation)) 0 -50 data x mean -100 -150 -200 0 0 05 0.05 01 0.1 Poistion 39 (in ) 0 15 0.15 0.1213 Forward Reverse Run Deviation 1 40 -40 2 30 -60 3 20 -80 4 10 -90 5 -10 -130 6 -30 30 -130 130 7 -40 -160 Δx f / Δxr 3 -99 99 Δxb -48 40 重現性 (repeatability) 失步 (lost motion) (l t ti ) 當分別處理兩筆數據的時候, 其平均值會有所差異,因此會 其平均值會有所差異 因此會 有失步產生 產生原因為背隙 (backlash)或 延滯 ((hysteresis) y ) 將雙向的點資料分別處理 f 將雙向的點資料當作一筆資料處理 r b f b f f b r xf r xr b r 單向定位的重現性 雙向定位的重現性 41 42 準確度 (accuracy) 重現性 (repeatability) 計算 (repeatabilit ) 計算 將雙向的點資料分別處理 目標位置 Forward Run 0.1213 (in) Reverse Deviation(μin) 1 40 -40 2 30 -60 60 3 20 -80 4 10 -90 5 -10 -130 6 -30 -130 7 -40 40 -160 160 x f / xr 3 -99 準確度 (accuracy) 在單目標點雙向 定位的過程中亦可解釋為不確定度 (uncertainty) 3σˆ f / 3σˆ r 91 129 3σˆ b 將雙向的點資料當作一筆資料處理 因此有所謂的單向準確度及雙向 準確度 其定義為 (mean+3s) & (mean‐3s)之 間的最大寬度 191 43 44 平均值 (mean) 多目標點雙向定位及其平均值( 多目標點雙向定位及其平均值(mean) ) 得到雙向的點資料,該如何 處理平均值? 1.當作一大群單筆資料 2.將正方向及負方向的點資料分 兩群處理 將雙向的點資料分別處理 平均值 (mean) 1r 1f 1 1f 2f 2r 2 2f 2r 2 2b 1r 將雙向的點資料當作一筆 資料處理平均值 (mean ) 1 2 重現性 (repeatability) 1f 1f 1f 1r 以所有目標位置所對應 400 mean forward 200 mean forward+3s 0 mean forward-3s -200 mean reverse -400 mean reverse+3s -600 mean reverse-3s -800 2f 0.121 3.944 7.56 13.37 2r 2r 因此有所謂的單向準確度及雙向準 確度 以所有目標位置所對應 的重現性當中最大的值 將雙向的點資料 當作一筆資料處理 當作多目標點雙向定位 的重現性 其定義為 (mean+3s) & (mean‐3s)之 間的最大寬度 26.46 1500 (μin ) 1000 Devia ation 1r 1r 22 Position (in ) 2r 1r 準確度 (accuracy) 在多目標點雙向 定位的過程中亦可解釋為不確定度 (uncertainty) 600 (μin ) 的重現性 2f 2f 1f 當作多目標點單向定位 2r 2f 46 重現性 (repeatability) &準確度 (repeatability) &準確度 (accuracy) 計算 (accuracy) 計算 的重現性當中最大的值 2 2b 1b Deviation 將雙向的點資 料分別處理 1 1b 1 45 500 mean+3s 0 mean-3s 3 mean -500 -1000 1b 1 2b 2 -1500 0 1213 3.9439 0.1213 3 9439 7.5601 7 5601 13.373 13 373 22.001 22 001 26.458 26 458 1b 1b 2b 1b 2b Position 2b 47 (in ) 48 各國工具機標準名稱 工具機常用的檢驗標準 • NMTBA NMTBA 1968, 1972 1968 1972 • NMTBA ( National Machine Tool Builders Association ) ‐ United States • VDI/DGQ 3441 VDI/DGQ 3441 1977, 1982 1977 1982 (Verein Deutscher Ingenieure ) ‐ Germany • ISO 230‐2 ISO 230 2 1988, 1997 1988 1997 ( International Organization for Standardization ) • ASME B5.54 ASME B5 54 1992, 2005 1992 2005 ( The American Society of Mechanical Engineers ) ‐ United States Definition and evaluation of accuracyy and repeatability p y for numerically controlled machine tools • ISO 230‐2 Test code for machine tools ‐ d f hi l Part 2 Determination of accuracy and repeatability of positioning numerically controlled axes • ASME B5.54 Methods for performance evaluation of computer numerically controlled machining centers controlled machining centers • VDI/DGQ 3441 Statistical testing of the operational and positional accuracy of machine Tools hi T l 49 50 Lost Motion Lost Motion NMTBA 51 The distance between the right‐ i h and left‐ d l f approach h means at any given target point target point 52 Lost Motion Lost Motion Repeatability • Dispersion on each side of the mean Right Left 1 4.492026 9 0 6 5.79874 5 98 2 4.532614 5.407237 3 4.190211 5.225438 4 3.832765 4.970977 5 3.551299 4.760545 ΔX u 4.119783 5.232587 Lost Motion : 4 119783 - 5.232587 4.119783 5 232587 = 1.1128044 1 1128044 Unidirectional repeatability 53 54 Accuracy E Example l Right Left 1 4.492026 5.79874 2 4.532614 5.407237 3 4 190211 4.190211 5 225438 5.225438 4 3.832765 4.970977 5 3 551299 3.551299 4 760545 4.760545 3σˆ u 1.272357066 1.20219773 3σˆ b Bidirectional repeatability • Accuracy (A) Au = ΔX u ± 3σˆ u Ab = ΔX b ± 3σˆ b 2.111323815 55 56 Accuracy Evaluation of Machine Accuracy Evaluation of Machine Accuracy • After A has been determined for a determined for a number of points, two extremes of A are averaged to averaged to determine a “zero” • As is based value of accuracy. is based value of accuracy • Bs is the specified distance of As. • For a longer travel, the For a longer travel the specification may include an additional allowance Cs per additional allowance C per additional unit length. 58 57 Deviation from target Example : ( μin ) Point NO. Target position 1 2 3 4 5 6 The extremes of the ΔXu ± 3σˆ u data are: 7 1 -14.7993 109 -2 11 92 44 3 -91 2 -9.4491 108 -16 80 7 99 28 65 4 -2.0725 87 -186 89 51 105 -11 102 19 45.6279 -611 -726 -583 -585 -524 -668 -604 20 48.9045 -732 -717 -685 -700 -691 -720 -784 Before zero shift Point NO. ∑X 3σˆ u 1 166 200 24 -176 176 224 2 371 142 53 -89 195 maximum = 349 (point 4) 4 237 315 34 -281 349 minimum i i = ‐819 (point 20) 819 ( i 20) 19 -4301 195 -614 -809 -419 20 -5029 100 -719 -819 -619 ΔX u ΔXu −3σˆu ΔXu + 3σˆ u maximum = 349 (point4) minimum = -819 819 (point20) the zero shift will then be 349 819 349-819 = −235 2 The extremes of the point NO. ΔX u ± 3σˆ u data are : data are : 59 ∑X 3σˆ u After zero shift ΔX u ΔXu −3σˆu ΔXu + 3σˆ u ΔX u ΔX u − 3σˆ u ΔX u + 3σˆ u 1 166 200 24 -176 224 259 59 459 2 371 142 53 -89 195 288 146 430 4 237 315 34 -281 349 269 -46 584 19 -4301 195 -614 -809 -419 -379 -574 -184 20 -5029 100 -719 -819 -619 -484 -584 -384 60 R lt 2:f Result 2:for additional length dditi l l th Result 1 584 (μin ) The minimum is The minimum ΔX u − 3σˆ u is ‐ 584 Accuracy specification were ± 600 (μin ) • Accuracy specification were ± 500 (μin ) in a foot ± 100 (μin ) in each additional foot • The maximum ΔX u + 3σˆ u is (μin ) Accuracy specification were Accuracy specification were ± 600 (μin ) 62 61 ISO 230 Test code for machine tools ISO 230 is standard method of testing the accuracy of machine tool. • 230‐ 1 Part 1: Geometric accuracy of machines operating under no‐load or finishing conditions. – 了解兩軸以上同動時的軌跡精度 – 分析進給系統的動態特性 • ISO 230‐6對角線位移測試 ISO 230 6對角線位移測試 • 230‐ 2 Part 2: – 評估機器的空間性能 – 節省時間及成本 Determination of accuracy and repeatability of positioning numerically controlled axes • • • • • ISO 230‐4 循圓測試 230‐ 3 Part 3: Determination of thermal effects 230‐ 4 Part 4: Circular tests for numerically controlled machine tools 230‐ 5 Part 5: Determination of the noise emission p g y y 230‐ 6 Part 6: Determination of positioning accuracy on body and face diagonals 63 64 Test Procedure Test Procedure • ISO 230 ‐ 2 Determination of accuracy and repeatability of positioning numerically controlled axes positioning numerically controlled axes • Tests for linear axes up to 2000 mm – A minimum of five A minimum of five target positions target positions per meter – With an overall minimum of five target positions – Each target position shall be attained five times in each direction Tests for linear axes exceeding 2000 mm – Target positions selected with an average Target positions selected with an average interval length of 250 mm 65 66 Positional Deviation os t o a e at o Mean unidirectional positional deviation at a position 1 n x i ↑= ∑ x ij ↑ n j =1 x i ↓= 1 n n ∑ j =1 x ij ↓ bidirectional bidirectional x ↑ + xi ↓ xi = i 2 Positive ↑ Positive ↑ Negative ↓ 1 4.492026 5.79874 2 4.532614 5.407237 3 4.190211 5.225438 N ti ↓ Negative 4 3.832765 4.970977 ΔX u = (5.79874 + 5.407237 5 3 551299 3.551299 4 760545 4.760545 xi ↑ / xi ↓ 4.119783 5.232587 xi 4.6761852 ΔX u = (4.492026 + 4.532614 + 4.190211 + 3.832765 + 3.551299)/5 = 4.119783 + 5.225438 + 4.970977 + 4.760545)/5 = 5.232587 Bidirectional ΔX b = (4.119783 + 5.232587)/2 = 5.232587 67 68 Reversal Value Reversal Value • Reversal value at a position Positive ↑ Bi = x i ↑ − x i ↓ • Reversal value of an axis B = max[ Bi • ] Mean reversal value of an axis B= Negative ↓ 1 4.492026 5.79874 2 4.532614 5.407237 3 4.190211 5.225438 4 3.832765 4.970977 5 3 551299 3.551299 4 760545 4.760545 xi ↑ / xi ↓ 4.119783 5.232587 Reversal value at a position: Bi = x i ↑ − x i ↓ = 4.119783 - 5.232587 = −1.1128044 1 m ∑ Bi m i =1 70 69 Standard Uncertainty Standard Uncertainty • Repeatability Unidirectional standard uncertainty at a position Unidirectional repeatability at a position • s i ↑= n 1 (x ij ↑ − x i ↑ )2 ∑ n − 1 j =1 s i ↓= n 2 1 ( x ij ↓ − x i ↓ ) ∑ n − 1 j =1 Ri ↑= 4 si ↑ ; Ri ↓= 4 si ↓ Bidirectional repeatability at a position Ri = max ⎡⎣ 2si ↑ +2si ↓ + Bi ; Ri ↑; Ri ↓ ⎤⎦ Unidirectional repeatability U idi ti l t bilit of an axis [ R ↑= max Ri ↑ ] [ ] R ↓= max Ri ↓ Bidirectional repeatability of an axis R = max[Ri ] 71 72 1 Pos ↑ 1 Positive ↑ Negative↓ 4.492026 5.79874 Unidirectional repeatability at a position Ri ↑= 4si ↑= 1.69647608 2 4.532614 5.407237 3 4.190211 5.225438 4 3.832765 4.970977 Bidirectional repeatability at a position 5 3 551299 3.551299 4 760545 4.760545 Ri = max 2 si ↑ +2 si ↓ + Bi ; Ri ↑; Ri ↓ si ↑ / si ↓ 0.42411902 0.400732577 Ri ↓= 4si ↓= 1.602930308 2 Neg ↓ Pos ↑ 3 Neg ↓ Pos ↑ 8.566713 9.81866 Neg ↓ 1 4.492026 5.79874 10.32070 11.00806 2 4.532614 5.407237 8.471852 9.619713 10.28639 10.70958 3 4.190211 5.225438 8.425074 9.279222 10.32760 10.57642 4 3.832765 4.970977 7.945062 5 3.551299 4.760545 7.909447 9.056468 9.648938 10.28608 9.18549 9.894999 10.37214 1 696476 1.602930 1 602930 1.246131 1 246131 1.267815 1 267815 1.233934 1 233934 1.147325 1 147325 Ri ↑ / Ri ↓ 1.696476 [ ] 2.762507598 Ri 2.385254486 Unidirectional repeatability of an axis R ↑= max Ri ↑ = 1.696476 1 696476 = max[2.762507598 ; 1.69647608; 1 602930308] 1.60293030 = 2.762507598 1.685365592 Bidirectional repeatability of an axis [ ] R ↓= max [R ↓] = 1.602930 R = max[Ri ] = 2.76250759 2 76250759 8 i 73 74 1 Systematic Positional Deviation Systematic Positional Deviation • Pos ↑ Unidirectional systematic positional deviation of an axis E ↑= max x i ↑ − min x i ↑ [ ] [ ] E ↓= max [x ↓] − min [x ↓] i i Bidirectional systematic positional deviation of an axis [ ] [ Mean bidirectional systematic Mean bidirectional systematic positional deviation of an axis [ ] [ ] M = max x i − min x i ] • Pos ↑ Neg ↓ Pos ↑ 8.566713 9.81866 Neg ↓ 1 4.492026 5.79874 4.532614 5.407237 8.471852 9.619713 10.28639 10.70958 3 4.190211 5.225438 8.425074 9.279222 10.32760 10.57642 4 3.832765 4.970977 7.945062 5 3.551299 4.760545 7.909447 9.056468 9.648938 10.28608 xi ↑ / xi ↓ 4 119783 5.232587 4.119783 5 232587 8.263629 8 263629 9.391910 9 391910 10.09572 10 09572 10.59046 10 59046 4.6761852 10.32070 11.00806 9.18549 9.894999 10.37214 8.8277701 10.3430959 Unidirectional systematic Bidirectional systematic Mean bidirectional systematic positional deviation of an positional deviation of an positional deviation of an axis axis E ↑= axis ↑ max [x i ↑ ]− min [x i ↑ ] = 10.09572 - 4.119783 = 5.975937 [ ] 75 Neg ↓ 3 2 xi E = max x i ↑; x i ↓ − min x i ↑; x i ↓ 2 [ ] E ↓= ↓ max x i ↓ − min x i ↓ = 10.59046 - 5.232587 = 5.357873 [ ] [ E = max x i ↑; x i ↓ − min x i ↑; x i ↓ ] [ ] [ ] M = max x i − min x i = 10.59046 - 4.119783 = 10.3430959 - 4.6761852 = 6.47067 = 5.6669107 76 1 Accuracy Pos ↑ Unidirectional accuracy of an axis • [ ] [ ] A↓ ↓= max[x ↓ +2s ↓]− min[x ↓ −2s ↓] A ↑= max x i ↑ +2si ↑ − min x i ↑ −2si ↑ i i i i i i i 8.566713 9.81866 Pos ↑ Neg ↓ 10.32070 11.00806 2 4.532614 5.407237 8.471852 9.619713 10.28639 10.70958 3 4.190211 5.225438 8.425074 9.279222 10.32760 10.57642 4 3.832765 4.970977 7.945062 9.894999 10.37214 5 3.551299 4.760545 7.909447 9.056468 9.648938 10.28608 x i ↑ +2si ↑ / 4 968021 6.034052 4.968021 6 034052 8.886695 8 886695 10.02581 10 02581 10.71269 10 71269 11 16412639 11.16412639 3.271544 4.431122 7.640563 8.758002 9.478760 10.01680081 9.18549 x i ↓ −2si ↓ • Unidirectional accuracy of an axis Bidirectional accuracy of an axis [ ] [ ] = 10. 71269 - 3.271544 = 7.4411 A ↓= max x i ↓ +2si ↓ − min x i ↓ −2si ↓ [ ] [ = 11.16412639 - 4.431122 ASME B5.54 ‐ 2005 Neg ↓ 4.492026 5.79874 A ↑= ↑ max ma x i ↑ +2si ↑ − min x i ↑ −2si ↑ 77 Pos ↑ 1 x i ↑ −2si ↑ / A = max x i ↑ +2si ↑; x i ↓ +2si ↓ i Neg ↓ 3 x i ↓ +2si ↓ Bidirectional accuracy of an axis [ ] − min[x ↑ −2s ↑; x ↓ −2s ↓] 2 = 6.733 [ [ ] ] A = max x i ↑ +2si ↑; x i ↓ +2si ↓ ] − min x i ↑ −2si ↑; x i ↓ −2si ↓ = 11.16412639 - 3.271544 = 7.8925 78 VDI/DGQ 3441 ASME B5.54 is almost the same as ASME B5.54 is almost the same as ISO 230 ‐ 2 standard 79 80 Reversal Error Reversal Error • Reversal error at a position U j = x j ↓ −x j ↑ Positive ↑ Negative ↓ 1 4.492026 5.79874 2 4.532614 5.407237 3 4.190211 5.225438 4 3.832765 4.970977 5 3 551299 3.551299 4 760545 4.760545 xj ↑ / xj ↓ 4.119783 5.232587 Reversal error at position: U j = x j ↑ −x j ↓ = 4.119783 - 5.232587 = 1.1128044 82 81 Positional Scatter Positional Scatter • Mean standard deviation at a position sj = Negative ↓ s j ↑ +s j ↓ 1 4.492026 5.79874 2 2 4.532614 5.407237 3 4.190211 5.225438 P iti Positional scatter at a position l tt t iti Ps j = 6 ⋅ s j Positive ↑ Maximum positional scatter Maximum positional scatter Ps max = Ps j max 4 3.832765 4.970977 5 3 551299 3.551299 4 760545 4.760545 s j ↑ / s j ↓ 0.42411902 0.400732577 83 Mean standard deviation at a position sj = s j ↑ +s j ↓ 2 0.42411902 + 0.400732577 = 2 = 0.412425799 P iti Positional scatter at a position l tt t iti Ps j = 6 ⋅ s j = 2 .474554796 84 1 Positional Deviation Positional Deviation • Pos ↑ 2 Neg ↓ 1 4.492026 5.79874 Pos ↑ 3 Neg ↓ 8.566713 9.81866 Pos ↑ Neg ↓ 10.32070 11.00806 2 4.532614 5.407237 8.471852 9.619713 10.28639 10.70958 Positional deviation 3 4.190211 5.225438 8.425074 9.279222 10.32760 10.57642 Pa = x jmax − x jmin 4 3.832765 4.970977 7.945062 5 3.551299 4.760545 7.909447 9.056468 9.648938 10.28608 9.18549 9.894999 10.37214 4 119783 5.232587 5 232587 8.263629 8 263629 9.391910 9 391910 10.09572 10 09572 10.59046 10 59046 x j ↑ / x j ↓ 4.119783 4.6761852 xj 8.8277701 10.3430959 Positional deviation Pa = x jmax − x jmin = 10.3430959 - 4.6761852 = 5.6669107 85 86 1 Positional Uncertainty Positional Uncertainty • Pos ↑ Positional uncertainty 2 Neg ↓ Pos ↑ 3 Neg ↓ 8.566713 9.81866 Pos ↑ Neg ↓ 1 4.492026 5.79874 2 4.532614 5.407237 8.471852 9.619713 10.28639 10.70958 10.32070 11.00806 3 4.190211 5.225438 8.425074 9.279222 10.32760 10.57642 ( )⎤⎥ 4 3.832765 4.970977 7.945062 5 3.551299 4.760545 7.909447 9.056468 9.648938 10.28608 ( ) 1 x j + U j + Ps j 2 1 x j − U j + Ps j 2 1 ⎡ P = ⎢ x j + U j + Ps j 2 ⎣ 1 ⎡ − ⎢ x j − U j + Ps j 2 ⎣ ⎦ max ( ( ⎤ ⎥ ⎦ min • ) ) 9.18549 9.894999 10.37214 6 469864798 6.469864798 10 33464072 10.33464072 11 48343624 11.48343624 2.882505602 7.320899485 9.202755556 Positional uncertainty ( ) ( ) 1 1 ⎡ ⎤ ⎡ ⎤ P = ⎢ x j + U j + Ps j ⎥ − ⎢ x j − U j + Ps j ⎥ 2 2 ⎦ max ⎣ ⎦ min ⎣ = 11.48343624 - 2.882505602 = 8.6009 87 88 東台精機立式銑床機械精度檢測 (TMV‐1500A) 不同標準間準確度 & 重現性的比較 89 NMTBA Bidirectional NMTBA Bidirectional 90 ISO 230 2 ISO 230‐2 B : reversal value R : repeatability M, E : positional d i ti deviation A : accuracy 91 92 VDI/DGQ 3441 VDI/DGQ 3441 A Accuracies i Ps : positional scatter Pa : positional deviation NMTBA VDI ISO definition gguidelines standard p y P : positional uncertainty Accuracy ±7 282245 ±7.282245 14 77652965 14.77652965 14 08510733 14.08510733 ASME B5.54 standard 14 08510733 14.08510733 94 93 綜合比較(1) 綜合比較(2) NMTBA ISO 230‐2 VDI/DGQ 3441 Lost motion Lost motion Standard deviation Repeatability Reversal value Reversal value Standard uncertainty Repeatability Positional deviation Positional deviation Accuracy Accuracy • The number of target points • The number of runs • The runs approach from one direction or both directions Reversal error Reversal error Standard deviation Positional scatter Positional deviation Positional deviation Positional uncertainty ASME B5 54 ASME B5.54 Reversal deviation Standard uncertainty Repeatability Systematic deviation Accuracy 95 96 Machine tool accuracy standards compared Term or other T th info ISO standard t d d Target position Position to which the VDI guidelines NMTBA definition JIS standard Same as ISO Same as ISO Same as ISO Machine tool accuracy standards compared Term or other T th into moving part is programmed Actual position Measured position Same as ISO Same as ISO Same as ISO Unidirectional / Bidirectional reached by the moving part Number of runs to the target position Minimum of five for each direction Depends on length of axis. Minimum of fi five Minimum of seven One run in each direction for positional accuracy and d seven for repeatability N b off Number target position required Five per meter up to 2 meters. More for longer Ten per meter for each direction Unspecified ; example shown is 20 Depends on length. Every 50mm up to 1000mm;then every 100mm ISO standard t d d Unidirectional involves a series of measurements in which the approach to target is always form same direction. Bidirectional refers to movement in both directions. directions Bidirectional recommended VDI guidelines NMTBA definition JIS standard Same as ISO. Recommends bidirectional Same as ISO. Recommends unidirectional Same as ISO. R Recommends d bidirectional 97 Machine tool accuracy standards compared Term or other T th into ISO standard t d d Positional deviation Mean positional deviation 98 Machine tool accuracy standards compared NMTBA definition JIS standard Term or other T th into ISO standard t d d Differences between Different form ISO actual position Maximum reached and target difference of the mean values of the actual positions versus the individual target positions along an axis Agrees with ISO definition however noted as ‘deviation from target’ Term not noted since only one run is made to a target two for bidirectional Reversal error Value of the difference Same as ISO between the mean positional deviation at a position for the two direction of approach Algebraic mean of the positional deviations at a target position Agrees with ISO noted as ‘mean’ VDI guidelines id li Agrees with ISO however noted as ‘mean value’ Not considered Standard deviation ( 1 n ∑ xij − x i n − 1 j =1 VDI guidelines ) 2 Same as ISO NMTBA JIS definition standard Same as ISO. Not Referred to considered as ‘lost motion’ Same as ISO. Not considered Where: n=number of runs; j j=any one run; xij=positional deviation for any one run =mean positional deviation xi 99 100 M hi tooll accuracy standards Machine d d comparedd Term or other into ISO standard VDI guidelines Positional accuracy Maximum difference between extreme values of x+3sigma and x-3sigma regardless of the position or direction di ti off motion. ti Applies to unidirectional as well as bidirectional. Due to reversal error the spread will be greater and the position accuracy less for bidirectional No specific p term for Comparable p to accuracy, however the ISO. Referred term ‘position uncertainty’ to as accuracy as described is comparable bl tto th the ISO definition for ‘position accuracy’ although the calculations differ NMTBA definition Machine tool accuracy standards compared JIS standard Term or other i into Differs considerably from any one of the other three. P iti i Positioning accuracy is measured as the g variation largest of any actual position from a target position Spread at the target Repeatability R t bilit position having the (unidirectional largest spread or bidirectional) ISO standard VDI guidelines id li NMTBA d fi i i definitio n JIS standard d d Comparable to the ISO standard Comparable to the ISO standard Differs considerably from the other three and is expressed as a value based on dividing the read at the target position α maximum spread by two 101 102 Resolution of Measurement Resolution of Measurement Measurements of Geometrical Errors 103 104 Laser Vector Measurement Technique Laser Vector Measurement Technique‐contd. (C. Wang, 2000) • Machine accuracy can be improved by indentifying all geometric y p y y g g error and then compensating for these errors. The key is how to measure these error accurately and quickly. • ASME standard is noted that linear displacement measurement along four diagonals can used to check volumetric positioning accuracy quickly. i kl • First mount the laser beam in one of the body diagonal directions the same as in the body diagonal measurement directions, the same as in the body diagonal measurement. Instead of moving x, y, and z continuously to the next increment R, stop and take a measurement. • Move the x axis to X, stop and take a measurement, th then move the y axis to Y, stop and take a measurement, th i t Y t dt k t then move the z axis to Z, stop and take a measurement. • R= (X2+Y2+Z2)0.5 is the increment in the diagonal direction, and X, Y, and Z are the increments in the x, y, and z directions, respectively. 39 106/39 Laser Vector Measurement Technique‐contd Laser Vector Measurement Technique contd. Laser Vector Measurement Technique‐contd. Laser Vector Measurement Technique contd • Compared to the conventional body diagonal measurement where only one data point is collected at each increment R, h l d i i ll d hi the vector measurement collects three data points, one at X, one at Y and one at Z Hence three times more data are one at Y, and one at Z. Hence three times more data are collected. Central limit theory, • Central limit theory, • For conventional body diagonal measurement, the displacement is a straight line along the body diagonal; hence a laser interferometer can be used to do the measurement. • The displacements are along the x axis, then along the y axis, and then along the z axis. The trajectory of the target or the retroreflector is not parallel to the diagonal direction. is not parallel to the diagonal direction σx = σ n σ x : STEDV of sample mean σ : STEDV of population n: smapling number 107 108 Assumptions Volumetric Displacement Errors Volumetric Displacement Errors To simplify the analysis, the following assumptions are made. To simplify the analysis the following assumptions are made • The motion is repeatable to within certain uncertainty. The y p y accuracy of the method is limited to the repeatability of the motion. • The position errors can be superpositioned, i.e., the position error is much smaller than the travel distance. • The angular errors are small compared to the other errors. • Rigid body motion. • Consider a rigid body motion from PA to PB. The motion can be described by 6 degrees of freedom (1‐linear, 2‐straightness, 3‐ angular errors) angular errors). • Now move PA such that it is at the origin of coordinate system. • The point P The point PB would be at the origin if there was no error. would be at the origin if there was no error 109 Volumetric Displacement Errors Volumetric Displacement Errors Measurement along the Body Diagonal Measurement along the Body Diagonal • Else, P El PB = Xu X x + E(x) [from vector diagram] E( ) [f di ] • The error vector E(x) can be expressed as • The diagonal measurement R is achieved by increments in X, Y and Z directions. The unit vector R is given by E( x ) = E x ( x )u x + E y ( x )u y + E z ( x )u z • Similarly, E( y ) = E x ( y )u x + E y ( y )u y + E z ( y )u z 110 R= x y z u x + uy + uz R R R PB PA • The error along the diagonal direction is given by dR A B E( z ) = E x ( z )u x + E y ( z )u y + E z ( z )u z 111 x y z + Ey ( x ) + Ez ( x ) R R R x y z dR( ) = E x (y ) + E y ( y ) + E z ( y ) dR(y) R R R x y z dR(z) = E x (z ) + E y ( z ) + E z ( z ) R R R dR(x) = E x ( x ) 112 Measurement along the Four Body Diagonals Measurement along the Four Body Diagonals Measurement along the Four Body Diagonals‐contd. Measurement along the Four Body Diagonals contd • There There are four diagonals, namely, those from (0, 0, 0) to (nX, nY, are four diagonals namely those from (0 0 0) to (nX nY nZ), denoted by ppp. ( , , ) ( , , ), y pp • (nX, 0, 0) to (0, nY, nZ), denoted by npp. • (0, nY, 0) to (nX, 0, nZ), denoted by pnp. (0, 0, nZ) to (nX, nY, 0), denoted by ppn. • (0, 0, nZ) to (nX, nY, 0), denoted by ppn. dR ( x )NPP (nX, nY, nZ) (0, nY, nZ) Z dR ( x )PNP PPP NPP (nX, 0, nZ) (0, 0, nZ) PNP PPN dR ( x )PPN Y (nX, nY, 0) (0, nY, 0) (0, 0, 0) X (nX, 0, 0) 114 113 Measurement along the Four Body Diagonals‐contd. Measurement along the Four Body Diagonals contd R E x ( x ) = [dR ( x )PPP − dR ( x )NPP ] 2X R E y ( x ) = [dR ( x )PPP − dR ( x )PNP ] 2Y R E z ( x ) = [dR ( x )PPP − dR ( x )PPN ] 2Z x y z + Ey ( x ) + Ez ( x ) R R R x y z = −E x ( x ) + E y ( x ) + E z ( x ) R R R x y z = E x ( x ) − Ey ( x ) + Ez ( x ) R R R x y z = E x ( x ) + Ey ( x ) − Ez ( x ) R R R dR ( x )PPP = E x ( x ) R E x ( z ) = [dR ( z )PPP − dR ( z )NPP ] 2X R E y ( z ) = [dR ( z )PPP − dR ( z )PNP ] 2Y R E z ( z ) = [dR ( z )PPP − dR ( z )PPN ] 2Z Squareness Errors When the angles between xy, yz, and xz g y, y , are not exactlyy 90°, then the diagonal distances can be expressed as dRNPP dRPNP R 2X R E y ( y ) = [dR ( y )PPP − dR ( y )PNP ] 2Y R E z ( y ) = [dR ( y )PPP − dR ( y )PPN ] 2Z E x ( y ) = [dR ( y )PPP − dR ( y )NPP ] dRPPP 115 XY YZ ZX + θ yz + θ zx R R R XY YZ ZX = −θ xy + θ yz − θ zx R R R XY YZ ZX = −θ xy − θ yz + θ zx R R R XY YZ ZX = θ xy − θ yz − θ zx R R R dRPPP = θ xy R 2 XY R + dRPNP ) 2ZX R + dRNPP ) 2YZ θ xy = (dRPPP + dRPPN ) θ zx = (dRPPP θ yz = (dRPPP 116 Relation Between the Measured Volumetric Errors and the Conventional 21 Errors Relation Between the Measured Volumetric Errors and the Conventional 21 Errors‐contd. • For a machine type FXYZ, the position errors can be expressed as Ex ( X ) = δ x ( X ) ΔX = δ x ( X ) + δ x (Y ) + δ x (Z ) − Y ε z ( X ) + Z (ε y ( X ) + ε y (Y )) + Zθ ZX − Y θ XY E x (Z ) = δ x (Z ) + Zθ zx ΔY = δ y (Y ) + δ y ( X ) + δ y (Z ) − Z (ε x ( X ) + ε X (Y )) − ZθYZ Ey ( X ) = δ y ( X ) E x (Y ) = δ x (Y ) − Y θ xy E y (Y ) = δ y (Y ) ΔZ = δ z (Z ) + δ z ( X ) + δ z (Y ) + Y ⋅ ε X ( X ) Remember, only for FXYZ! E y (Z ) = δ y (Z ) − Zθ yz • Since Ez ( X ) = δ z ( X ) Ez (Y ) = δ z (Y ) ΔX = E x ( x ) + E x ( y ) + E x ( z ) Ez (Z ) = δ z (Z ) ΔY = E y ( x ) + E y ( y ) + E y ( z ) ΔZ = Ez ( x ) + Ez ( y ) + Ez ( z ) 117 118 Measurement Errors • • • • • • Projection error Laser beam alignment error b l Flat‐mirror alignment error Error due to machine angular motion symmetry The sensitivity of squareness results to machine aspect ratio Error Compensation Technology 119 120 Flow of Error Compensation in “Precimatics” In this case, some new issues is essential. Such as how to Such as how to 補償 get 21 geometric error? get correction? generate a new correct NC code? 121 dx X axis values X‐axis values Flow of Volumetric Error Flow of Volumetric Error Simulation Y‐axis values Z‐axis values Squareness values dy dz ex ey ez 122 Flow of Volumetric Error Simulation 0 0 ‐0.0030 ‐0.0026 0 0.0002 ‐0.0013 1.0000 0.0026 0.0014 ‐0.0024 0 0.0001 0.0021 2.0000 ‐0.0014 ‐0.0012 ‐0.0019 0 ‐0.0023 0.0002 3.0000 ‐0.0016 ‐0.0008 0.0033 0 0.0001 ‐0.0001 4.0000 0.0022 0.0019 0.0039 0 0.0004 0.0001 5.0000 ‐0.0006 0.0002 0.0058 0 0 0.0023 6 0000 0 0062 0 0058 0 0022 6.0000 0.0062 0.0058 0.0022 0 0.0011 0.0019 0 0 0011 0 0019 7.0000 ‐0.0026 ‐0.0025 ‐0.0006 0 0.0002 ‐0.0011 8.0000 ‐0.0024 ‐0.0034 0.0062 0 ‐0.0001 0 9 0000 0 0019 0 0025 0 0027 9.0000 ‐0.0019 ‐0.0025 0.0027 0 0.0035 ‐0.0002 0 0 0035 0 0002 10.0000 0.0033 0.0027 ‐0.0010 0 ‐0.0001 0.0001 0 0 0 0 0 0 0 1.0000 0.0026 0.0044 0.0002 0 ‐0.0001 0.0034 2.0000 ‐0.0014 0.0018 0.0007 0 ‐0.0025 0.0015 3.0000 ‐0.0016 0.0022 0.0059 0 ‐0.0001 0.0012 4.0000 0.0022 0.0049 0.0065 0 0.0002 0.0014 Initialize 5.0000 ‐0.0006 0.0032 0.0084 0 ‐0.0002 0.0036 6.0000 0.0062 0.0088 0.0048 0 0.0009 0.0032 7.0000 ‐0.0026 0.0005 0.0020 0 0 0.0002 8.0000 ‐0.0024 ‐0.0004 0.0088 0 ‐0.0003 0.0013 9.0000 ‐0.0019 0.0005 0.0053 0 0.0033 0.0011 10.0000 0.0033 0.0057 0.0016 0 ‐0.0003 0.0014 124 Flow of Volumetric Error Simulation Flow of Volumetric Error Simulation 0 0 0 0 0 0 0 1.0000 0.0026 0.0044 0.0002 0 ‐0.0001 0.0034 2.0000 ‐0.0014 0.0018 0.0007 0 ‐0.0025 0.0015 3.0000 ‐0.0016 0.0022 0.0059 0 ‐0.0001 0.0012 4 0000 0 0022 0 0049 0 0065 4.0000 0.0022 0.0049 0.0065 0 0.0002 0.0014 0 0 0002 0 0014 5.0000 ‐0.0006 0.0032 0.0084 0 ‐0.0002 0.0036 6.0000 0.0062 0.0088 0.0048 0 0.0009 0.0032 7 0000 0 0026 0 0005 0 0020 7.0000 ‐0.0026 0.0005 0.0020 0 0 0.0002 0 0 0 0002 8.0000 ‐0.0024 ‐0.0004 0.0088 0 ‐0.0003 0.0013 9.0000 ‐0.0019 0.0005 0.0053 0 0.0033 0.0011 x 10 0 10 0000 0 0033 0 0057 0 0016 10.0000 0.0033 0.0057 0.0016 0 ‐0.0003 0.0014 0 0 0003 0 0014 0 0 0 0 0 0 0 1.0000 0.0026 0.0044 0.0002 0 ‐0.0001 0.0034 2.0000 ‐0.0014 0.0018 0.0007 0 ‐0.0025 0.0015 3.0000 ‐0.0016 0.0022 0.0059 0 ‐0.0001 0.0012 4.0000 0.0022 0.0049 0.0065 0 0.0002 0.0014 5.0000 ‐0.0006 0.0032 0.0084 0 ‐0.0002 0.0036 6.0000 0.0062 0.0088 0.0048 0 0.0009 0.0032 7.0000 ‐0.0026 0.0005 0.0020 0 0 0.0002 8.0000 ‐0.0024 ‐0.0004 0.0088 0 ‐0.0003 0.0013 9.0000 ‐0.0019 0.0005 0.0053 0 0.0033 0.0011 10.0000 0.0033 0.0057 0.0016 0 ‐0.0003 0.0014 -3 Nominal Coordinates Actual Coordinates Compensated Coordinates 8 -3 x 10 0 Distance along Y-a axis (mm) -2 XFYZ -3 FXYZ -4 -5 -6 Nominal Coordinates Compensated Coordinates Actual Coordinates Distance along Y-axis (mm) 7 -1 6 5 4 3 2 1 -7 0 -8 125 0 1 2 3 4 5 6 Distance along X-axis (mm) 7 8 9 10 Flow of Volumetric Error Simulation Flow of Volumetric Error Simulation Nominal Coordinates Compensated Coordinates Actual Coordinates 5 4.8 8 Distance e along Z-axis (m mm) Distance along Y-axis (mm) 4.6 4.4 4.2 Nominal Coordinates Compensated Coordinates 4 Actual Coordinates 3.8 6 4 5 2 3.6 3.4 0 3 3.2 3 3 3.2 3.4 3.6 3.8 4 4.2 4.4 Distance along X-axis (mm) 4.6 4.8 5 4 3.5 4 4.5 5 3 Distance along Y-axis (mm) Distance along X-axis (mm) 127 0 1 2 3 4 5 6 7 Distance along X-axis (mm) 8 9 10 126